Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A 2D algorithm with asymmetric workload for the UPC conjugate gradient method

Thumbnail
Ver/abrir
J.González_Dominguez_A_2D_Algorithm_with_Asymmetric_Workload_for_the_UPC_Conjugate_Gradient_Method_2014.pdf (588.0Kb)
Use este enlace para citar
http://hdl.handle.net/2183/20967
Coleccións
  • Investigación (FIC) [1687]
Metadatos
Mostrar o rexistro completo do ítem
Título
A 2D algorithm with asymmetric workload for the UPC conjugate gradient method
Autor(es)
González-Domínguez, Jorge
Marques, Osni A.
Martín, María J.
Touriño, Juan
Data
2014
Cita bibliográfica
González-Domínguez, J., Marques, O.A., Martín, M.J. et al. J Supercomput (2014) 70: 816. https://doi.org/10.1007/s11227-014-1300-0
Resumo
[Abstract] This paper examines four different strategies, each one with its own data distribution, for implementing the parallel conjugate gradient (CG) method and how they impact communication and overall performance. Firstly, typical 1D and 2D distributions of the matrix involved in CG computations are considered. Then, a new 2D version of the CG method with asymmetric workload, based on leaving some threads idle during part of the computation to reduce communication, is proposed. The four strategies are independent of sparse storage schemes and are implemented using Unified Parallel C (UPC), a Partitioned Global Address Space (PGAS) language. The strategies are evaluated on two different platforms through a set of matrices that exhibit distinct sparse patterns, demonstrating that our asymmetric proposal outperforms the others except for one matrix on one platform.
Palabras chave
Conjugate gradient
PGAS
UPC
Performance optimization
Data distribution
 
Descrición
This is a post-peer-review, pre-copyedit version of an article published in Journal of Supercomputing. The final authenticated version is available online at: https://doi.org/10.1007/s11227-014-1300-0
Versión do editor
https://doi.org/10.1007/s11227-014-1300-0
ISSN
0920-8542
1573-0484
 

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións