Tissue-scale, patient-specific modeling and simulation of prostate cancer growth
Use this link to cite
http://hdl.handle.net/2183/20826
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0
Collections
- Teses de doutoramento [2184]
Metadata
Show full item recordTitle
Tissue-scale, patient-specific modeling and simulation of prostate cancer growthAuthor(s)
Directors
Gómez Díaz, HéctorDate
2018Abstract
[Abstract]
Prostate cancer is a major health problem among aging men worldwide. This pathology
is easier to cure in its early stages, when it is still organ-confined. However, it hardly
ever produces any symptom until it becomes excessively large or has invaded other
tissues. Hence, the current approach to combat prostate cancer is a combination of
prevention and regular screening for early detection. Indeed, most cases of prostate
cancer are diagnosed and treated when it is localized within the organ. Despite the wealth
of accumulated knowledge on the biological basis and clinical management of the disease,
we lack a comprehensive theoretical model into which we can organize and understand
the abundance of data on prostate cancer. Additionally, the standard clinical practice
in oncology is largely based on statistical patterns, which is not sufficiently accurate to
individualize the diagnosis, prediction of prognosis, treatment, and follow-up.
Recently, mathematical modeling and simulation of cancer and their treatments have
enabled the prediction of clinical outcomes and the design of optimal therapies on a
patient-specific basis. This new trend in medical research has been termed mathematical
oncology. Prostate cancer is an ideal candidate to benefit from this technology for several
reasons. First, patient-specific clinical approaches may contribute to reduce the rates of
overtreatment and undertreatment of prostate cancer. Multiparametric magnetic resonance
is increasingly used to monitor and diagnose this disease. This imaging technology can
provide abundant information to build a patient-specific mathematical model of prostate
cancer growth. Moreover, the prostate is a sufficiently small organ to pursue tissue-scale
predictive simulations. Prostate cancer growth can also be estimated using the serum
concentration of a biomarker known as the prostate specific antigen. Additionally, some
prostate cancer patients do not receive any treatment but are clinically monitored and
periodically imaged, which opens the door to in vivo model validation. The advent of
versatile and powerful technologies in computational mechanics permits to address the
challenges posed by the prostate anatomy and the resolution of the mathematical models.
Finally, mathematical oncology technologies can guide the future research on prostate
cancer, e.g., proposing new treatment strategies or unveiling mechanisms involved in
tumor growth. Therefore, the aim of this thesis is to provide a computational framework for the tissuescale,
patient-specific modeling and simulation of organ-confined PCa growth within
the context of mathematical oncology. We present a model for localized prostate cancer
growth that reproduces the growth patterns of the disease observed in experimental
and clinical studies. To capture the coupled dynamics of healthy and tumoral tissue,
we use the phase-field method together with reaction-diffusion equations for nutrient
consumption and prostate specific antigen production. We leverage this model to run the
first tissue-scale, patient-specific simulations of prostate cancer growth over the organ
anatomy extracted from medical images. Our results show similar tumor progression as
observed in clinical practice.
We leverage isogeometric analysis to handle the nonlinearity of our set of equations,
as well as the complex anatomy of the prostate and the intricate tumoral morphologies.
We further advocate dynamical mesh adaptivity to speed up calculations, rationalize
computational resources, and facilitate simulation in a clinically relevant time. We
present a set of efficient algorithms to accommodate local h-refinement and h-coarsening
of hierarchical splines in isogeometric analysis. Our methods are based on Bézier
projection, which we extend to hierarchical spline spaces. We also introduce a balance
parameter to control the overlapping of basis functions across the levels of the hierarchy,
leading to improved numerical conditioning. Our simulations of cancer growth show
remarkable accuracy with very few degrees of freedom in comparison to the uniform
mesh that the same simulation would require.
Finally, we study the interaction between prostate cancer and benign prostatic hyperplasia,
another common prostate pathology that causes the organ to gradually enlarge. In
particular, we investigate why tumors originating in larger prostates present favorable
pathological features. We perform a qualitative simulation study by extending our
mathematical model of prostate cancer growth to include the equations of mechanical
equilibrium and the coupling terms between them and tumor dynamics. We assume that
the deformation of the prostate is a quasistatic phenomenon and we model prostatic tissue
as a linear elastic, heterogeneous, isotropic material. This model is calibrated by studying
the deformation caused by either disease independently. Our simulations show that a
history of benign prostatic hyperplasia creates mechanical stress fields in the prostate that
hamper prostatic tumor growth and limit its invasiveness. [Resumen]
El cáncer de próstata es un gran problema de salud en hombres de edad avanzada en
todo el mundo. Esta patología es más fácil de curar en sus estadios iniciales, cuando
aún es órgano-confinada. Sin embargo, casi nunca produce ningún síntoma hasta que es
demasiado grande o ha invadido otros tejidos. Por tanto, el enfoque actual para combatir
el cáncer de próstata es una combinación de prevención y exámenes rutinarios para una
detección precoz. De hecho, la mayoría de casos de cáncer de próstata son diagnosticados
y tratados cuando aún está localizado dentro del órgano. A pesar de la riqueza del
conocimiento acumulado sobre las bases biológicas y la gestión clínica de la enfermedad,
carecemos de un modelo teórico completo en el que podamos organizar y comprender
la enorme cantidad de datos existentes sobre el cáncer de próstata. Además, la práctica
clínica estándar en oncología está basada en gran medida en patrones estadísticos, lo
cual no es suficientemente preciso para individualizar el diagnóstico, la predicción de la
prognosis, el tratamiento y el seguimiento.
Recientemente, la modelización y la simulación matemáticas del cáncer y sus tratamientos
han permitido predecir resultados clínicos y el diseño de terapias óptimas de
forma personalizada. Esta nueva corriente de investigación médica se ha denominado
oncología matemática. El cáncer de próstata es un candidato ideal para beneficiarse de
esta tecnología por varios motivos. En primer lugar, un enfoque clínico personalizado
podría contribuir a reducir las tasas de tratamiento excesivo o insuficiente de cáncer de
próstata. La resonancia magnética multiparamétrica se usa cada vez más para monitorizar
y diagnosticar esta enfermedad. Esta tecnología de imagen puede proporcionar abundante
información para construir un modelo matemático de crecimiento de cáncer de próstata
personalizado. Además, la próstata es un órgano suficientemente pequeño para perseguir
la realización de simulaciones predictivas a escala tisular. El crecimiento del cáncer de
próstata también se puede estimar usando la concentración en sangre de un biomarcador
conocido como el antígeno prostático específico. Adicionalmente, algunos pacientes de
cáncer de próstata no reciben tratamiento pero son monitorizados clínicamente y se les
toman imágenes médicas periódicamente, lo que abre la puerta a la validación in vivo de
modelos. El desarrollo de tecnologías versátiles y potentes en mecánica computacional permite hacer frente a los retos derivados de la anatomía prostática y la resolución de los
modelos matemáticos. Finalmente, las tecnologías de oncología matemática pueden guiar
las investigaciones futuras sobre cáncer de próstata, por ejemplo, proponiendo nuevas
estrategias de tratamiento o descubriendo mecanismos involucrados en el crecimiento
tumoral.
Por tanto, el objeto de esta tesis es proporcionar un marco computacional para la modelización
y simulación del crecimiento del cáncer de próstata órgano-confinado de
forma personalizada y a escala tisular dentro del contexto de la oncología matemática.
Presentamos un modelo de crecimiento de cáncer de próstata localizado que reproduce
los patrones de crecimiento de la enfermedad observados en estudios experimentales y
clínicos. Para capturar las dinámicas acopladas de los tejidos sano y tumoral, usamos el
método de campo de fase junto con ecuaciones de reacción-difusión para el consumo
de nutriente y la producción de antígeno prostático específico. Empleamos este modelo
para realizar las primeras simulaciones personalizadas a escala tisular del crecimiento de
cáncer de próstata sobre la anatomía del órgano extraída de imágenes médicas. Nuestros
resultados muestran una progresión tumoral similar a la observada en la práctica clínica.
Utilizamos el análisis isogeométrico para resolver la no-linealidad de nuestro sistema de
ecuaciones, así como la compleja anatomía de la próstata y las intricadas morfologías
tumorales. Adicionalmente, proponemos el uso de adaptatividad dinámica de malla para
acelerar los cálculos, racionalizar los recursos computacionales y facilitar la simulación en
un tiempo clínicamente relevante. Presentamos un conjunto de algoritmos eficientes para
introducir el refinamiento y el engrosado locales tipo h en análisis isogeométrico. Nuestros
métodos están basados en la proyección de Bézier, que extendemos a los espacios de
splines jerárquicas. También introducimos un parámetro de balance para controlar la
superposición de funciones de base a través de los niveles de la jerarquía, lo cual conduce
a un condicionamiento numérico mejorado. Nuestras simulaciones de crecimiento de
cáncer muestran una notable precisión con muy pocos grados de libertad en comparación
con la malla uniforme que la misma simulación requeriría.
Finalmente, estudiamos la interacción entre el cáncer de próstata y la hiperplasia benigna
de próstata, otra patología prostática común que hace crecer al órgano gradualmente. En
particular, investigamos por qué los tumores que se originan en próstatas más grandes
presentan características patológicas favorables. Realizamos un estudio de simulación
cualitativo extendiendo nuestro modelo matemático de crecimiento de cáncer de próstata
para incluir las ecuaciones de equilibrio mecánico y los términos de acoplamiento entre
estas y la dinámica tumoral. Asumimos que la deformación de la próstata es un fenómeno
cuasiestático y modelamos el tejido prostático como un material elástico lineal, heterogéneo
e isotrópico. Este modelo es calibrado estudiando la deformación causada por
cada enfermedad independientemente. Nuestras simulaciones muestran que un historial
de hiperplasia benigna de próstata crea campos de tensión mecánica en la próstata que
obstaculizan el crecimiento del cáncer de próstata y limitan su invasividad. [Resumo]
O cancro de próstata é un gran problema de saúde en homes de idade avanzada en todo
o mundo. Esta patoloxía é máis fácil de curar nos seus estadios iniciais, cando aínda
é órgano-confinada. Porén, case nunca produce ningún síntoma ata que é demasiado
grande ou ten invadido outros tecidos. Polo tanto, o enfoque actual para combater o
cancro de próstata é unha combinación de prevención e exames rutinarios para unha
detección precoz. De feito, a maioría de casos de cancro de próstata son diagnosticados e
tratados cando aínda está localizado dentro do órgano. Malia a riqueza do coñecemento
acumulado sobre as bases biolóxicas e a xestión clínica da doenza, carecemos dun modelo
teórico completo no que podamos organizar e comprender a enorme cantidade de datos
existentes sobre o cancro de próstata. Ademais, a práctica clínica estándar en oncoloxía
está baseada en gran medida en patróns estatísticos, o cal non é suficientemente preciso
para individualizar a diagnose, a predición da prognose, o tratamento e o seguimento.
Recentemente, a modelización e a simulación matemáticas do cancro e os seus tratamentos
permitiron predicir resultados clínicos e o deseño de terapias óptimas de forma
personalizada. Esta nova corrente de investigación médica denomínase oncoloxía matemática.
O cancro de próstata é un candidato ideal para beneficiarse desta tecnoloxía por
varios motivos. En primeiro lugar, un enfoque clínico personalizado podería contribuír a
reducir as taxas de tratamento excesivo ou insuficiente de cancro de próstata. A resonancia
magnética multiparamétrica úsase cada vez máis para monitorizar e diagnosticar esta
enfermidade. Esta tecnoloxía de imaxe pode proporcionar abundante información para
construír un modelo matemático de crecemento de cancro de próstata personalizado.
Ademais, a próstata é un órgano suficientemente pequeno para perseguir a realización
de simulacións preditivas a escala tisular. O crecemento do cancro de próstata tamén
se pode estimar usando a concentración en sangue dun biomarcador coñecido como o
antíxeno prostático específico. Adicionalmente, algúns pacientes de cancro de próstata
non reciben tratamento pero son monitorizados clinicamente e se lles toman imaxes
médicas periodicamente, o que abre a porta á validación in vivo de modelos. O desenvolvemento
de tecnoloxías versátiles e potentes en mecánica computacional permite facer
fronte aos retos derivados da anatomía prostática e a resolución dos modelos matemáticos. Finalmente, as tecnoloxías de oncoloxía matemática poden guiar as investigacións futuras
sobre cancro de próstata, por exemplo, propoñendo novas estratexias de tratamento ou
descubrindo mecanismos involucrados no crecemento tumoral.
Polo tanto, o obxecto desta tese é proporcionar un marco computacional para a modelización
e simulación do crecemento do cancro de próstata órgano-confinado de forma
personalizada e a escala tisular dentro do contexto da oncoloxía matemática. Presentamos
un modelo de crecemento de cancro de próstata localizado que reproduce os patróns de
crecemento da enfermidade observados en estudos experimentais e clínicos. Para capturar
as dinámicas acopladas dos tecidos san e tumoral, usamos o método de campo de fase
xunto con ecuacións de reacción-difusión para o consumo de nutriente e a produción
de antíxeno prostático específico. Empregamos este modelo para realizar as primeiras
simulacións personalizadas a escala tisular do crecemento de cancro de próstata sobre
a anatomía do órgano extraída de imaxes médicas. Os nosos resultados amosan unha
progresión tumoral similar á observada na práctica clínica.
Utilizamos a análise isoxeométrica para resolver a non-linealidade do noso sistema
de ecuacións, así como a complexa anatomía da próstata e as intricadas morfoloxías
tumorais. Adicionalmente, propoñemos o uso de adaptatividade dinámica de malla para
acelerar os cálculos, racionalizar os recursos computacionais e facilitar a simulación nun
tempo clinicamente relevante. Presentamos un conxunto de algoritmos eficientes para
introducir o refinamento e o engrosado locais tipo h en análise isoxeométrica. Os nosos
métodos están baseados na proxección de Bézier, que estendemos aos espazos de splines
xerárquicas. Tamén introducimos un parámetro de balance para controlar a superposición
de funcións de base a través dos niveis da xerarquía, o cal conduce a un condicionamento
numérico mellorado. As nosas simulacións de crecemento de cancro amosan unha notable
precisión con moi poucos graos de liberdade en comparación coa malla uniforme que a
mesma simulación requiriría.
Finalmente, estudamos a interacción entre o cancro de próstata e a hiperplasia benigna
de próstata, outra patoloxía prostática común que fai crecer ao órgano gradualmente. En
particular, investigamos por que os tumores que se orixinan en próstatas máis grandes
presentan características patolóxicas favorables. Realizamos un estudo de simulación
cualitativo estendendo o noso modelo matemático de crecemento de cancro de próstata
para incluír as ecuacións de equilibrio mecánico e os termos de acoplamento entre estas e
a dinámica tumoral. Asumimos que a deformación da próstata é un fenómeno cuasiestático
e modelamos o tecido prostático como un material elástico lineal, heteroxéneo e
isotrópico. Este modelo é calibrado estudando a deformación causada por cada enfermidade
independientemente. As nosas simulacións amosan que un historial de hiperplasia
benigna de próstata crea campos de tensión mecánica na próstata que obstaculizan o
crecemento do cancro de próstata e limitan a súa invasividade.
Keywords
Próstata-Cáncer
Próstata-Hipertrofia
Próstata-Hipertrofia
Rights
Atribución-NoComercial-SinDerivadas 4.0