Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse Semi-Functional Partial Linear Single-Index Regression

Thumbnail
View/Open
Silvia_Novo_2018_Sparse_Semi-Functional_Partial_Linear_Single-Index_Regression.pdf (719.1Kb)
Use this link to cite
http://hdl.handle.net/2183/21126
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
Sparse Semi-Functional Partial Linear Single-Index Regression
Author(s)
Novo Díaz, Silvia
Aneiros Pérez, Germán
Vieu, Philippe
Date
2018-09-17
Citation
Novo, S.; Aneiros, G.; Vieu, P. Sparse Semi-Functional Partial Linear Single-Index Regression. Proceedings 2018, 2, 1190.
Abstract
[Abstract] The variable selection problem is studied in the sparse semi-functional partial linear model, with single-index type influence of the functional covariate in the response. The penalized least squares procedure is employed for this task. Some properties of the resultant estimators are derived: the existence (and rate of convergence) of a consistent estimator for the parameters in the linear part and an oracle property for the variable selection method. Finally, a real data application illustrates the good performance of our procedure.
Keywords
Functional data analysis
Variable selection
Sparse model
Dimension reduction
Functional single-index model
Semiparametric model
 
Description
Trátase dun resumo estendido da ponencia
Editor version
https://doi.org/10.3390/proceedings2181190
Rights
Atribución 3.0 España
ISSN
2504-3900

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback