Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aggregated 2D range queries on clustered points

Thumbnail
View/Open
2016_Aggregated_2D_range_queries_on_clustered_points.pdf (602.0Kb)
Use this link to cite
http://hdl.handle.net/2183/18152
Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España
Collections
  • Investigación (FIC) [1683]
Metadata
Show full item record
Title
Aggregated 2D range queries on clustered points
Author(s)
Bernardo, Guillermo de
Konow, Bernardo
Navarro, Gonzalo
Brisaboa, Nieves R.
Seco, Diego
Date
2016-09
Citation
Nieves R. Brisaboa, Guillermo De Bernardo, Roberto Konow, Gonzalo Navarro, Diego Seco, Aggregated 2D range queries on clustered points, Information Systems, Volume 60, August–September 2016, Pages 34-49, ISSN 0306-4379, http://dx.doi.org/10.1016/j.is.2016.03.004.
Abstract
[Abstract] Efficient processing of aggregated range queries on two-dimensional grids is a common requirement in information retrieval and data mining systems, for example in Geographic Information Systems and OLAP cubes. We introduce a technique to represent grids supporting aggregated range queries that requires little space when the data points in the grid are clustered, which is common in practice. We show how this general technique can be used to support two important types of aggregated queries, which are ranked range queries and counting range queries. Our experimental evaluation shows that this technique can speed up aggregated queries up to more than an order of magnitude, with a small space overhead.
Keywords
Compact data structures
Grids
Query processing
Aggregated queries
Clustered points
 
Editor version
http://dx.doi.org/10.1016/j.is.2016.03.004
Rights
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0306-4379
1873-6076
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback