Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • View Item
  •   DSpace Home
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The scaling of the minimum sum of edge lengths in uniformly random trees

Thumbnail
View/Open
Esteban_Juan_Luis_The_scaling_of_the_minimum_sum_of_edge_lengths_in_uniformly_random_trees.pdf (627.4Kb)
Use this link to cite
http://hdl.handle.net/2183/19279
Collections
  • Investigación (FFIL) [885]
Metadata
Show full item record
Title
The scaling of the minimum sum of edge lengths in uniformly random trees
Author(s)
Esteban, Juan Luis
Ferrer-i-Cancho, Ramon
Gómez-Rodríguez, Carlos
Date
2016-06
Citation
Juan Luis Esteban, Ramon Ferrer-i-Cancho and Carlos Gómez-Rodríguez, The scaling of the minimum sum of edge lengths in uniformly random trees, Journal of Statistical Mechanics: Theory and Experiment, (2016):063401, 2016.
Abstract
[Abstract] The minimum linear arrangement problem on a network consists of finding the minimum sum of edge lengths that can be achieved when the vertices are arranged linearly. Although there are algorithms to solve this problem on trees in polynomial time, they have remained theoretical and have not been implemented in practical contexts to our knowledge. Here we use one of those algorithms to investigate the growth of this sum as a function of the size of the tree in uniformly random trees. We show that this sum is bounded above by its value in a star tree. We also show that the mean edge length grows logarithmically in optimal linear arrangements, in stark contrast to the linear growth that is expected on optimal arrangements of star trees or on random linear arrangements.
Keywords
Scaling laws
Minimum linear arrangement
Trees
 
Editor version
http://iopscience.iop.org/article/10.1088/1742-5468/2016/06/063401/meta
ISSN
1742-5468

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback