Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis and evaluation of MapReduce solutions on an HPC cluster

Thumbnail
Ver/Abrir
Jorge_Veiga_2016_Analysis_and_evaluation_of_MapReduce_solutions_on_an_HPC_cluster.pdf (478.6Kb)
Use este enlace para citar
http://hdl.handle.net/2183/21697
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Analysis and evaluation of MapReduce solutions on an HPC cluster
Autor(es)
Veiga, Jorge
Expósito, Roberto R.
Taboada, Guillermo L.
Touriño, Juan
Fecha
2016-02
Cita bibliográfica
Jorge Veiga, Roberto R. Expósito, Guillermo L. Taboada, Juan Touriño, Analysis and evaluation of MapReduce solutions on an HPC cluster, Computers & Electrical Engineering, Volume 50, 2016, Pages 200-216, ISSN 0045-7906, https://doi.org/10.1016/j.compeleceng.2015.11.021. (http://www.sciencedirect.com/science/article/pii/S0045790615004127)
Resumen
[Abstract] The ever growing needs of Big Data applications are demanding challenging capabilities which cannot be handled easily by traditional systems, and thus more and more organizations are adopting High Performance Computing (HPC) to improve scalability and efficiency. Moreover, Big Data frameworks like Hadoop need to be adapted to leverage the available resources in HPC environments. This situation has caused the emergence of several HPC-oriented MapReduce frameworks, which benefit from different technologies traditionally oriented to supercomputing, such as high-performance interconnects or the message-passing interface. This work aims to establish a taxonomy of these frameworks together with a thorough evaluation, which has been carried out in terms of performance and energy efficiency metrics. Furthermore, the adaptability to emerging disks technologies, such as solid state drives, has been assessed. The results have shown that new frameworks like DataMPI can outperform Hadoop, although using IP over InfiniBand also provides significant benefits without code modifications.
Palabras clave
MapReduce
High performance computing (HPC)
Big Data
Energy efficiency
InfiniBand
Solid State Drive (SSD)
 
Descripción
This is a post-peer-review, pre-copyedit version of an article published in Computers & Electrical Engineering. The final authenticated version is available online at: https://doi.org/10.1016/j.compeleceng.2015.11.021
Versión del editor
https://doi.org/10.1016/j.compeleceng.2015.11.021
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0045-7906
1879-0755
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias