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Abstract

This article deals with Bayesian inference and prediction for M/G/1 queueing systems. The general
service time density is approximated with a class of Erlang mixtures which are phase type distributions.
Given this phase type approximation, an explicit evaluation of measures such as the stationary queue size,
waiting time and busy period distributions can be obtained. Given arrival and service data, a Bayesian
procedure based on reversible jump Markov Chain Monte Carlo methods is proposed to estimate system
parameters and predictive distributions.

Keywords: queues, Bayesian mixtures, reversible jump MCMC, phase type distributions, matrix
geometric methods.

AMS Classification: 62F15, 60K25



1 Introduction

Bayesian analysis of queueing systems seems to have first been considered in the early 1970’s; see Bagchi
and Cunningham (1972), Muddapur (1972) and Reynolds (1973). In the mid 1980’s there was a revival of
interest in the subject, see Armero (1985), McGrath et al. (1987) and McGrath and Singpurwalla (1987)
and in recent years, there have been an increasing number of papers using Bayesian techniques. Some useful
references are Armero and Bayarri (1994, 1995, 1997), Armero and Conesa (1998), Wiper (1998) and Rios
et al. (1998).

Up to now, most papers have considered the simple Markovian queue M/M/c with exponential interarrival
and service times and various numbers of servers. Exceptions are, for example, Wiper (1998) where the
Er/M/c queue (with Erlang interarrival times) was analyzed and Rios et al. (1998) where the M/Er/1 and
M/H /1 (hyperexponential service time) systems were considered. Also, see Butler and Huzurbazar (2000)
who looked at prediction of waiting times for a system with an inverse Gaussian service time distribution.
One reason for these choices is that in practice, given service data, the service distribution is often modelled
by an exponential, Erlang and hyperexponential approximation according to whether the sample coefficient
of variation is approximately equal, less than or more than 1, respectively, see e.g. Allen (1990) or Nelson
(1995). It is not always clear that such simple approximations will be adequate, see e.g. Rios et al. (1998).
Thus, the objective for this paper is to consider Bayesian inference for queues with more general service
distributions, i.e. the M/G/1 family.

In this paper, we will consider a semiparametric model for the service distribution based on a mixture of
Erlang densities, the so called hyperErlang (HEr) distribution. One advantage of this model is that the Er-
lang mixture family is dense over the set of distributions on the positive reals, see Asmussen (1987). Another
advantage in the queueing context is that this family includes the Erlang, hyperexponential and exponential
densities as special cases. However, the main reason for choosing a hyperErlang distribution is that this
is a continuous phase-type (PH) distribution. Thus, it is possible to apply some useful results obtained by

Neuts (1981) for queueing systems with phase-type service time distribution and exponential interarrival



time which allow us to estimate the equilibrium queue size, waiting time and busy period distributions.

There has been much previous work on Bayesian density estimation using mixture models. See, for
example Diebolt and Robert (1994) and Richardson and Green (1997) for normal mixtures, Gruet et al.
(1998) and Rios et al. (1998) for exponential mixtures and Wiper et al. (2001) for mixtures of gamma
distributions. Note that the advantage of using a hyperErlang distribution, as opposed to a gamma mixture,
to model the service distribution is that in this case, the distribution is phase-type and so the equilibrium
queue size, waiting time and busy period distributions can all be evaluated as previously noted, whereas in
the gamma mixture case, the distribution is not phase-type and so it is only possible to evaluate the queue
size distribution. See Wiper et al. (2001).

An outline of our paper is as follows. Throughout we will assume the following FIFO queueing system.
Let T be the interarrival time, then T has an exponential distribution conditional on some (unknown)

parameter A, i.e.
] A)=Aexp(—At), 0<t<oo. (1)

For service times, S, we assume a mixture of k£ Erlang distributions with parameters w, p and v,

k
f(8|k,W,[J,,V):Z’LUiE’I"(S‘I/i,,U,i), 0 < s < oo, (2)
=1

where Yw; = 1; w;, u; > 0, and v; € N, and where

B | vi ) = e ) 3)

and the mixture size, k, and all other parameters are unknown.

In Section 2, we describe a simple experiment for observing arrival and service data. Prior distributions
are defined for the unknown model parameters and a reversible jump MCMC algorithm (see Green 1995,
Richardson and Green 1997) for sampling the posterior service distribution is introduced. We also comment
on the selection of simpler models for the service distribution.

In Section 3, we consider the problem of predicting the equilibrium characteristics of the queue. Firstly,

we briefly review the definitions and basic properties of phase-type distributions. Secondly, we illustrate how



to obtain the stationary distribution of the queue size, the waiting time and the length of a busy period
given the system parameters. Finally, we compute the predictive distributions of these measures using the
data generated from the MCMC algorithm described in Section 2.

In Section 4, we illustrate this methodology with various examples. Conclusions and a discussion of

possible extensions are included in Section 5.

2 A simple experiment and inference for the system parameters

We wish to make inference for the system parameters A\, k,w,pu and v. A simple experiment providing
complete information consists in observing m,, interarrival times t = {¢1,...,t,,, } from (1) and mg service
times s = {s1, ..., S, } from (2). This experiment has also been considered in, for example, Thiruvaiyaru and
Basawa (1992), Rios et al. (1998) and Armero and Bayarri (1994). Given this t and s, the likelihood is of

form
L(\O|t,s)x L(A|t)L(0]s)

where 0 = (k, w, u,v) are the service parameters,

Mg

LOAt)=X"exp [ -AD 1

j=1
and
My k
L@|s)=]] <Z wiEr(s; | w,ui)> .
j=1 \i=1

Accordingly, given independent prior distributions for A and @, then the arrival and service parameters are
independent a posteriori as well.

For the interarrival parameter, A, we will make use of the natural conjugate family of prior distributions,
see DeGroot (1970). Thus, we define a gamma prior distribution for A; say A ~ G (a,b) where a,b > 0. From

(1), it is straightforward to show that the posterior distribution will be

AMt~Glatme,b+> 1], (4)

=1



see also, for example, Armero and Bayarri (1994) and Rios et al. (1998).

For the service parameters, €, a conjugate prior distribution does not exist and therefore, analytical
calculus of the posterior is not straightforward. However, given a prior distribution, Bayesian inference
may be performed using MCMC methods. These involve the construction of a Markov chain with the
posterior distribution f (@ | s) as its stationary distribution, see e.g. Tierney (1996). Given suitable regularity
conditions, a sample of the full posterior distribution of the mixture parameters, including the mixture size,
k, can be obtained.

In the following subsection, we define a suitable prior distribution for the service parameters, @, and
describe an MCMC algorithm that can be used to sample from the posterior distribution. This algorithm
is similar to that used in Wiper et al. (2001) for a mixture of gamma distributions but we carry out some
modifications due to the discrete support of the parameter v. We also introduce a birth death move following

Richardson and Green (1997).

2.1 Prior distribution for 8 and an MCMC algorithm to sample f (0 | s)

Here, we will define a prior distribution for 8. We shall treat the constituent parts, k, w, u, v, separately.
Firstly, we define a discrete prior for the mixture size, k, for example, a discrete uniform taking values from
1 to kpax. Conditional on k, we can now define prior distributions for the remaining parameters.

Firstly, as in Diebolt and Robert (1994), we consider missing data z = {21, ..., Z,, } assumed to be realiza-
tions from i.i.d. missing variables, Zy, ..., Z,,,, for each observed service time sy, ..., s,,,, with the following

prior distributions,
P(Z; =i | k,w) =uw;, fori=1,...k (5)
and thus, we have that the conditional distribution of the service time, S;, is,
Si| Z; =i~ Er(vi ), for j=1,...,ms. (6)

Now we can define a prior distribution for (w, p,v)| z, k. We will assume that the joint prior distribution



can be factorized as,

fwopwv |z k) o f(z|kw) f(wlk)f(ulk)f@]E)

and we now define proper but diffuse distributions for w, pu, v.

Firstly, following Wiper et al. (2001), we assume

W‘ kND(¢15"'5¢k)7 (7)

a Dirichlet distribution with parameters ¢, > 0. Typically, we might set ¢, =1, for all ¢ = 1,..., k, giving a
uniform Un(0,1) prior for the weights.
Secondly, we assume that the joint prior for the mean parameters p is proportional to a product of

inverted gamma distributions,
w; |k~ IG(w, B), fori=1,..,k, (8)

where «, 3 > 0 and restricted to the set p; < ... < p, for identifiability purposes. Typically we might
set « = 1.1 and B = 1. Note that if « < 1 then the prior moments of p do not exist which also implies
that the posterior moments will not exist either. Here, in particular, we are concerned with predicting the
traffic intensity of the queue. The traffic intensity, p, of a queueing system is defined to be the arrival rate
multiplied by the mean service time and it can be shown that the queue is stable if and only if p < 1, see

e.g. Allen (1990). In this case, the traffic intensity is given by

k
p= )\Zwiui. 9)
i=1

Clearly, if the moments of 1 do not exist then neither will the moments of p.

Finally, we use a geometric prior distribution with mean 1/4 for the integer parameters, v;. We set, for
example, ¥ = 0.01.

Clearly, the prior distributions used here are not the only possible choices and indeed, they have been
chosen mainly for convenience. The prior formulation for the indicators z and the weights w is that which

is typically used in mixture modelling, see e.g. Diebolt and Robert (1994). The prior distribution for g was



chosen because it is semi-conjugate and the geometric prior distribution for v; was chosen because it belongs
to the Negative Binomial family of distributions and the conditional posterior of v; is similar to this family,
see below.

Given k and the prior distributions, then it is straightforward to calculate the conditional posterior

distributions. Firstly, from (5) and (6),

P(Zj=i|sk,w,p,v)x wi—(w/ui) sviTt

T(v;) ¢ eXP(—QSj), fori=1,..,k,

K3

and also from (5), (7), (8) and service data, we have,

w | S,Z,k ~ D(Qsl +m1: 7¢k + mk)

i | 8 z.k ~ IG(a +myvi, B+ Qivy)

where m; = #{Z; =i} and Q; = > s;, fori=1,....k. Finally,

J:Zj=i
fvi|s,z,k,w,p) I‘(i Iz exp {Vi < log(1 — ) + Qi + m; log p; — log PZ->} (10)
vi)mi Heg

where P, = ] s;.
§:Z=i

Now, we can define an MCMC algorithm to sample from the posterior distribution. The basic idea of
such an algorithm is to sample from a Markov chain which has equilibrium distribution equal to the joint
posterior parameter distribution, see e.g. Tierney (1996). The algorithm proceeds as follows. For fixed k,
we use a Gibbs sampling algorithm, see Gelfand and Smith (1990), modified with some Metropolis Hastings
steps, see Hastings (1970), to sample values of the remaining parameters. Then, we use a reversible jump
step, see e.g. Green (1995), to sample a new value of k and modify the remaining parameters accordingly.
The scheme of the algorithm is as follows and the main steps are elaborated below.

1. Set initial values for k(O w(® 40 50

2. Update the allocation by sampling from z("t! ~ z|s,k(”),w(”),p,(”),u(”).



3. Update the weights by sampling from w("t1) ~ w\s,z('”"‘l),k(").

4. For i=1,..,k,
a. Update the means by sampling from ,ugm_l) ~ pi\s,z(’”rl),k(”).
b. Update r; using a Metropolis step.

5. Order ™Y and sort w(™*1 and p("tD,

6. Split one mixture component into two, or combine two into one.

7. Birth or death of an empty component.

8. n=n+1. Go to 2.

In step 1 we choose initial values for the mixture parameters. In steps 2, 3 and 4a we sample from the
conditional posterior distributions of z, w and p and in step 4b, we introduce a Metropolis Hasting method,
see Hastings (1970), to sample from the posterior distribution of v. We generate candidate values for 7; from

a Negative Binomial proposal distribution,

r+v—2 L
fNB(l/): pr(lip)l/_ b l/:1727"'
v—1

because for large values of v;, the conditional posterior distribution in (10) is of a similar form to this
distribution. We propose choosing the parameters (r,p) such that the mode of the Negative Binomial is
equal to the previous value of v; and the variance produces a favourable acceptance rate. For example, we

(n)

have found in practical tests that setting r = uﬁf’” +landp=(r—-1)/ l/gm +r—1.5, (where v;" represents the

value of the previous iteration) works well. The candidate, 7;, is accepted with probability o = min{1, A},

where
A S| 52D KO, wlt D (i, v)
f(V§71+1) | s,Z(n-‘rl)7 k(n) , W(n+1) , M(”+1))p(y§")7 DZ) )
where p(yl(,”)7 ;) is the probability of generating ¥; given the previous value Vz(n)'

Steps 1 to 5 represent the basic Gibbs sampling algorithm for sampling from the posterior distribution
given fixed k. In steps 6 and 7, we introduce a reversible jump to let the chain move through the posterior

distribution of the mixture size, k. This algorithm is based on an algorithm of Richardson and Green (1997)



for normal mixtures. Firstly, in step 6, a mixture size candidate, l;:, is generated making a random choice
between splitting a mixture component into two or combining two components.
If the combine move is selected, we choose at random two adjacent components (i1 i2) to be merged,

reducing k£ by one. Then, we modify the other parameters as follows,
1. w= Wy, + W, .
2. W= wy, py, + Wy, -

3. v= Vi, -

Using these transformations, we preserve the moments of order 0 and 1 of the service time distribution.
Note that the transformations used to define @ and fi are as in Richardson and Green (1997). The formula
for 7 was chosen for simplicity, although there are clearly many other possibilities.

For the split move, a component, i, is elected at random to be split into two. To specify the new
parameters we generate two values, u; and ug from an U (0, 1) and a third one, ug, from a Negative Binomial

distribution with mode ;. Then, we define

1. 'd)i] = U1W;s, 'lI)iz = (1 ful)wi.

2. by, = pyquiwe, By, = 1,1u1 (1 —wqug)p; —ur (1 —uz)p;_q.

3. ﬁl“ = Vy, ﬁig = Uus.
These inverse transformations are used in order to maintain “detailed balance”, that is to make the

combine and split moves reversible, see e.g. Richardson and Green (1997).

Finally, we accept the move with probability

;Eé | s>p<z,9> } | 1)

where f(8 | s) is the posterior service time parameters distribution and p(6,8) is the probability of moving

from 0 = (k,w, u,v) to 0 = (k, W, fi, D).

In step 7, we again generate a mixture size candidate, I~€, making a random choice between a birth or a



death of a mixture component. If a birth is elected, we generate a weight from a beta distribution (be) and

the proposed new component parameters from the prior distribution,
w;Nbe(]-ak)y V;Ngeo(ﬁ)a ;U';NIG(ayﬁ)

Otherwise, for a death, an empty component is randomly chosen from the existing ones and it is deleted. In
both cases, the weights are rescaled to sum 1. The acceptance probability is the corresponding expression

for (11).

2.2 Estimating parameters from the MCMC output

Given a sample realization of the Markov chain we have just defined and a sample of equal size from f (A | t)
given by (4), we can estimate various quantities of interest. For example, given the sample data, we will
often wish to assess whether or not the model is stable. The queue is stable if and only if the traffic intensity,

p, (9), is less than one. Thus we can estimate the probability of having a stable queue with,

1
P(p<1|t,s)%ﬁ#{p(”) <1},

where

J ()
o) — A(m) Z 0™ )

and { (M, w®, p® pW) (BN W) ) (YL s a sample of size N obtained from the MCMC
algorithm and {)\(D, ...,)\(N >} is a sample of size N generated from the posterior distribution of A. A

consistent estimator of the traffic intensity, p, (9), is

N k(n)

Elp|t,s|~E[\|t] = ZZw mes

nlzl

Ma

-1
where E [ | t] = (a+my) <b + > tj> . Given the MCMC output of size N, we can estimate the predictive
=1

density of the service time distribution using

N k(n)

f(s]s,t)= ZZU} Ers\l/(n>, §n>) (12)

n=1i=1

10



We can also perform inference for the mixture size, k, estimating the marginal posterior distribution by
1 (n)
P(k\t,s)%ﬁ#{n:k :k}.

For example, the posterior probability of having a single Erlang distribution for the service time distribution
would be P (k=1 |s). If this probability is big enough, we can model the system as an M/FEr/1 queue.
Inference concerning the equilibrium characteristics of this queueing system is then relatively straightforward,
see e.g. Rios et al (1998). Analogously, the posterior probability that the service time distribution is

exponential can be approximated using
P(V—l,k—l\s)z—#{n:k =1andv —1}.

This corresponds to an M/M/1 system. Conditional on the parameters, exact results for the equilibrium
queue size, waiting time and busy period distributions are known and Armero and Bayarri (1994) show how
Bayesian inference concerning these distributions can be undertaken.

For the general M/HEr/1 system, even conditional on the system parameters, the equilibrium distri-
butions of the waiting time and busy period have not been derived in closed form. However, there exist
algorithms which can be used to obtain these distributions based on the fact that the hyperErlang service
time is of phase-type. In the following section, we introduce phase-type distributions and show how to carry

out inference for the equilibrium distributions of the M/HFEr/1 system.

3 Prediction in Equilibrium

Henceforth, we will assume that the model is stable and then, a stationary distribution exists. We are
interested in observable quantities such as the number of customers in the queue, the waiting time in the
queue and the length of busy periods.

In this section, we will first assume that the system parameters (\,8) are known. Firstly, we briefly
introduce the notation and more useful properties for the class of phase-type distributions. Then, we use

the matrix-geometric approach developed in Neuts (1981) to obtain the stationary distributions related to

11



the M/HEr/1 model. We conclude by showing how to estimate the predictive stationary distributions for

the M/HEr/1 system given a sample of data from the posterior distribution of (), 8).

3.1 The phase-type distributions

A continuous phase-type distribution of order m is defined as the distribution on [0, c0) of the time until

absorption in a finite Markov process on the states {1,...,m + 1} with infinitesimal generator

where the m x m matrix T satisfies Tj; < 0, for 1 < i < m, and Tj; > 0, for ¢ # j and also T'e + T = 0,
where e is an m X 1 unit vector. The initial probability vector of Q is (e, ayyy1), with e+, 11 = 1. The

distribution function is given by,
F(z)=1—aexp{Tz}e, for x > 0,

where exp {Tz} is the matrix exponential of Tz and the matrix exponential of a matrix A is defined by
the power series exp {A} = Y 77 ‘2—? The distribution is defined by the pair (e, T). An introduction
to phase-type distributions is Asmussen (1987) and a more complete treatment is given by Neuts (1981).
Phase-type distributions are not only important to queueing theory but have been applied in other fields,
for example survival analysis, see e.g. Aalen (1995).

The simplest phase-type distribution is the exponential distribution. In this case, m = 1 and (o, T) =
(1, f%), where 1 is the mean parameter.

The Erlang distribution Er(v, u), whose density is given by (3), is phase-type of order v with represen-

tation (a gy, Tr,), where ap,=(1,0,...,0)(;x,) and

1 -1

L d (vxv)

12



An useful property is that a finite mixture of phase-type distributions is a phase-type distribution.
Thus a mixture of Erlang distribution is phase-type. If (wq,...,wy) are the weights of the mixture and
component ¢ has the representation (a%r, T};JT) , 1 < i <k, then the Erlang mixture (2) has the representation

_ 1 k
A= [wlaET, ---,kaéET] , and

T 0 - 0

0 T%,
Thgr =

0 0 ... Tk

In the following subsections, assuming that the model parameters, (A, ), are known, we show how to
compute the stationary distribution of measures of performance of the queue such as the number of customers
in the system, the queueing time and the length of a busy period using the well-known results for the M/PH/1

queue.

3.2 Number of customers in the M/HEr/1 queue

Suppose that 7 (j) is the equilibrium probability that there are j customers in the system. Then it can be

shown that, for any M/G/1 queue with traffic intensity, (9), p <1,

j+1
W(j):ﬂ(0)6j+27r(j) 8jint, j=0,1,.. (13)
i=1

with 7 (0) = 1 — p, where §; is the probability that j customers arrive during a service interval, see e.g.

Nelson (1995). In particular, given the hyperErlang service distribution, we have,

J! Hi

) & . v i

= () . , Jtvi—1 1 v; ’

6j:/0 —e)‘f(s\g)ds:/\j;wi ‘ w —+A )
= J i

see e.g. Wiper et al. (2001) where this result is given for the mixture of gamma distributions, of which the

hyperErlang is a special case.

13



3.3 Waiting time in the M/HFEr/1 queue.

The stationary queueing time in the M/PH/1 system is phase-type, see Neuts (1981, p. 57). In particular,

given the Erlang mixture form (2) of the service distribution, the stationary queueing time distribution is

phase-type with representation, (ayy, Ty ), where,

ay = p’l,b, Tw =Tugr + pTOHEr'lnba

where ¢ = (9, ,...,%,, ) is the stationary probability vector of Ty, + T o, e Thus, ¥ is the unique

solution to the equations

'lnb(THEr‘i‘T([){ETaHET) =0, Ye = 1.

It is straightforward to show that

b o Wi
— . [t PN
1/)1171 - Zw%u’i U €
i=1

T

where e/, is the 1 x v; unit vector. Therefore,

w1 Wi
/j'le/ Hig }:

o1 PRRET) Uk Vi

aw = pp = A

and

Tw =Tuer + AM,

where M is a block matrix where each block My, v, is a v; X v; matrix such that,

My, =
'Ui:uj 'Ui:u'j
I pvg I v

Now, we can calculate the waiting time density function fy () given the parameters,

1-p, if ¢ =0
fw(t) =
Qyy exXp {Tv[/t} T(I)/V7 ift>0

14



where exp {Twt} is the matrix exponential of Ty t.
For large k or any large {v;,i =1,...,k}, the computation of exp {Tyt} becomes impractical due to
storage requirements. In such cases, we can obtain aw exp {Ty t} by solving the linear system of differential

equations
X' (t) = x(t)Tw, with x(0) = aw

using a classical Runge-Kutta method of low order, see e.g. Abramowitz and Stegun (1964).

3.4 Busy Period in the M/HEr/1 queue.

Neuts (1977) shows how to obtain the distribution of the busy period in a stable M/PH/1 queue. The busy
period distribution can be considered as that of the time till absorption in an infinite state Markov chain.
Thus, the computations are reduced to the numerical solution of an infinite system of linear equations which
can be truncated by using the distribution of the maximum queue length during a busy period.

For the M/HEr/1 queue, the busy period is a phase-type distribution of infinite order with representation

(ap,Tg) where the vector g and the matrix Tz are of infinite order, given by

Tapr — 1 1

T panpr  Tupr—1 I
ap = (g 0,0,...), Tp = A

0
Typ,a5er Tapr—1

where 0 represents a 1 x Zle v; zero vector and I is the Zle vi X Zle v; identity matrix. The infinite
state space is S = {(i,j) ,1=1,2,..,1<5< Zle yi} . See Neuts (1977) for further details.

We can truncate the system by taking a phase-type distribution of order m,,., X Zlle v; where ng,ax
is chosen according to a criterion of Neuts (1977) by replacing the unbounded queue by a finite one with

maximum queue length 7n.,,x, in which all customers in excess of n,,x are lost. Given this approximation,

15



we must solve the following system of differential equations

Thpr —1 1

TO OgE
(XllaX/Qa "'aX/nmax) = (X17 X23 "'aX'nnmx) )‘ e '

1

0
Typompr Tarr—1

with x (0) = (agg-,0,0,...). Again, the solution to these equations can be calculated using Runge Kutta.

Given the solution, the distribution function of the length of a busy period can be computed as,

Mmax

Fg(t)=~1- Z x; (t)e. (15)

There are some practical problems in the computation of the busy period, and to a lesser extent, the
waiting time distribution in cases where Zle v; is large. In such cases, the time consumed in computation
can become prohibitive. In practice, we have found that truncating max {v;} < 50 or 100 is sufficient to give

good approximations in most situations.

3.5 Predictive stationary densities from the MCMC output

Given a sample realization from the posterior distribution of (), @) we can estimate the predictive probabilities

of the number of customers in the system using Rao-Blackwellization, see Casella and Robert (1996),

1
T x g Y w (AN w0 (16)
n:p(m) <1

where R = # {p(”) <1} and w (j | A ) is given by (13).

Similarly, we can estimate the predictive distribution of the waiting time in the queue by

1 ,
fw () = S fw (t | )\<”>,k(”),w(”),u("),u(")) (17)
n:p(m) <1

where fy (t | A ) is given by (14) and the predictive distribution of the busy period can be approximated
analogously using (15) .
The estimation of the moments of the queue size, waiting time or busy period distributions is impossible

given our prior distribution structure, these do not exist. See for example, Wiper (1998).
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4 Examples

In this section, we illustrate the performance of the metodology with examples of several M/G/1 queues.
For simplicity, we assume that the interarrival rate, A, is known and equal to 1. We consider samples of 100

service data from various service time distributions with a common mean 0.6, as follows,

1. 100 data simulated from a single exponential distribution.

2. 100 service times simulated from a mixture of Erlang distributions with, w =(1/3,1/3,1/3),

p=(0.2,0.5,1.1) and v = (10,20, 30) .
3. 100 data equal to 0.6 from a degenerate distribution.

4. 100 data from a lognormal distribution LN (77, 02) with parameters 7 = —1.01 and 02 = 1.

In each case, we suppose a discrete uniform prior distribution for k, with k.« = 10. Note that the
service distributions in cases 1 and 2 are Erlang mixtures, whereas the degenerate distribution in case 3 can
be thought of as the limit of an Erlang distribution Er(v,1/0.6) where v — oco. The lognormal service
distribution in case 4 is not a phase-type distribution.

The MCMC algorithm introduced in Section 2.1 was run for each data set with 100000 burn-in iterations
and 100000 iterations “in equilibrium”. The MCMC algorithm was programmed in FORTRAN and used
between one and two hours of computing time on a Unix workstation in all cases.

Figure 1 illustrates the predictive service time densities (12) for all four data sets (dotted line). Also
shown are the true densities in the non degenerate cases (solid line). We can see that in the non degenerate
cases, the density estimates and the true density functions are very similar. In the degenerate case, as we

might expect, the estimated density is concentrated around the point s = 0.6.

Table 1 gives the estimated posterior probabilities for various mixture sizes of k for the three data sets.
Note that P(k=1|t) ~ 0.98 for the first data set. Also, given k& = 1, the posterior probability that the

service distribution is exponential is P (v =1 | k = 1,t) = 0.9999. Thus, it is clear that the correct M/M/1
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Figure 1: Predictive service time densities (dotted line) and the true densities (solid line) for (a) the expo-

nential, (b) the hypererlang, (c) the degenerate and (d) the lognormal data sets.
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P(k|s) | M/M/1 M/HEr/1 M/D/1 M/LN/1
k=1 [0979  0.149 1.000  0.097
k=2 |0012 0263 0.000  0.843
k=3 |0005  0.507 0.000  0.033
k=4 |0001  0.058 0.000  0.015
k=5 |0000 0015 0.000  0.007

Table 1: Posterior probabilities for different mixture sizes.

model has been well predicted in this case. In the Erlang mixture case, the correct mixture size has also
been identified although with some uncertainty. In case 3, the density estimate for the degenerate service
distribution has one component with very small variance. The posterior mean service time is estimated to
be 0.600 (s. d. .0003) and the posterior mean estimate for v is around 50000 with large variance. This
seems natural given our earlier comment that the degenerate distribution is a limiting case of an Erlang

distribution.

M/M/1 M/HEr/1 M/D/1 M/LN/1

P(p < 1|data) 0.9998 0.9996 1.000 0.9993

Elp|p<1,data] | 0.6039 0.5956 0.600 0.6104

Table 2: Posterior probability that the system is stable and the posterior mean values for the traffic intensity.

For all 4 data sets, the estimated posterior probability that the system is stable is extremely high (> 0.95)
and the posterior mean values for p are, in all cases close to the true value of 0.6, as shown in Table 2. Thus,
it seems reasonable to estimate the equilibrium distributions. In Table 3, the equilibrium probabilities of
queue sizes (16) between 0 and 4 are given for each of the 4 cases. These are compared with the theoretical

queue size probabilities.
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j | M/M/1 | M/HEr/1 | M/D/1 | M/LN
. 396 404 400 390
400 400 400 400
. 235 277 329 221
240 278 329 226
) 141 155 162 131
144 158 162 128
; 085 085 067 084
086 083 067 078
) 052 041 026 055
051 042 026 051

Table 3: Posterior predictive probabilities 7 (j|data) (upper) and true probabilities (lower) of the number of

customers j in the system.

The estimated posterior queue size probabilities compare well with the theoretical probabilities for all

cases where these can be evaluated.

Figure 2 shows the estimated predictive waiting time distribution functions (17) for the first three systems
(dotted line). The true waiting time distribution functions are also illustrated (solid line). In the case of the
lognormal service distribution this has not been done, as the theoretical waiting time distribution has not
been obtained so far. The queueing time distribution function is not differentiable for the M/D/1 system,
but it is fairly well approximated by the predictive distribution. In this case, we have used a smaller MCMC
sample (of 100) to approximate the waiting time density truncating in v = 50 as commented earlier.

Figure 3 illustrates various single distribution functions of the length of the busy period selected at
random from the MCMC sample for some of the mixture sizes (dotted lines). Also shown is the true

distribution (solid line) except in the lognormal service time case where again, this has not been obtained
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Figure 2: Predictive waiting time distribution functions (dotted line) and true distribution functions (solid

line) for (a) the exponential, (b) the hypererlang, (c) the degenerate and (d) the lognormal data sets.
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Figure 3: Distribution functions of the length of the busy period sampled at various iterations of the MCMC
algorithm (dotted lines) and true distribution (solid line) for (a) the exponential, (b) the hypererlang, (c)

the degenerate and (d) the lognormal data sets.

so far. Numerical computations are more difficult at this point because we have to compute the maximum
queue length distribution during a busy period for every MCMC sample in order to truncate the system
of linear differential equations. Moreover, the order of the system can become very high. The busy period
distribution function is not continuous for the degenerate case, but we can observe that, even in this case,
the estimation is very similar. In this case, we compare the true distribution with some samples truncating
n Vmax = 1000.

All computations concerning the equilibrium queueing distributions were carried out using MATLAB.
Computation times were somewhat variable depending in the main on the size of max{v;}. For values of

max{v;} less than 50, the evaluation of the queue size, waiting time and busy period distributions needed up
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to around four hours of computing time on a Pentium II personal computer. Conditional on the parameters,
(X, 0) if max{v;} is around 200-300, the calculation of the busy period distribution is typically around one
or two seconds. Thus, the computation of the predictive queueing time and busy period distribution given
all 100000 iterations of the MCMC output can take up to two days. As we noted earlier in Section 3.4

truncating in max{r;} = 50 or 100 appears sufficient for all practical purposes.

5 Conclusions

We have developed a Bayesian analysis of M/G/1 systems by modelling the general service time distribution
using a mixture of Erlang distributions. We have constructed an MCMC algorithm making use of the
“reversible jump” methodology and have combined this with matrix-analytic methods which has allowed us
to make inference and predictions of various system quantities. We have illustrated our procedure with some
simulated examples.

The reversible jump algorithm used here to sample the posterior distribution is similar to the algorithm
of Richardson and Green (1997) for normal mixtures. One important point here is that in this application,
without the use of a birth death move for empty components, we have observed convergence problems due
to continued splitting of empty components. This phenomenon was not observed by Wiper et al. (2001)
who used a somewhat different algorithm to model a mixture of gamma distributions.

We have found some particular problems due to the discrete support of v. Preservation of the second
moments of the mixture in the reversible jump scheme is not possible. This often produces low acceptance
rates (1 or 2%) for proposed changes in the mixture size, especially when v takes values near 1. One
possibility is to consider an alternative to the reversible jump algorithm. A method based on births
and deaths of mixture components has been proposed by Stephens (2000). We are currently working on
implementing this procedure for the Erlang mixture model.

Although, in this article, we have used a mixture of Erlang distributions to model services times, we

could also consider other classes of phase-type distributions, such as acyclic phase-type distributions or
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the class of Coxian distributions. In some cases, we can only obtain satisfactory approximations of the
service distribution using Erlang mixtures of very high order. This complicates the numerical computations
of predictive distributions. The class of acyclic phase-type distributions may lead to good estimations of
moderate orders. This occurs in maximum-likelihood based parameter estimation as presented by Bobbio
and Telek (1994). We should also note that there has been some work on the so-called generalized phase-type
distributions, see e.g. Huzurbazar (1999) and Stefanov (2000). It would be interesting to see if this can be
extended to the queueing scenario.

We might compare our results with other maximum-likelihood based methods used to fit phase-type
distributions such as that implemented by Asmussen et al. (1996) via EM algorithm. However, as far as we
know, nothing seems to have been done to obtain confidence intervals. One possibility is the use of bootstrap
techniques, but this is computationally inefficient because it requires many ML estimations.

Our approach can also be extended to other queueing systems. A very similar method can be used for
G/M/c systems, where, for example, we could model the general interarrival distribution using the Erlang
mixture distribution. In many ways, analysis of this system is much simpler than the M/G/1 queue, as the
equilibrium distributions of the queue size and waiting time in the G/M/c systems have a relatively simple
form. A paper on this problem is currently under preparation. Finally, it is possible to model G/G/1
systems using a phase-type approximation for both the service and interarrival time distributions. In this
case, the calculation of the queue size and waiting time distributions is much more complicated. This

problem is currently being studied.
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