Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Techniques for Single Nucleotide Polymorphism—Disease Classification Models in Schizophrenia

Thumbnail
View/Open
Seoane2010-molecules15074875.pdf (613.8Kb)
Use this link to cite
http://hdl.handle.net/2183/18461
Reconocimiento 3.0
Except where otherwise noted, this item's license is described as Reconocimiento 3.0
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
Machine Learning Techniques for Single Nucleotide Polymorphism—Disease Classification Models in Schizophrenia
Author(s)
Aguiar-Pulido, Vanessa
Seoane, José A.
Rabuñal, Juan R.
Dorado, Julián
Pazos, A.
Munteanu, Cristian-Robert
Date
2010
Citation
Molecules 2010, Vol. 15, Pages 4875-4889
Abstract
[Abstract] Single nucleotide polymorphisms (SNPs) can be used as inputs in disease computational studies such as pattern searching and classification models. Schizophrenia is an example of a complex disease with an important social impact. The multiple causes of this disease create the need of new genetic or proteomic patterns that can diagnose patients using biological information. This work presents a computational study of disease machine learning classification models using only single nucleotide polymorphisms at the HTR2A and DRD3 genes from Galician (Northwest Spain) schizophrenic patients. These classification models establish for the first time, to the best knowledge of the authors, a relationship between the sequence of the nucleic acid molecule and schizophrenia (Quantitative Genotype – Disease Relationships) that can automatically recognize schizophrenia DNA sequences and correctly classify between 78.3–93.8% of schizophrenia subjects when using datasets which include simulated negative subjects and a linear artificial neural network.
Keywords
Dna molecule
SNP
Schizophrenia
Artificial neural networks
Evolutionary computation
 
Editor version
http://dx.doi.org/10.3390/molecules15074875
Rights
Reconocimiento 3.0
ISSN
1420-3049

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback