Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Texture classification of proteins using support vector machines and bio-inspired metaheuristics

Thumbnail
Ver/Abrir
Seoane_Texture.pdf (347.0Kb)
Use este enlace para citar
http://hdl.handle.net/2183/19474
Colecciones
  • Investigación (FIC) [1725]
Metadatos
Mostrar el registro completo del ítem
Título
Texture classification of proteins using support vector machines and bio-inspired metaheuristics
Autor(es)
Seoane, José A.
Mesejo, Pablo
Nashed, Youssef S.
Cagnoni, Stefano
Dorado, Julián
Fernández-Lozano, Carlos
Fecha
2014-11-02
Cita bibliográfica
Fernández-Lozano C, Seoane JA, Mesejo P, Nashed YSG, Cagnoni S, Dorado J. Texture classification of proteins using support vector machines and bio-inspired metaheuristics. En: Fernández-Chimeno M, Fernandes PL, Álvarez S, et al, eds. Biomedical engineering systems and technologies: BIOSTEC, International Joint Conference on Biomedical Engineering Systems and technologies. Berlin: Spirnger; 2014. p. 117-130. (Communications in computer and information science; 452)
Resumen
[Abstract] In this paper, a novel classification method of two-dimensional polyacrylamide gel electrophoresis images is presented. Such a method uses textural features obtained by means of a feature selection process for whose implementation we compare Genetic Algorithms and Particle Swarm Optimization. Then, the selected features, among which the most decisive and representative ones appear to be those related to the second order co-occurrence matrix, are used as inputs for a Support Vector Machine. The accuracy of the proposed method is around 94 %, a statistically better performance than the classification based on the entire feature set. This classification step can be very useful for discarding over-segmented areas after a protein segmentation or identification process.
Palabras clave
Texture analysis
Feature selection
Electrophoresis
Support
Vector machines
Genetic algorithms
Proteomic imaging
 
Descripción
6th International Joint Conference, BIOSTEC 2013, Barcelona, Spain, February 11-14, 2013
Versión del editor
http://dx.doi.org/10.1007/978-3-662-44485-6_9
Derechos
The final publication is avaliable at Springer Link
ISSN
1865-0929

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias