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Abstract. This paper presents an overview of the existing literature on the nonparametric local
polynomial (LPR) estimator of the regression function and its derivatives when the observations are
dependent. When the errors of the regression model are correlated and follow an ARMA process,
Vilar-Fernández and Francisco-Fernández (2002) proposed a modification of the LPR estimator,
called the generalized local polynomial (GLPR) estimator, based on, first, transforming the regression
model to get uncorrelated errors and then applying the LPR estimator to the new model. Some of
the most significant asymptotic properties of these two weighted local estimators, including some
guidelines on how to select the bandwidth parameter, are reviewed. Finally, these techniques are
used to study the real private residential fixed investment in the USA.
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1. Introduction

The main goal of regression analysis is to estimate the mean function E(Y |X) =
m(X) for a given set of observations {(Xi, Yi)}ni=1, where the responses Yi are scalar
and the predictors (or design variables) Xi are either univariate or multivariate. To
achieve this goal, a regression model

Yt = m(Xt)+ εt , 1 � t � n, (1)

where εt are random errors, is set up. If the X-variable is selected (sometimes
equally spaced) by the experimenter, the model is called a fixed regression model.
On the other hand, if the X-variable is random, it is referred to as a random
regression model.

Nonparametric regression is attractive since it does not require a parametric
form for the mean function. Because of recent theoretical developments and wide-
spread use of fast and inexpensive computers, nonparametric regression has be-
come a rapidly growing and exciting field of statistics. Researchers have realized
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that for many real data sets, parametric regression is not sufficiently flexible to
adequately fit curves or surfaces. Recent monographs on nonparametric regression
(Eubank, 1988; Müller, 1988; Härdle, 1990; Fan and Gijbels, 1996) have shown
that for a variety of interesting examples, applications of nonparametric regression
have yielded analyses essentially unobtainable by other techniques.

Basically, the nonparametric estimators of the regression function (sometimes
called smoothers) may be classified as: kernel methods, spline methods and series
expansion methods. Perhaps the most popular in the statistical community are
the nonparametric kernel estimators. One of these kernel techniques is the local
polynomial (LPR) estimator. The LPR estimator has gained wide acceptance as an
attractive method for estimating the regression function and its derivatives. Some
of the advantages of this nonparametric estimation method, compared with other
kernel estimators like Nadaraya–Watson estimator or Gasser–Müller estimator,
are better boundary behavior, adaptation to estimate regression derivatives, easy
computation, good minimax properties, etc. Some significant references on this
method, when the observations are independent, are, for example, Stone (1977),
Cleveland (1979), Tsybakov (1986), Fan (1992, 1993), Ruppert and Wand (1994),
Fan and Gijbels (1995) and Ruppert et al. (1995). See Fan and Gijbels (1996) for
additional references.

Sometimes, the observations in the sample data cannot be assumed independent,
for example, if they are gathered sequentially in time. In this case, the statis-
tical properties of the LPR estimator presented in the papers mentioned above can
change in this new setting of dependence.

In this article, some of the most relevant literature and methods regarding the
LPR estimator under dependence are presented. Moreover, the application of these
techniques to a real economic data set is shown.

Classical issues in nonlinear time series, like estimating time trend or construct-
ing predictive intervals, compelled some authors to study the LPR estimator in a
dependence context. Some related works are: Masry (1996a, b), Masry and Fan
(1997), Härdle and Tsybakov (1997), Härdle et al. (1998) and Vilar-Fernández
and Vilar-Fernández (1998). In these papers, a regression model considering a
random data sample, {(Xt, Yt)}nt=1, satisfying some mixing conditions, was used.
Basically, under suitable conditions on the mixing coefficients, the results obtained
show that the asymptotic properties of the LPR estimator under mixing conditions
and under independence are the same. On the other hand, in Francisco-Fernández
and Vilar-Fernández (2001), a regular fixed design regression model with short-
range correlated errors is considered. These regression models frequently arise in
economic studies, in the analysis of growth curves and usually in the study of
time series with deterministic trend. In this case, while the asymptotic bias of the
regression estimator is exactly the same as that obtained under independence, the
asymptotic variance of the estimator changes. Now, the sum of the covariances
of the errors in this term appears instead of simply the variance of the errors, as in
the case of independent observations. Some of these asymptotic expressions will be
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presented in the next Section. The properties of the LPR estimator under long-range
dependent errors were recently studied in Anh et al. (1999), Masry and Mielniczuk
(1999) and Beran and Feng (2002). Opsomer (1997) and Opsomer et al. (2001)
provide other references on the topic of nonparametric regression in the presence
of correlation.

As with any nonparametric regression procedure, with the LPR estimator one
has to choose a tuning parameter, called the bandwidth or smoothing parameter,
which determines the size of the neighborhood of the point to estimate. Adequate
selection of this parameter is crucial for correct estimation of the regression func-
tion and its derivatives. If a very small bandwidth is used for the estimation, an
extremely wiggly curve will be produced and if the bandwidth is too big, a very
smooth curve will result. Some automated methods have been proposed in the liter-
ature to select this important parameter from the sample data when the observations
are independent. Among them, perhaps the best known are the cross-validation
techniques, plug-in methods and bootstrap methods. The direct application of these
methods to dependent data usually produces bad results (see, e.g., Hart and Wehrly
(1986) or Francisco-Fernández and Vilar-Fernández (2001)). In this case, sev-
eral techniques have been proposed. These methods are basically a revision of
those mentioned before, adapted to take the dependence of the observations into
account.

The organization of this work is as follows: Section 2 includes some asymp-
totic properties of the LPR estimator in a fixed regression model with dependent
errors. Moreover, another nonparametric estimator of the regression function (the
generalized local polynomial, GLPR, estimator) based on merging ideas of the non-
parametric LPR estimator with the parametric generalized least squares estimator
will be defined. The asymptotic properties of this estimator will be briefly presented
and compared with the properties of the classical LPR estimator. Other topics like
bandwidth selection will be explained in this Section. Finally, in Section 3, these
estimators will be used to analyze some real economic datasets and to extract some
interesting conclusions.

2. The LPR Estimator Under Dependence

As stated in the previous Section, our goal is to estimate the unknown regression
function and its derivatives based on an observed sample {(Xt, Yt )}nt=1.

2.1. THE LPR ESTIMATOR

Assuming that the (p + 1)th derivatives of the regression function at point x ex-
ist and are continuous, local polynomial fitting permits estimating the parameter
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vector β(x) = (β0(x), β1(x), · · · , βp(x))t , where βj(x) = m(j)(x)/(j !), with
j = 0, 1, . . . , p, by minimizing the function

�(β(x)) =
n∑
t=1


Yt − p∑

j=0

βj (x)(Xt − x)j




2

ωn,t , (2)

where ωn,t = n−1Kn(Xt − x) are the weights, Kn(u) = h−1
n K(h

−1
n u), K being

a kernel function, that is, K is a symmetric and positive function with
∫
K = 1,

and hn the bandwidth or smoothing parameter. The estimator of β(x), obtained as
a solution to the weighted least squares problem given in (2), is called the local
polynomial kernel estimator and it is interesting to observe that this type of estim-
ators includes the classical Nadaraya–Watson estimator, which is the minimizer
of (2) when p = 0. Of special interest is also the local linear kernel estimator
corresponding to p = 1.

In matrix notation, the minimizing problem (2) can be written as:

min
β(x)

(
Y(n) − Xp,(n)β(x)

)t
W(n)

(
Y(n) −Xp,(n)β(x)

)
, (3)

where

Y(n) =


Y1
...

Yn


 , Xp,(n) =




1 (X1 − x) · · · (X1 − x)p

...
...

...
...

1 (Xn − x) · · · (Xn − x)p


 ,

and let W(n) = diag(ωn,1, . . . , ωn,n) be the diagonal array of weights. Then, by
assuming the invertibility of (Xtp,(n)W(n)Xp,(n)), standard weighted least squares
theory leads to the solution

β̂(n)(x) = (
Xtp,(n)W(n)Xp,(n)

)−1
Xtp,(n)W(n)Y(n). (4)

Then, the estimator of the j th derivative of the regression function, m̂(j)(x), is
given by β̂j (x)(j !) , β̂j (x) being the (j + 1)th component of the vector in (4),
j = 0, 1, . . . , p.

Obviously, these estimators can be used whether the observations are indepen-
dent or not. This paper concerns the second case.

2.2. DEPENDENCE STRUCTURES IN A REGRESSION MODEL

The structure of dependence of the observations in a regression model is designed
in two ways:

• Random design. A stationary sequence {(Xi, Yi)}ni=1, which may be stochas-
tically dependent, is observed and the conditional mean function m(x) =
E(Y |X = x) is estimated based on this random sample.
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In this context, the problem of predicting in time series can be included: let
{Zi}ni=1 be a sample of a time series. By defining Zi as Xi and Zi+l as Yi ,
the problem of predicting Zn+l from {Zi}ni=1 can be considered as a nonpara-
metric regression problem for dependent data, namely, to estimate m(z) =
E(Zi+l|Zi = z) based on sample {(Xi, Yi)}n−li=1 = {(Zi, Zi+l)}n−li=1.

• Fixed design. The observation errors {εi,n} in a fixed regression model
Yi,n = m(xi,n)+ εi,n, 1 � i� n (5)

form a sequence of correlated random variables. In many cases, xi,n = i/n,

1 � i� n, and the aim is to estimate the trend of a time series.

Some references studying the LPR estimator in each one of the previous situ-
ations were given in the Introduction. For the first setting, the assumption of ob-
servations satisfying a dependence mixing condition is usually considered. Among
these mixing conditions, the α-mixing condition is the most used and one of the
least restrictive. α-mixing condition is defined as: let N denote the set of positive
integers, and for any a and b in N ∪ {∞} (a� b), define F b

a as the σ -algebra
of events generated by the random variables {(Xi, Yi)|a� i� b}. The stationary
process {(Xi, Yi), i� 1} is called α-mixing (or strong mixing) if for a sequence
{αk} tending to zero,

sup
A∈Fn

1 ,B∈F∞
n+k

|P(A ∩ B)− P(A)P (B)| �αk,

for all n� 1, k� 1. This condition is satisfied by many processes, for example,
by ARMA processes which are generated by continuous white noise. A wide and
complete study on this and other mixing conditions can be seen in Bradley (1986)
and Doukhan (1995).

With respect to the second context, given in (5), classically, it is assumed that
the design points xi,n are within a finite interval [a, b] (for simplicity, [0, 1]) and
the errors satisfying that

E(εi,n) = 0, Var(εi,n) = σ 2, Corr(εi,n, εj,n) = ρn(xi,n − xj,n),

(6)

with σ 2 and ρn unknown. The dependence of the correlation ρn on the sample
size is indicated by the subscript. Researchers who have studied the properties of
kernel-based estimators of the regression function have mainly focused on the time
series case, in which the design points are fixed and usually equally spaced, that is,

Yi = m

(
i

n

)
+ εi,n, i = 1, 2, . . . , n,

where {ε1,n, . . . , εn,n} is a sample from a covariance stationary time series with
zero mean, so,

E(εi,n) = 0, i = 1, 2, . . . , n
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and

Corr(εi,n, εi+k,n) = ρn(|k|), |k| = 0, 1, . . . (7)

The consistency properties of the LPR estimator will depend on the behavior
of the correlation function as n increases. To understand this behavior, let us con-
sider a sequence of positive integers {kn(u)}, such that limn→∞ kn(u)/n = u ∈
[0, 1]. Then, for large n, ρn(kn(u)) is the correlation between observations Y ′s
whose design points, i/n and (i + kn(u))/n, are separated by a distance u (limn→∞
((i + kn(u))/n)− i/n = limn→∞ ((kn(u))/n) = u). Two cases of interest exist:

CASE 1

lim
n→∞ ρn (kn(u)) = ρ(u), (8)

for each u ∈ [0, 1],where ρ is a real-valued function.

CASE 2

lim
n→∞ ρn (kn(u)) = I{0}(u), (9)

for each u ∈ [0, 1].

In Case 1, the correlation between data values depends on the distance of the
corresponding design points. The observed data are, in the limit, a sample path of a
continuous time process on [0, 1]. This process was discussed by Hart and Wehrly
(1986). They have shown that if only a single realization of the process has been
observed, there is no consistent linear estimator for the mean function as the design
points are sampled more and more densely on the unit interval (see also Fraiman
and Meloche (1994)).

In the second case, data values at design points a fixed distance apart are asymp-
totically uncorrelated. This situation includes the important case ρn(k) = ρ(k) for
all n and k. This happens if a sample of a time series is taken and the design variable
(time) is rescaled into the unit interval. This kind of dependence is assumed in this
paper.

2.3. SOME ASYMPTOTIC PROPERTIES OF THE LPR ESTIMATOR

In what follows, a fixed regression model like (5) is assumed, where m(x) is
a ‘smooth’ regression function defined on [0, 1], the errors εt,n, 1 � t � n, are
a sequence of unobserved random variables with zero mean and finite variance
σ 2
ε , where, for each n, {ε1,n, ε2,n, . . . , εn,n} have the same joint distribution as
ε1, ε2, . . . , εn, with {εt, t ∈ Z} being a strictly stationary stochastic process. Also,
it is assumed that the design xt,n, 1 � t � n, is a regular design generated by a
design density f ; that is, for each n, the design points are defined by∫ xt,n

0
f (x)d(x) = t − 1

n− 1
, 1 � t � n,

f being a positive function, defined on [0, 1] and its first derivative is continuous.
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Considering this regression model and under usual conditions on the kernel
function K, the sequence of bandwidths {hn}, and assuming that the covariance
between the errors is given by Cov(εi, εi+k) = σ 2

ε c(k), with
∑∞

k=1 k|c(k)| < ∞,
Francisco-Fernández and Vilar-Fernández (2001) obtained the asymptotic expres-
sions for the bias and the variance–covariance matrix of LPR estimator (4). These
expressions are:

H(n)E
(
β̂(n)(x)− β (x)

)
= m(p+1)(x)

(p + 1)!
hp+1
n S−1

µ + o
(
hp+1
n (1, . . . , 1) t

)
(10)

and

Var
(
H(n)β̂(n)(x)

)
= 1

nhn

c(ε)

f (x)
S−1S̃S−1 + o(

1

nhn
), (11)

where H(n) = diag(1, hn, h2
n, . . . , h

p
n ). S is the (p + 1) × (p + 1) matrix whose

(i + 1, j + 1)th element is si,j = µi+j , i, j = 0, . . . , p, with µr = ∫
urK(u)du.

The vector µ = (µp+1, . . . , µ2p+1)
t . S̃ is the (p + 1) × (p + 1) matrix whose

(i + 1, j + 1)th element is s̃i,j = νi+j , i, j = 0, . . . , p, with νr = ∫
urK2(u)du

and c(ε) = σ 2
ε (c(0)+ 2

∑∞
k=1 c(k)).

Asymptotic expressions for the bias and the variance of the regression function
estimator and its derivatives are directly derived from (10) and (11).

Bias
(
m̂(j)(x)

) = hp+1−j
n

m(p+1)(x)

(p + 1)!
j !Bj (1 + o(1)) , (12)

Var
(
m̂(j)(x)

) = 1

nh
2j+1
n

c(ε)

f (x)
(j !)2Vj (1 + o(1)) , (13)

with j = 0, 1, . . . , p. The terms Bj and Vj denote the j th element of S−1µ and
the j th diagonal element of S−1S̃S−1, respectively.

Moreover, in the paper of Francisco-Fernández and Vilar-Fernández (2001), the
asymptotic normality of β̂(n)(x) and of m̂(j)(x) are obtained. For this, additional
assumptions on the errors of the regression model were made: the (2 + δ)-moment
of the errors exists for some δ > 0, and these are α-mixing with the mixing
coefficients satisfying some summability conditions.

Masry and Fan (1997) studied the LPR estimator with random design and ρ-
mixing and α-mixing observations. In their Theorem 5, they obtained similar re-
sults as those stated before, but in their case the asymptotic variance expression
under dependence coincides with that for independent observations. That is, (11)
changes, now σ 2

ε appearing instead of c(ε). So, with a random design, the asymp-
totic mean squared error (AMSE) of the LPR estimator is the same under depen-
dence as under independence, but in a fixed design with positive correlated errors
the asymptotic variance of the LPR estimator is larger than with independence.
The reason for this fact is that in random design, the random variables Kn(Xi − x)
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and Kn(Xj − x) are nearly uncorrelated, as hn → 0, but in a fixed design, the
spatial distance between the x′s variables coincides with distance in time and the
data points xi closer to x are strongly dependent between them.

2.4. BANDWIDTH SELECTION FOR THE LPR ESTIMATOR

Once the asymptotic properties of LPR estimator under dependence are obtained,
the next step is to provide guidelines on the important problem of bandwidth selec-
tion. Considering the work of Francisco-Fernández and Vilar-Fernández (2002), an
asymptotic plug-in method is proposed to obtain the smoothing parameter which
can provide local or global bandwidths, depending on the choice of a local or
global measure of the estimation error. A local bandwidth is required if the aim
is to estimate the regression function at a point x0, m(x0). This happens in local
problems, such as the problem of predicting. On the other hand, it will be inter-
esting to obtain a global bandwidth when the estimation of the whole regression
function is the main interest of the problem. In the above paper, seven of the most
important techniques (including cross-validation methods, plug-in methods and
bootstrap methods) used to select the smoothing parameter for the LPR estimator
in a fixed regression model with dependent errors are described and compared
through a simulation study. Although it is difficult to find a single smoothing
parameter showing the best performance in all situations, the asymptotic plug-in
bandwidth revealed a remarkable behavior. Moreover, this smoothing parameter is
easy and fast to compute.

The asymptotic plug-in method consists in finding the bandwidth that mini-
mizes the AMSE or the asymptotic mean integrated squared error (AMISE), de-
pending on the use of local or global bandwidths, and then substituting the
unknown quantities that appear in these bandwidths with some estimators. In this
particular case, using the asymptotic expressions of the bias and variance, (12) and
(13), the AMSE of m̂(j)(x) is given by

AMSE
(
m̂(j)(x)

) =
(
hp+1−j
n

m(p+1)(x)

(p + 1)!
j !Bj

)2

+ 1

nh
2j+1
n

c(ε)

f (x)
(j !)2Vj.

(14)

So, minimizing expression (14) in hn, the asymptotically optimal local band-
width to estimate the j th derivative of the regression function is obtained. This
bandwidth is given by

h
opt
j,l,as (x) = Cj,p (K)

(
c(ε)

n(m(p+1)(x))2f (x)

)1/(2p+3)

, (15)

where Cj,p(K) is a real number that depends on the kernel K.
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On the other hand, if the AMISE is used, the asymptotically optimal global
bandwidth to estimate the j th derivative of the regression function is obtained,
given by

h
opt
j,g,as = Cj,p (K)

(
c(ε)

n
∫
(m(p+1)(x))2f (x)dx

)1/(2p+3)

. (16)

In (15) and (16), there are two unknown quantities, c(ε) and m(p+1)(x). These
must be estimated in order to produce practical smoothing parameters from (15)
and (16). Once c(ε) and m(p+1)(x) are replaced by estimators, the computed band-
widths are denoted by ĥopt

j,l,as(x) and ĥopt
j,g,as, respectively.

To estimate c(ε) and m(p+1)(x) various possibilities arise. With respect to the
sum of the covariances, c(ε), a parametric dependence structure, depending on a
small number of parameters (e.g. an ARMA model), can be assumed and then, an
estimator of c(ε) can be obtained by simply estimating these parameters, using, for
example, nonparametric residuals. To do this, a pilot bandwidth, hpilot, is needed to
evaluate the LPR estimator at the design points and obtain the residuals given by
ε̂t = Yt − m̂hpilot(xt ), t = 1, 2, . . . , n. Another possibility is to estimate c(ε) di-
rectly from the data using difference-based methods. Along these lines, Müller and
Stadtmüller (1988) proposed an estimator for c(ε) based on first order differences
of Yt , for m-dependent errors. For errors that are not necessarily m-dependent but
satisfy some mixing conditions, Hermann et al. (1992) suggested an estimator of
c(ε) based on second order differences of Yt . Recently, Hall and Van Keilegom
(2003) showed that difference-based methods can be used to construct simple
and explicit estimators of c(ε) and autoregressive parameters in nonparametric
regression with time-series errors.

As far as m(p+1)(x) is concerned, basically, a parametric or nonparametric fit
can be used. In the former, m(p+1)(x) is estimated by globally fitting to the regres-
sion function a polynomial of (p + 3) order, m̃p+3(x), and next by calculating the
(p+1) derivative of this fitted curve, m̃(p+1)

p+3 (x). The nonparametric approximation
involves estimating m(p+1)(x) using the LPR estimator as explained in Section 2.1,
for which a pilot bandwidth is necessary.

In Francisco-Fernández et al. (2002), the asymptotic global bandwidth obtained
from (16) was studied for the local linear estimator. In this paper, the authors pro-
pose to estimate c(ε) from nonparametric residuals, assuming a parametric ARMA
structure for the errors. For

∫
(m′′(x))2f (x)dx they use 1/n

∑n
i=1(m̂

′′
g(xi))

2 as es-
timator, where m̂′′

g(x) is the LPR estimator of the second derivative of the regression
function obtained from (4) with a pilot bandwidth g. In this paper, the rate of
convergence of the plug-in bandwidth considered to the optimal bandwidth that
minimizes the mean integrated squared error is obtained. This rate of convergence
is of the same order as that obtained under independence (see Ruppert et al., 1995).
Moreover, a simulation study is shown where ĥopt

0,g,as is compared with two other

bandwidth estimators: the same bandwidth as ĥopt
0,g,as but considering that the errors
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are independent, that is, assuming that c(ε) = σ 2
ε , and the bandwidth proposed in

Opsomer (1997) where the estimate of c(ε) is constructed by estimating the spec-
tral density at 0 nonparametrically. In the three cases the pilot bandwidth needed
to estimate c(ε) was computed by the time series cross-validation (TSCV) method,
proposed in Hart (1994). The general conclusion is that it is important to take
the dependence of the observations into account when a bandwidth is chosen and
to use this information in the computation of the bandwidth. Besides, parametric
estimation of the correlation function seems to provide a more reliable approach
for estimating the optimal bandwidth, at least in that context.

Two reasons exist for selecting the TSCV bandwidth as a pilot bandwidth to
estimate the regression function: first, this parameter showed good performance in
the simulation study presented in Francisco-Fernández and Vilar-Fernández (2002)
in a fixed regression model with autoregressive errors, and second, this technique
is completely automatic, that is, it does not need a preliminary parameter for its
computation. Therefore, the TSCV bandwidth is a good method for selecting the
smoothing parameter when the observations are dependent. This method is a modi-
fication of the classical cross-validation method, but here considering the depen-
dence of the observations. The cross-validation method, that finds the bandwidth h
that minimizes

CV(h) = n−1
n∑
i=1

(
Yi − m̃h,i(xi)

)2
w(xi), (17)

with the estimator m̃h,i used with the sample without the (xi, Yi) data and w a
weight function introduced to allow reduction of boundary effects, produces rea-
sonable bandwidths when the data are uncorrelated. This occurs because, in this
case,

E(Yj |Y1, . . . , Yj−1, Yj+1, . . . , Yn) = m(xj ), (18)

that is, a good predictor of Yj and a good estimator of E(Yj ) are one and the same.
But if the error terms in the model are correlated, then

E(Yj |Y1, . . . , Yj−1, Yj+1, . . . , Yn) = m(xj )+ g(ε1, . . . , εj−1, εj+1, . . . , εn),

(19)

for some function g and εj = Yj − m(xj ), j = 1, 2, . . . , n. So now, the best
mean squared error predictor depends on Y1, . . . , Yj−1, Yj+1, . . . , Yn, and it is not
necessarily a good estimate of the mean.

To solve this problem the TSCV method uses expression (19) and selects a
model that yields good predictions of future observations. The idea is similar to
that in the cross-validation method, but the TSCV method uses only Y1, . . . , Yj−1

to predict Yj .
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To explain how the TSCV method works, let us suppose, for simplicity, that the
errors follow an AR(1) process, that is,

εj = ρεj−1 + ej , j = 2, . . . , n,

where ρ is unknown and e2, . . . , en are iid random variables. If ρ and the trend,
m(x), were known, the best mean squared error predictor of Yj based on past data
would be

Ŷj = m(xj )+ ρ
(
Yj−1 −m(xj−1)

)
.

However, if the trend is unknown, it can be estimated by using a kernel smoother
based on the data through time j − 1. Define a predictor

Ŷj (a, h) = m̃jh(xj )+ a(Yj−1 − m̃jh(xj−1)),

where m̃jh(xk) is a kernel estimate of m(xk), k = j − 1, j , that uses only
Y1, . . . , Yj−1 and has smoothing parameter h. The TSCV method consists in choos-
ing h and a to minimize

P (a, h) = 1

n− 1

n∑
j=2

(
Ŷj (a, h)− Yj

)2
. (20)

For any given h, the minimizer ρ̂h of P(a, h) with respect to a can be obtained
explicitly. This leads to a criterion function P(h) = P(ρ̂h, h) whose minimum
with respect to h may be approximated numerically.

The method can be generalized by assuming that the errors process, {εj = Yj −
m(xj )}, follows a given parametric model Mθ . Then, a predictor of Yj of the form

Ŷj (h, θ) = m̃jh(xj )+ gθ(ε̂1, . . . , ε̂j−1) (21)

can be considered, where, as previously, m̃jh(xk) is a kernel estimate of m(xk)
that uses only the data Y1, . . . , Yj−1, ε̂i = Yi − m̃jh(xi), i = 1, . . . , j − 1 and
gθ(ε1, . . . , εj−1) is the optimal mean squared error predictor of εj , given
ε1, . . . , εj−1. Therefore, as with AR(1) errors, in the TSCV method, h and θ are
chosen to minimize

P (h, θ) =
n∑
j=2

(
Ŷj (h, θ)− Yj

)2
. (22)

Since TSCV uses only the data to the left of a time point j , Hart (1994) suggests
that m̃jh(xk) be a kernel smoother using a boundary-type kernel, say L.However, if
the aim is to efficiently estimate the trend, m(xj ), using data on either side of time
point j with a kernel K, it will be necessary to multiply the bandwidth minimizing
(22) by a constant CK,L depending on the kernels K and L (see Hart (1994) for
this constant).
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Other methods used to select the smoothing parameter for LPR estimator in
the regression model considered in Section 2.3 are: the modified cross-validation
method, the partitioned cross-validation method, the cross-validation for predic-
tion, the exact plug-in and bootstrap methods. See Francisco-Fernández and Vilar-
Fernández (2002) for a description and comparison using a simulation study of
these techniques. It appears that the plug-in methods, the TSCV method and the
bootstrap method give good results if dependence is considered.

3. A Modification of the LPR Estimator

In this Section, a modification of the LPR estimator of the regression function
and its derivatives is introduced. Moreover, some asymptotic properties of these
estimators are presented and compared with those obtained for the LPR estimator
in the previous Section.

3.1. MOTIVATION AND DEFINITION OF THE NEW ESTIMATOR

Another way to estimate the regression function, the parametric perspective, is to
assume for this function a parametric model, depending on some parameters, and
estimate the regression function by simply estimating the unknown parameters.
For example, if a multiple linear regression model for the regression function is
assumed, that is,

m(x) = m(x1, x2, . . . , xp) = βx = β1x1 + β2x2 + · · · + βpxp, (23)

the vector β = (β1, β2, . . . , βp) has to be estimated to obtain a parametric estimator
ofm. If a sample data, {(xi , Yi)}ni=1, being xi = (xi1, xi2, . . . , xip)

t , i = 1, 2, . . . , n,
has been observed and assuming that the regression function is as that given in (23),
the observations satisfy

Yi = βxi + εi, i = 1, 2, . . . , n. (24)

The least squares (LS) method consists in finding the vector β̂ = (β̂1,

β̂2, . . . , β̂p) that minimizes the function

:(β) =
n∑
t=1


Yt − p∑

j=1

βjxtj




2

. (25)

Problem (25) can be written in matrix form,

min
β
:(β) = min

β

(
Y(n) −Xβ

)t (Y(n) −Xβ
)
, (26)

where

Y(n) =


Y1
...

Yn


 and X =



x11 x12 · · · x1p
...

...
...

...

xn1 xn2 · · · xnp


 .
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Simple algebra leads to the solution of (26), given by

β̂LS = (
XtX

)−1
XtY(n). (27)

If the errors vector, ε(n) = (ε1, ε2, . . . , εn), satisfies E(ε(n)) = 0 and E(ε(n)εt(n)) =
σ 2
ε In (In being the identity matrix of order n), the estimator given in (27) is un-

biased, that is,

E
(
β̂LS

)
= β

and its variance–covariance matrix is given by

Var
(
β̂LS

)
= σ 2

ε

(
XtX

)−1
.

Moreover, according to the Gauss-Markov theorem, β̂LS is the BLUE (best
linear unbiased estimator) estimator of β.

On the other hand, if E(ε(n)) = 0 and E(ε(n)εt(n)) = σ 2
ε �, where � �= In is a

known symmetric and definite positive matrix (the correlation matrix of ε(n) ), the
LS estimator is unbiased and its variance–covariance matrix is

Var
(
β̂LS

)
= σ 2

ε

(
XtX

)−1
Xt�X

(
XtX

)−1
.

Since � �= In, Var(β̂LS) is different from that obtained when the errors are
independent, σ 2

ε (X
tX)−1.

Alternatively, when the errors are dependent, instead of directly using the LS
estimator, first the model can be transformed to get uncorrelated errors and then
obtain the LS estimator from the new transformed data sample. This estimator is
called the generalized least squares (GLS) estimator.

So, the first step in the computation of the GLS estimator is to find a matrix
P(n), such that

P(n)�P
t
(n) = In. (28)

Since� is symmetric and positive definite, a matrix P(n) which has the property
(28) always exists. From (28), it follows that

� = P−1
(n)

(
P t(n)

)−1
and �−1 = P t(n)P(n).

Using P(n) to transform the model yields

P(n)Y(n) = P(n)Xβ + P(n)ε(n)

or

Y∗
(n) = X∗β + ε∗

(n),
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where Y∗
(n) = P(n)Y(n), X∗ = P(n)X and ε∗

(n) = P(n)ε(n). It is easy to prove that

E
(
ε
∗
(n)

) = 0 and E
(
ε
∗
(n)ε

∗t
(n)

) = σ 2
ε In.

Now, the LS method is applied to this model, that is, the vector, β̂ = (β̂1,

β̂2, . . . , β̂p), that minimizes the expression

:G (β) = min
β

(
Y∗
(n) −X∗β

)t (
Y∗
(n) −X∗β

)
= min

β

(
Y(n) −Xβ

)t
P t(n)P(n)︸ ︷︷ ︸
�−1

(
Y(n) −Xβ

)
, (29)

is computed and the GLS estimator of β is given by

β̂GLS = (
X∗tX∗)−1

X∗tY∗
(n) = (

XtP t(n)P(n)X
)−1

XtP t(n)P(n)Y(n). (30)

Now,

E
(
β̂GLS

)
= β

and

Var
(
β̂GLS

)
= σ 2

ε

(
Xt�−1X

)−1
.

This estimator is the best linear unbiased estimator in this case. In practice, the
matrix�−1 = P t(n)P(n) is unknown and, in expression (30), P(n) is replaced with an

estimator of it, P̂(n), which leads to the estimated generalized least squares (EGLS)
estimator, given by

β̂EGLS =
(
XtP̂ t(n)P̂(n)X

)−1
XtP̂ t(n)P̂(n)Y(n).

A thorough study of these parametric estimators of the regression function
appears in Judge et al. (1988).

So, it is clear that in a parametric multiple linear regression model with de-
pendent errors, it is better to use the GLS estimator than the LS estimator. On
the other hand, the relationship between the LPR estimator and the LS estimator
is obvious just by observing the minimizing problems (3) and (26). After all, the
LPR estimator is obtained from a least squares problem, but local and weighted.
Therefore, when the errors are dependent, one can take advantage of the benefits
of the generalized method by previously transforming the observations to get the
errors to be uncorrelated and then use the LPR estimator.

Mathematically, these ideas can be written as follows: Consider the fixed re-
gression model with dependent errors given in (5). If the variance–covariance mat-
rix of the errors is E(ε(n)εt(n)) = σ 2

ε �, with � �= In, a matrix P(n) such that
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�−1 = P t(n)P(n) exists. Performing a Taylor series expansion in a neighborhood
of x, one obtains

m(xt ) =
p∑
j=0

m(j)(x)

j !
(xt − x)j + m(p+1)(x)

(p + 1)!
(xt − x)p+1 + o (xt − x)p+1 ,

t = 1, . . . , n, (31)

or, in matrix form,

M(n) = X(n)β(x)+ m(p+1)(x)

(p + 1)!



(x1 − x)p+1

...

(xn − x)p+1


 +



o(x1 − x)p+1

...

o(xn − x)p+1


 ,

(32)

where M(n) = (m(x1),m(x2), . . . , m(xn))
t . So, model (5) can be approximated by

Y(n) ≈ X(n)β(x)+ ε(n). (33)

The errors of the following model are uncorrelated:

P(n)Y(n) = P(n)X(n)β(x)+ P(n)ε(n). (34)

Now, assuming that Xt(n)P
t
(n)W(n)P(n)X(n) is a nonsingular matrix, an estimator

of β(x) is obtained using weighted least squares,

β̃G,n(x) = (
Xt(n)P

t
(n)W(n)P(n)X(n)

)−1
Xt(n)P

t
(n)W(n)P(n)Y(n). (35)

This estimator is called the GLPR estimator.
In practice, the estimator given in (35) cannot be computed because matrix P(n)

is unknown. Once P(n) is estimated by a consistent estimator of it, P̂(n), and plugged
into (35), the estimated generalized local polynomial (EGLPR) estimator of β(x)

is given by

β̂GE,n(x) =
(
Xt(n)P̂

t
(n)W(n)P̂(n)X(n)

)−1
Xt(n)P̂

t
(n)W(n)P̂(n)Y(n), (36)

where it is supposed that (Xt(n)P̂
t
(n)W(n)P̂(n)X(n))

−1 exists.

3.2. ASYMPTOTIC ANALYSIS

In Vilar-Fernández and Francisco-Fernández (2002), the GLPR estimator and the
EGLPR estimator are defined and some asymptotic properties (asymptotic bias,
asymptotic variance and asymptotic normality), when the errors have an ARMA
dependence structure, are shown.

In the particular case that the errors of the regression model εt follow an AR(1)
type correlation structure, that is,

εt = ρεt−1 + et , t ∈ Z,
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with |ρ| < 1 and {et}t∈Z a noise process with zero mean and finite variance, σ 2
e ,

the variance–covariance matrix of this process is E(ε(n)εt(n)) = σ 2
e <(n), where <(n)

is a nonsingular matrix and positive definite, given by

<(n) = 1

1 − ρ2




1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

...
. . .

. . .
. . .

...

ρn−1 ρn−2 ρn−3 . . . 1


 .

So, in this case the transformation matrix P(n) needed to obtain the GLPR
estimator is

P(n) =




√
1 − ρ2 0 0 . . . 0
−ρ 1 0 . . . 0
0 −ρ 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −ρ 1


 . (37)

A natural estimator of P(n) to compute the EGLPR estimator is obtained by
replacing ρ with its estimator ρ̂,

ρ̂ =
∑n−1

t=1 ε̂t ε̂t+1∑n
t=1 ε̂

2
t

, (38)

where ε̂t = Yt − m̂n(xt ), 1 � t � n, are nonparametric residuals. These are
calculated using a consistent estimator of m(xt ), for example, the LPR estimator.

Assuming usual conditions on the kernel function, the regression function and
on the bandwidth, in the mentioned paper by Vilar-Fernández and Francisco-
Fernández (2002), considering that the errors are AR(1), it is established that

√
nhn

[
H(n)

(
β̃G,n(x)− β(x)

)
− m(p+1)(x)

(p + 1)!
hp+1
n S−1

µ

]
L−→ N(p+1) (0, >)

(39)

and

√
nhn

[
H(n)

(
β̂GE,n(x)− β(x)

)
− m(p+1)(x)

(p + 1)!
hp+1
n S−1µ

]
L−→ N(p+1) (0, >) ,

(40)

where the variance–covariance matrix, >, is

> = σ 2
ε

f (x)

1 + ρ

1 − ρ
S−1S̃S−1 = σ 2

e

f (x)

1

(1 − ρ)2
S−1S̃S−1.
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From (39) and (40), it is easy to obtain the asymptotic normality of the estimat-
ors of the derivatives of the regression function as in (12) and (13).

If the expressions of the bias and variance given in (39) and (40) are compared
with the same quantities for the LPR estimator in (10) and (11), it is seen that they
are exactly the same. Hence, these three estimators (LPR, GLPR and EGLPR) are
asymptotically equivalent. To illustrate the performance of the EGLPR estimator
with finite samples, in the cited paper, a simulation study is shown where this
estimator is compared with other kernel nonparametric estimators of the regression
function: the Nadaraya–Watson estimator, the Gasser–Müller estimator and the
local linear estimator. The general conclusion is that the EGLPR estimator behaves
adequately for regression curve estimation and it is better than the other estimators
compared, under the mean integrated squared error criterion, especially when the
dependence is strong.

On this point, something should be said about the problem of bandwidth selec-
tion for the EGLPR estimator. In the case of AR(1) errors and taking into account
that the asymptotic expressions for the bias and the variance of this new estimator
are the same as those obtained for the LPR estimator, asymptotic local and global
plug-in bandwidths could be designed to estimate the regression function and its
derivatives with the same expressions as those given in (15) and (16). These would
be

h
opt
j,l,as (x) = Cj,p (K)

(
σ 2
ε ((1 + ρ)/(1 − ρ))

n(m(p+1)(x))2f (x)

)1/(2p+3)

(41)

and

h
opt
j,g,as = Cj,p (K)

(
σ 2
ε ((1 + ρ)/(1 − ρ))

n
∫
(m(p+1)(x))2f (x)dx

)1/(2p+3)

, (42)

respectively. The unknown quantities appearing in (41) and (42), σ 2
ε , ρ, m(p+1)(x)

and
∫
(m(p+1)(x))2f (x)dx, could be estimated as explained in Section 2.4.

4. Study of the Real Private Residential Fixed Investment in the USA

In this Section, the study of some real economic data, using the nonparametric
estimators of the regression function previously presented, is shown.

The sample data considered are 222 quarterly observations of the real private
residential fixed investment in the USA, from 1947 to 2002. Each observation
indicates the seasonally adjusted annual rate, measured in billions of chained 1996
dollars (in the year 2002, only two observations are available). The source of these
data is the U.S. Department of Commerce, Bureau of Economic Analysis, obtained
from the web page: http://www.research.stlouisfed.org/fred/data/gdp.html.

A fixed regression model can be fitted to these data, considering an equally
spaced design on [0, 1], that is,

Yt = m(t/222) + εt , t = 1, 2, . . . , 222.
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The aim is to estimate the regression function using the LPR estimator or the
EGLPR estimator with the global smoothing parameters proposed before. Only
the linear case, that is, p = 1, will be considered. The reason for this choice
is that in the estimation of the regression function odd order fits are preferable;
while higher order polynomial approximations give a smaller order of the bias, the
asymptotic variance is the same when moving from any even order approxima-
tion to its consecutive odd order approximation. However, the asymptotic variance
increases when moving from an odd order approximation to its consecutive even
order approximation. So, a local linear fit is preferable to a local constant fit, a
local cubic fit is preferable to a local quadratic fit and so on. On the other hand,
there is no preference between local linear and local cubic fits. To estimate the
regression function, the order p is usually 1 or 3, nevertheless, a local linear fit
suffices to produce good results and, moreover, it is computationally simpler (see
Fan and Gijbels (1996) for a mathematical explanation). Depending on the as-
sumption considered on the errors (whether the noise is white or not) and taking
the background explained in the previous sections into account, if the errors are
considered independent, the LPR estimator with the plug-in bandwidth obtained
from (16), with c(ε) = σ 2

ε (this bandwidth is denoted by ĥind), should be used; or,
if the errors are assumed to be correlated, the EGLPR estimator with the bandwidth
(42) (for simplicity, this bandwidth is denoted by ĥdep) is used. It should be noted
that when the shape of both the mean and correlation functions are not specified
at all, the separation of trend and noise remains a subjective matter, so that, both
approximations could give a correct fit. The choice of estimator and bandwidth se-
lection method therefore depends on the specific type of data under consideration.
In this case, the kind of observations, gathered sequentially in time, suggests that,
perhaps, the second approach is more appropriate. In any case, a more thorough
study of the problem (including an analysis of the residuals) will give more light
on the subject.

First, let us assume that the data are independent. For this case, Figure 1 shows
the scatterplots of the data and the estimator of the regression function computed
with the LPR estimator, m̂LPR. The plug-in bandwidth obtained from (16) is ĥind =
0.0494. For its computation two unknown quantities, c(ε) = σ 2

ε and
∫
(m′′(x))2

f (x)dx, are estimated. The estimators used here are the same as those in Francisco-
Fernández et al. (2002). So,

∫
(m′′(x))2f (x)dx is estimated by 1/n

∑n
i=1(m̂

′′
g(xi))

2,
where m̂′′

g(x) is the LPR estimator (using a cubic fit) of the second derivative
obtained from (4) with a pilot bandwidth g = 0.25, empirically chosen and σ 2

ε

is estimated by

σ̂ 2
ε = 1

n

n∑
i=1

ε̂2
i , (43)

where

ε̂i = Yi − m̂hpilot(xi), i = 1, 2, . . . , n. (44)



WEIGHTED LOCAL NONPARAMETRIC REGRESSION WITH DEPENDENT ERRORS 87

Figure 1. Sample data and m̂LPR computed with ĥ = 0.0494.

These nonparametric residuals are obtained using the LPR estimator with a pilot
bandwidth computed using the cross-validation method (hpilot = hcv), consisting
in finding the bandwidth h that minimizes the score function (17). The results
obtained are hcv = 0.0061 and σ̂ 2

ε = 1.702.
On the other hand, assuming that the errors are correlated, based on the ex-

planations given in Section 3, it is clear that the modification of the LPR estimator
could give better results than those of the LPR estimator. So, under this assumption
of dependence, the EGLPR estimator with the bandwidth obtained from (42) is
used. To compute the EGLPR estimator the transformation matrix P(n) must be
estimated. A first approach could be to suppose that the errors follow an AR(1)
process. It is important to note that, in many cases, although the errors do not
follow an AR(1) model exactly, this assumption can eliminate a big part of the
influence of the dependence of the observations in the nonparametric fit. In this
case P(n) is given by (37) and a natural estimator of P(n) is obtained by replacing ρ
with its estimator ρ̂,

ρ̂ =
∑n−1

t=1 ε̂t ε̂t+1∑n
t=1 ε̂

2
t

, (45)

where ε̂t , 1 � t � n, are the residuals given by (44) with a pilot bandwidth com-
puted by the TSCV method (since the data are considered dependent). This es-
timator of ρ and the estimator of σ 2

ε given in (43), but using a pilot bandwidth
computed by the TSCV method, are used to estimate σ 2

ε ((1 + ρ)/(1 − ρ)) in the
bandwidth (42). With the data considered in this study, the results are: hTSCV =
0.1672, ρ̂ = 0.9334, σ̂ 2

ε = 652.94 and ĥdep = 0.3187. For the denominator of
(42), the same estimator as in the independent case is used. Figure 2 includes
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Figure 2. Sample data and m̂EGLPR computed with ĥ = 0.3187.

the sample data and the estimator of the regression function using the EGLPR
estimator, assuming that the errors are AR(1), m̂EGLPR, following what has just
been described.

If Figure 2, where the errors are assumed to have an AR(1) structure, is com-
pared with Figure 1, where the data are assumed to be independent, in the in-
dependent case the estimator considers that the trend in the data is due mainly
to the mean function, and therefore the estimated curve follows the sample data,
producing a variable fit. On the other hand, when the errors are assumed to be
AR(1), the estimator considers that the sample variability is due, in part, to the
correlated errors and tries to eliminate this effect to uncover the true regression
function.

The study of the estimated autocorrelation function (ACF) and the estimated
partial autocorrelation function (PACF) of the residuals of this fit show that the
assumption that the errors follow an AR(1) model is not correct and then, the
estimation of the transformation matrix P(n) under this assumption could not be
good. In fact, the more reliable dependent structure for the errors seems to be an
AR(2) model. Therefore, although the results obtained when the errors are assumed
to follow an AR(1) model clearly improve those obtained under the assumption of
independence, perhaps, better results could be obtained if a parametric structure for
the errors is not assumed and the transformation matrix P(n) is estimated directly
from the data. Along these lines, Figure 3 shows the same plot as that in Figure 2,
but in this case the EGLPR estimator is computed without assuming any parametric
structure for the errors (this estimator is denoted by m̂EGLPR2). In this case, first the
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Figure 3. Sample data and m̂EGLPR2 computed with ĥ = 0.3187.

correlation matrix of the errors, <̂(n), is estimated using estimators obtained by the
method of the moments for their components:

ρ̂(s) = 1/n
∑n−s

i=1 ε̂i ε̂i+s
1/n

∑n
i=1 ε̂

2
i

, s = 0, 1, 2, . . . , k, (46)

as estimator of

ρ(s) = E (εkεk+s)
σ 2
ε

, s = 0, 1, 2, . . . , k (47)

and then, the matrix P̂(n), such that, <̂−1
(n) = P̂ t(n)P̂(n), is obtained numerically. The

pilot bandwidth used to obtain the residuals in (46) is calculated by the TSCV
method.

In the study of the residuals of this model, the ACF and the PACF of the
residuals are computed and shown in Figures 4 and 5, respectively.

From Figures 4 and 5, it can be deduced that the errors fit an AR(2) model, more
specifically, they follow the model:

Zt − 1.4173Zt−1 + 0.4990Zt−2 = at .

Based on the estimator obtained in Figure 3 and the analysis of the residuals,
it seems reasonable to assume that the series under study has a linear trend and
a residual component with AR(2) structure. The hypothesis of that ‘the trend is
linear’ can be tested using nonparametric methods. This problem has been stud-
ied by González-Manteiga and Vilar-Fernández (1995) and Vilar-Fernández and
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Figure 4. ACF of the residuals obtained using m̂EGLPR2.

Figure 5. PACF of the residuals obtained using m̂EGLPR2.

González-Manteiga (1996). They propose to use as statistic a Cramer–von-Mises
type functional distance between a nonparametric estimator of the regression func-
tion, m̂n, and the member of the class defined in the null hypothesis that is closest
to m̂n in terms of this distance.

In Figure 6, the three nonparametric estimators, m̂LPR, m̂EGLPR and m̂EGLPR2 are
represented.

Figure 6 shows that m̂EGLPR2 is slightly less wiggly than the estimator obtained
assuming that the errors are AR(1), m̂EGLPR. Therefore, at least with this time
series, if a parametric shape for the errors is not assumed and the whole correlation
matrix of the errors is estimated from the data, only small differences are observed
with respect to the results obtained under the assumption of errors being AR(1). On
the other hand, with this simple assumption, a big improvement is observed with
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Figure 6. m̂LPR (wiggly solid line), m̂EGLPR (dashed line) and m̂EGLPR2 (smooth solid line).

Figure 7. Sample data, m̂LPR (wiggly solid line), m̂EGLPR (dashed line) and m̂EGLPR2
(smooth solid line).

respect to the hypothesis of independence and only one parameter, the correlation
coefficient, ρ, has to be estimated to compute the EGLPR estimator.

Finally, the study of the real private residential fixed investment in the USA
is completed considering the series observed annually, but for a longer period
of time. In this case, the sample data consists of 73 annual observations of this
index, from 1929 to 2001. The observations were obtained from the same source
and each data point indicates the billions of chained 1996 dollars in each year.
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Along the same lines as Figures 1–3, Figure 7 includes the sample data and three
estimators of the trend, the LPR estimator assuming independent observations,
m̂LPR, the EGLPR supposing that the errors follow an AR(1) process, m̂EGLPR, and
the EGLPR estimator without assuming any parametric structure for the errors,
m̂EGLPR2.

The shape of the three estimators computed, as well as the general conclusions,
basically, are the same as those before cited for the quarterly data and they could
be repeated here.
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Härdle, W., Tsybakov, A. and Yang, L.: Nonparametric vector autoregression, J. Stat. Plan. Infer. 68

(1998), 221–245.
Hart, J.: Automated kernel smoothing of dependent data by using time series cross-validation, J. Roy.

Stat. Soc. Series B 56(3) (1994), 529–542.
Hart, J. and Wehrly, T. E.: Kernel regression using repeated measurements data, J. Am. Stat. Assoc.

81 (1986), 1080–1088.
Herrmann, E., Gasser, T. and Kneip, A.: Choice of bandwidth for kernel regression when residuals

are correlated, Biometrika 79(4) (1992), 783–795.
Judge, G., Griffiths, W., Carter, R., Lütkepohl, H. and Lee, T. C.: The Theory and Practice of

Econometrics, Wiley, New York, 1988.
Masry, E.: Multivariate regression estimation: local polynomial fitting for time series, Stoch. Process.

Appl. 65 (1996a), 81–101.
Masry, E.: Multivariate local polynomial regression for time series: uniform strong consistency and

rates, J. Time Series Anal. 17 (1996b), 571–599.
Masry, E. and Fan, J.: Local polynomial estimation of regression function for mixing processes,

Scand. J. Stat. 24 (1997), 165–179.
Masry, E. and Mielniczuk, J.: Local linear regression for time series with long-range dependence,

Stoch. Process. Appl. 82 (1999), 173–193.
Müller, H. G.: Nonparametric Regression Analysis of Longitudinal Data, Lectures Notes in Statistics

46, Springer-Verlag, Berlin, 1988.
Müller, H. G. and Stadtmüller, U.: Detecting dependencies in smooth regression models, Biometrika

75(4) (1988), 639–650.
Opsomer, J. D.: Nonparametric regression in the presence of correlated errors, In: T. G. Gregoire,

D. R. Brillinger, P. J. Diggle, E. Russek-Cohen, W. G. Warren and R. D. Wolfinger (eds), Model-
ling Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions,
Springer-Verlag, Berlin, 1997, pp. 339–348.

Opsomer, J. D., Wang, Y. and Yang, Y.: Nonparametric regression with correlated errors, Stat. Sci.
16 (2001), 134–153.

Ruppert, D. and Wand, M. P.: Multivariate locally weighted least squares regression, Ann. Stat. 22
(1994), 1346–1370.

Ruppert, D., Sheather, S. J. and Wand, M. P.: An effective bandwidth selector for local least squares
regression, J. Am. Stat. Assoc. 90 (1995), 1257–1270.

Stone, C. J.: Consistent nonparametric regression, Ann. Stat. 5 (1977), 595–620.
Tsybakov, A.: Robust reconstruction of functions by the local-approximation method, Probl.

Informat. Transmission 22 (1986), 133–146.
Vilar-Fernández, J. M. and Francisco-Fernández, M.: Local polynomial regression smoothers with

AR-error structure, TEST 11(2) (2002), 439–464.
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