Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A genetic algorithms-based approach for optimizing similarity aggregation in ontology matching

Thumbnail
Ver/Abrir
MtnezRmro_Gnetic.pdf (546.8Kb)
Use este enlace para citar
http://hdl.handle.net/2183/20776
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
A genetic algorithms-based approach for optimizing similarity aggregation in ontology matching
Autor(es)
Martínez-Romero, Marcos
Vázquez-Naya, José
Nóvoa, Francisco
Vázquez, Guillermo
Pereira-Loureiro, Javier
Fecha
2013
Cita bibliográfica
Martínez-Romero M, Vázquez-Naya JM, Nóvoa FJ, Vázquez G, Pereira J. A genetic algorithms-based approach for optimizing similarity aggregation in ontology matching. Ponencia presentada en International Work-Conference on Artificial Neural Networks. IWANN 2013; 2013 Jun 12-14; Puerto de la Cruz, Tenerife. Berlin: Springer; 2013. p.435-444 (Lecture Notes in Computer Science; 7902)
Resumen
[Abstract] Ontology matching consists of finding the semantic relations between different ontologies and is widely recognized as an essential process to achieve an adequate interoperability between people, systems or organizations that use different, overlapping ontologies to represent the same knowledge. There are several techniques to measure the semantic similarity of elements from separate ontologies, which must be adequately combined in order to obtain precise and complete results. Nevertheless, combining multiple similarity measures into a single metric is a complex problem, which has been traditionally solved using weights determined manually by an expert, or through general methods that do not provide optimal results. In this paper, a genetic algorithms based approach to aggregate different similarity metrics into a single function is presented. Starting from an initial population of individuals, each one representing a combination of similarity measures, our approach allows to find the combination that provides the optimal matching quality.
Palabras clave
Genetic algorithms
Ontology matching
Ontologies
Semantic web
 
Versión del editor
https://doi.org/10.1007/978-3-642-38679-4_43
Derechos
The final publication is avaliable at Springer Link
ISBN
978-3-642-38678-7
 
978-3-642-38679-4
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias