Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity

Use this link to cite
http://hdl.handle.net/2183/15683
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Collections
- Investigación (FIC) [1729]
Metadata
Show full item recordTitle
Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticityDate
2014Citation
T. P. Barrios, E. M. Behrens, M. González, Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity, Applied Numerical Mathematics, 84 (Oct 2014) 46-65.
Abstract
[Abstract] We consider an augmented mixed finite element method applied to the linear elasticity problem and derive a posteriori error estimators that are simpler and easier to implement than the ones available in the literature. In the case of homogeneous Dirichlet boundary conditions, the new a posteriori error estimator is reliable and locally efficient, whereas for non-homogeneous Dirichlet boundary conditions, we derive an a posteriori error estimator that is reliable and satisfies a quasi-efficiency bound. Numerical experiments illustrate the performance of the corresponding adaptive algorithms and support the theoretical results.
Keywords
Linear elasticity
Mixed finite element method
Stabilization
A posteriori error estimates
Mixed finite element method
Stabilization
A posteriori error estimates
Editor version
Rights
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
ISSN
0168-9274
1873-5460
1873-5460