Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Techniques for Single Nucleotide Polymorphism—Disease Classification Models in Schizophrenia

Thumbnail
Ver/Abrir
Seoane2010-molecules15074875.pdf (613.8Kb)
Use este enlace para citar
http://hdl.handle.net/2183/18461
Reconocimiento 3.0
Excepto si se señala otra cosa, la licencia del ítem se describe como Reconocimiento 3.0
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Machine Learning Techniques for Single Nucleotide Polymorphism—Disease Classification Models in Schizophrenia
Autor(es)
Aguiar-Pulido, Vanessa
Seoane, José A.
Rabuñal, Juan R.
Dorado, Julián
Pazos, A.
Munteanu, Cristian-Robert
Fecha
2010
Cita bibliográfica
Molecules 2010, Vol. 15, Pages 4875-4889
Resumen
[Abstract] Single nucleotide polymorphisms (SNPs) can be used as inputs in disease computational studies such as pattern searching and classification models. Schizophrenia is an example of a complex disease with an important social impact. The multiple causes of this disease create the need of new genetic or proteomic patterns that can diagnose patients using biological information. This work presents a computational study of disease machine learning classification models using only single nucleotide polymorphisms at the HTR2A and DRD3 genes from Galician (Northwest Spain) schizophrenic patients. These classification models establish for the first time, to the best knowledge of the authors, a relationship between the sequence of the nucleic acid molecule and schizophrenia (Quantitative Genotype – Disease Relationships) that can automatically recognize schizophrenia DNA sequences and correctly classify between 78.3–93.8% of schizophrenia subjects when using datasets which include simulated negative subjects and a linear artificial neural network.
Palabras clave
Dna molecule
SNP
Schizophrenia
Artificial neural networks
Evolutionary computation
 
Versión del editor
http://dx.doi.org/10.3390/molecules15074875
Derechos
Reconocimiento 3.0
ISSN
1420-3049

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias