Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving detection of apneic events by learning from examples and treatment of missing data

Thumbnail
View/Open
2014_Improving_detection_of_apneic_events.pdf (111.3Kb)
Use this link to cite
http://hdl.handle.net/2183/18135
Collections
  • Investigación (FIC) [1684]
Metadata
Show full item record
Title
Improving detection of apneic events by learning from examples and treatment of missing data
Author(s)
Hernández-Pereira, Elena
Alvarez-Estevez, Diego
Moret-Bonillo, Vicente
Date
2014
Citation
Elena Hernández-Pereira, Diego Álvarez-Estévez, Vicente Moret-Bonillo. Improving detection of apneic events by learning from examples and treatment of missing data. Studies in Health Technology and Informatics 207 (2014), 213 - 224.
Abstract
[Abstract] This paper presents a comparative study over the respiratory pattern classification task involving three missing data imputation techniques, and four different machine learning algorithms. The main goal was to find a classifier that achieves the best accuracy results using a scalable imputation method in comparison to the method used in a previous work of the authors. The results obtained show that the Self-organization maps imputation method allows any classifier to achieve improvements over the rest of the imputation methods, and that the Feedforward neural network classifier offers the best performance regardless the imputation method used.
Keywords
Respiratory pattern classification
Machine learning
Algorithms
Feedforward neural network
 
Description
The final publication is available at IOS Press through http://dx.doi.org/10.3233/978-1-61499-474-9-213
Editor version
http://ebooks.iospress.nl/volumearticle/38639
ISSN
0926-9630
1879-8365
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback