Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental study and random forest prediction model of microbiome cell surface hydrophobicity

Thumbnail
View/Open
Liu_Experimental.pdf (776.0Kb)
Use this link to cite
http://hdl.handle.net/2183/18357
Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España
Collections
  • Investigación (FIC) [1679]
Metadata
Show full item record
Title
Experimental study and random forest prediction model of microbiome cell surface hydrophobicity
Author(s)
Liu, Yong
Tang, Shaoxun
Fernández-Lozano, Carlos
Munteanu, Cristian-Robert
Pazos, A.
Yu, Yi-zun
Tan, Zhiliang
González-Díaz, Humberto
Date
2016-11-09
Citation
Liu Y, Tang S, Fernández-Lozano C, et al. Experimental study and random forest prediction model of microbiome cell surface hydrophobicity. Expert Syst Appl. 2017; 72:306-16
Abstract
[Abstract] The cell surface hydrophobicity (CSH) is an assessable physicochemical property used to evaluate the microbial adhesion to the surface of biomaterials, which is an essential step in the microbial biofilm formation and pathogenesis. For the present in vitro fermentation experiment, the CSH of ruminal mixed microbes was considered, along with other data records of pH, ammonia-nitrogen concentration, and neutral detergent fibre digestibility, conditions of surface tension and specific surface area in two different time scales. A dataset of 170,707 perturbations of input variables, grouped into two blocks of data, was constructed. Next, Expected Measurement Moving Average – Machine Learning (EMMA-ML) models were developed in order to predict CSH after perturbations of all input variables. EMMA-ML is a Perturbation Theory method that combines the ideas of Expected Measurement, Box-Jenkins Operators/Moving Average, and Time Series Analysis. Seven regression methods have been tested: Multiple Linear regression, Generalized Linear Model with Stepwise Feature Selection, Partial Least Squares regression, Lasso regression, Elastic Net regression, Neural Networks regression, and Random Forests (RF). The best regression performance has been obtained with RF (EMMA-RF model) with an R-squared of 0.992. The model analysis has shown that CSH values were highly dependent on the in vitro fermentation parameters of detergent fibre digestibility, ammonia – nitrogen concentration, and the expected values of cell surface hydrophobicity in the first time scale.
Keywords
Machine learning
Expected values
Moving averages
Cell properties
Perturbation theory
Time series analysis
 
Editor version
http://dx.doi.org/10.1016/j.eswa.2016.10.058
Rights
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0957-4174

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback