Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Nucleoitide Binding Peptides Using Star Graph Topological Índices

Thumbnail
View/Open
Liu_PredictionNucleoitide.pdf (188.0Kb)
Use this link to cite
http://hdl.handle.net/2183/17456
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
Prediction of Nucleoitide Binding Peptides Using Star Graph Topological Índices
Author(s)
Liu, Yong
Munteanu, Cristian-Robert
Fernández-Blanco, Enrique
Tan, Zhiliang
Santos-del-Riego, Antonino
Pazos, A.
Date
2015-08-05
Citation
Liu Y, Munteanu CR, Fernández Blanco E, Tan Z, Santos del Riego A, Pazos A. Prediction of nucleoitide binding peptides using star graph topological indices. Mol Inform. 2015;34(11-12):736-741
Abstract
[Abstract] The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development.
Keywords
QSAR
Nucleotide binding proteins
Star Graph
Topological indice
 
Editor version
http://dx.doi.org/10.1002/minf.201500064
Rights
This is the peer reviewed version of the article which has been published in final form at Wiley Online Library. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for self-archiving.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback