Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bases de Grobner desarrollo formal en Coq

Thumbnail
Ver/Abrir
PerezVega_Gilberto_TD_2004.pdf (7.209Mb)
Use este enlace para citar
http://hdl.handle.net/2183/1148
Colecciones
  • Teses de doutoramento [2227]
Metadatos
Mostrar el registro completo del ítem
Título
Bases de Grobner desarrollo formal en Coq
Autor(es)
Pérez, Gilberto
Directores
Barja Pérez, José María
Fecha
2004
Centro/Dpto/Entidad
Universidade da Coruña. Departamento de Computación
Resumen
[Resumen] En primer lugar, se aborda, de forma ajustada a lo que se va a necesitar, las nociones más prácticas del sistema Coq que son necesarias para comprender la formalización de la teoría matemática de los polinomios, su reducción y bases de Gröbner, El trabajo específico comienza con la formalización de los términos de "n" variables, así como las operaciones más usuales de polinomios en el sistema Coq. Se implementa el orden lexicográfico profundizado en la prueba de que dicho orden es bien fundado. Para formalizar el anillo de polinomios en varias variables, se describen las pruebas de la estructura de cuerpo abstracto. Se implementan los polinomios y los polinomios canónicos, formalizando una igualdad explícita de polinomios original, describiendo también sus operaciones. Se implementa el orden de polinomios demostrando que es noetheriano.Asimismo, se implementa el concepto de ideal. Se generaliza, en el sistema de Coq, el algoritmo de la división de polinomios en varias variables. Una vez implementada dicha división, llamada reducción; se estudia la relación entre congruencia y reducción, obteniéndose la forma normal módulo un conjunto de polinomios. Finalmente, se introduce el concepto de base de Gröbner, estudiando y probando su equivalencia con otras caracterizaciones alternativas. Para resolver estas equivalencias se da una versión del Lema de Newman, implementando un esquema de recursión sobre polinomios canónicos, así como propiedades de la confluencia de la reducción.
Palabras clave
Matemáticas
ISBN
978-84-692-8781-1

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias