Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enriched finite element subspaces for dual–dual mixed formulations in fluid mechanics and elasticity

Thumbnail
Ver/Abrir
GonzalezTaboada_2005_Enriched_finite_element_subspaces_for_dual-dual_mixed_formulations_in_fluid_mechanics_and_elasticity.pdf (388.5Kb)
Use este enlace para citar
http://hdl.handle.net/2183/15576
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Colecciones
  • Investigación (FIC) [1728]
Metadatos
Mostrar el registro completo del ítem
Título
Enriched finite element subspaces for dual–dual mixed formulations in fluid mechanics and elasticity
Autor(es)
González Taboada, María
Bustinza, Rommel
Gatica, Gabriel N.
Meddahi, Salim
Stephan, Ernest P.
Fecha
2005
Cita bibliográfica
R. Bustinza, G. N. Gatica, M. González, S. Medahi, et al. Enriched finite element subspaces for dual-dual mixed formulations in fluid mechanics and elasticity. Computer Methods in Applied Mechanics and Engineering, 2005, 194(2-5), 427-439.
Resumen
[Abstract] In this paper we unify the derivation of finite element subspaces guaranteeing unique solvability and stability of the Galerkin schemes for a new class of dual-mixed variational formulations. The approach, which has been applied to several linear and nonlinear boundary value problems, is based on the introduction of additional unknowns given by the flux and the gradient of velocity, and by the stress and strain tensors and rotations, for fluid mechanics and elasticity problems, respectively. In this way, the procedure yields twofold saddle point operator equations as the resulting weak formulations (also named dual–dual ones), which are analyzed by means of a slight generalization of the well known Babuška–Brezzi theory. Then, in order to introduce well posed Galerkin schemes, we extend the arguments used in the continuous case to the discrete one, and show that some usual finite elements need to be suitably enriched, depending on the nature of the problem. This leads to piecewise constant functions, Raviart–Thomas of lowest order, PEERS elements, and the deviators of them, as the appropriate subspaces.
Palabras clave
Twofold saddle point
PEERS
Enriched subspaces
Raviart–Thomas
 
Versión del editor
http://dx.doi.org/10.1016/j.cma.2004.02.024
Derechos
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
ISSN
0045-7825

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias