Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graph-based processing of macromolecular information

Thumbnail
Ver/Abrir
Munteanu_Graph-Based.pdf (2.201Mb)
Use este enlace para citar
http://hdl.handle.net/2183/17768
Colecciones
  • Investigación (FIC) [1694]
Metadatos
Mostrar el registro completo del ítem
Título
Graph-based processing of macromolecular information
Autor(es)
Munteanu, Cristian-Robert
Aguiar-Pulido, Vanessa
Freire, Ana
Martínez-Romero, Marcos
Porto-Pazos, Ana B.
Pereira-Loureiro, Javier
Dorado, Julián
Fecha
2015
Cita bibliográfica
Muneanu CR, Aguiar-Pulido V, Freire A, et al. Graph-based processing of macromolecular information. Curr Bioinform. 2015;11(5):606-631
Resumen
[Abstract] The complex information encoded into the element connectivity of a system gives rise to the possibility of graphical processing of divisible systems by using the Graph theory. An application in this sense is the quantitative characterization of molecule topologies of drugs, proteins and nucleic acids, in order to build mathematical models as Quantitative Structure - Activity Relationships between the molecules and a specific biological activity. These types of models can predict new drugs, molecular targets and molecular properties of new molecular structures with an important impact on the Drug Discovery, Medicinal Chemistry, Molecular Diagnosis, and Treatment. The current review is focused on the mathematical methods to encode the connectivity information in three types of graphs such as star graphs, spiral graphs and contact networks and three in-house scientific applications dedicated to the calculation of molecular graph topological indices such as S2SNet, CULSPIN and MInD-Prot. In addition, some examples are presented, such as results of this methodology on drugs, proteins and nucleic acids, including the Web implementation of the best molecular prediction models based on graphs.
Palabras clave
Markov descriptors
Molecular information
QSAR
Complex networks
Graphs
Protein topological indices
 
Versión del editor
http://dx.doi.org/10.2174/1574893610666151008012438
Derechos
The published manuscript is avaliable at EurekaSelect
ISSN
2212-392X
1574-8936
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias