Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic multiscale vascular image segmentation algorithm for coronary angiography

Thumbnail
Ver/Abrir
Crbllal_Atmatic.pdf (654.1Kb)
Use este enlace para citar
http://hdl.handle.net/2183/20979
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
Automatic multiscale vascular image segmentation algorithm for coronary angiography
Autor(es)
Carballal, Adrián
Nóvoa, Francisco
Fernández-Lozano, Carlos
García-Guimaraes, Marcos
Aldama, Guillermo
Calviño-Santos, Ramón
Vázquez Rodríguez, José Manuel
Pazos, A.
Fecha
2018-09
Cita bibliográfica
Carballal A, Novoa FJ, Fernández-Lozano C, García-Guimaraes M, Aldama-López G, Calviño-Santos R, et al. Automatic multiscale vascular image segmentation algorithm for coronary angiography. Biomed Signal Process Control. 2018;46:1-9
Resumen
[Abstract] Cardiovascular diseases, particularly severe stenosis, are the main cause of death in the western world. The primary method of diagnosis, considered to be the standard in the detection and quantification of stenotic lesions, is a coronary angiography. This article proposes a new automatic multiscale segmentation algorithm for the study of coronary trees that offers results comparable to the best existing semi-automatic method. According to the state-of-the-art, a representative number of coronary angiography images that ensures the generalisation capacity of the algorithm has been used. All these images were selected by clinics from an Haemodynamics Unit. An exhaustive statistical analysis was performed in terms of sensitivity, specificity and Jaccard. Algorithm improvements imply that the clinician can perform tests on the patient and, bypassing the images through the system, can verify, in that moment, the intervention of existing differences in a coronary tree from a previous test, in such a way that it could change its clinical intra-intervention criteria.
Palabras clave
Multiscale segmentation
Coronary disease
Stenotic lesions
Angiographies segmentation
 
Versión del editor
https://doi.org/10.1016/j.bspc.2018.06.007
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
1746-8094

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias