Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis

Thumbnail
View/Open
2004_María Gonzalez_A_low-order_mixe_Part_II.pdf (499.9Kb)
Use this link to cite
http://hdl.handle.net/2183/15597
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Collections
  • Investigación (FIC) [1728]
Metadata
Show full item record
Title
A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis
Author(s)
González Taboada, María
Gatica, Gabriel N.
Meddahi, Salim
Date
2004-03
Citation
G. N. Gatica, M. González, S. Meddahi, A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis, Computer Methods in Applied Mechanics and Engineering. 193(9-11) (2004) 893-911.
Abstract
[Abstract] This is the second part of a work dealing with a low-order mixed finite element method for a class of nonlinear Stokes models arising in quasi-Newtonian fluids. In the first part we showed that the resulting variational formulation is given by a twofold saddle point operator equation, and that the corresponding Galerkin scheme becomes well posed with piecewise constant functions and Raviart–Thomas spaces of lowest order as the associated finite element subspaces. In this paper we develop a Bank–Weiser type a posteriori error analysis yielding a reliable estimate and propose the corresponding adaptive algorithm to compute the mixed finite element solutions. Several numerical results illustrating the efficiency of the method are also provided.
Keywords
Mixed finite element method
Mixed finite element method
Twofold saddle point formulation
A posteriori error analysis
 
Editor version
http://dx.doi.org/10.1016/j.cma.2003.11.008
Rights
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
ISSN
0045-7825

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback