Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topological active model optimization by means of evolutionary methods for image segmentation

Thumbnail
Ver/abrir
NovoBujan_Jorge_TD_2012.pdf (7.140Mb)
Use este enlace para citar
http://hdl.handle.net/2183/10071
Reconocimiento-NoComercial-CompartirIgual 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Reconocimiento-NoComercial-CompartirIgual 3.0 España
Coleccións
  • Teses de doutoramento [2227]
Metadatos
Mostrar o rexistro completo do ítem
Título
Topological active model optimization by means of evolutionary methods for image segmentation
Autor(es)
Novo Buján, Jorge
Director(es)
Santos Reyes, José
González Penedo, Manuel Francisco
Data
2012
Centro/Dpto/Entidade
Universidade da Coruña. Departamento de Computación
Resumo
[Abstract] Object localization and segmentation are tasks that have been growing in relevance in the last years. The automatic detection and extraction of possible objects of interest is a important step for a higher level reasoning, like the detection of tumors or other pathologies in medical imaging or the detection of the region of interest in fingerprints or faces for biometrics. There are many different ways of facing this problem in the literature, but in this Phd thesis we selected a particular deformable model called Topological Active Model. This model was especially designed for 2D and 3D image segmentation. It integrates features of region-based and boundary-based segmentation methods in order to perform a correct segmentation and, this way, fit the contours of the objects and model their inner topology. The main problem is the optimization of the structure to obtain the best possible segmentation. Previous works proposed a greedy local search method that presented different drawbacks, especially with noisy images, situation quite often in image segmentation. This Phd thesis proposes optimization approaches based on global search methods like evolutionary algorithms, with the aim of overcoming the main drawbacks of the previous local search method, especially with noisy images or rough contours. Moreover, hybrid approaches between the evolutionary methods and the greedy local search were developed to integrate the advantages of both approaches. Additionally, the hybrid combination allows the possibility of topological changes in the segmentation model, providing flexibility to the mesh to perform better adjustments in complex surfaces or also to detect several objects in the scene. The suitability and accuracy of the proposed model and segmentation methodologies were tested in both synthetic and real images with different levels of complexity. Finally, the proposed evolutionary approaches were applied to a specific task in a real domain: The localization and extraction of the optic disc in retinal images.
Dereitos
Reconocimiento-NoComercial-CompartirIgual 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións