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Abstract

In the case of the random design nonparametric regression, one recursive local poly-

nomial smoother is considered. Expressions for the bias and the variance matrix

of the estimators of the regression function and its derivatives are obtained under

dependence conditions (strongly mixing processes). The obtained Mean Squared

Error is shown to be larger than those of the analogous nonrecursive regression

estimators, although retaining the same convergence rate. The properties of strong

consistency with convergence rates are established for the proposed estimators. Fi-

nally, in order to analyse the inuence of both the sample size and the dependence in

the behaviour of the proposed recursive estimator, a simulation study is performed.
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1 Introduction

In recent years, the local polynomial regression estimator has received in-
creasing attention and it has gained acceptance as an attractive method
of nonparametric estimation of a regression function and its derivatives.
This estimator is obtained by locally �tting a p-th degree polynomial to
the data via weighted least squares, and it has favorable asymptotic pro-
perties compared with other classical kernel regression estimators. Other
additional advantages of local polynomial �tting are its improved boundary
behaviour, its adaptation to estimate regression function derivatives and its
nice minimax properties.
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Since earlier work on local least squares regression estimators by Stone
(1977) and Cleveland (1979), further relevant contributions to the theory
and computation of these estimators have appeared. Some signi�cant re-
cent references are Lejeune (1985), Tsybakov (1990), Fan (1992, 1993),
Hastie and Loader (1993), Fan and Gijbels (1992, 1995), Ruppert and
Wand (1994) and Ruppert et al. (1995). A motivation and study of this
smoothing method can also be found in the recent monograph by Fan and
Gijbels (1996).

This paper is concerned with recursive regression estimation based on
local polynomial �tting. As is well known, the recursivity property is par-
ticularly interesting when the sample data are obtained by means of some
observational mechanism that allows an increase in the sample size over
time. This situation is usual in many control and supervision problems
and, above all, in time series analysis. In the above cases, the recursive
estimates allow us to update the estimations as additional observations
are obtained, unlike nonrecursive methods where estimates must be com-
pletely recalculated when each additional item of data is received. From
a practical point of view, this iterative procedure provides an important
saving in computational time and memory, so that the updating of the
estimates is independent of the previous sample size. Works studying re-
cursive nonparametric regression estimators include those by Revesz (1977),
Devroye and Wagner (1980), Krzyzak and Pawlak (1984), and Greblicky
and Pawlak (1987) among others.

As indicated above the use of recursive estimates is particularly appro-
priate in time series analysis and that is why the present study of this is
performed for models of dependent observations. The statistical properties
of local polynomial regression for dependent data have been studied in re-
cent papers by Masry and Fan (1997) and Masry (1996a,b) and relevant
papers about kernel-type recursive estimators with dependent data include
those by Rousas (1992) and Roussas and Tran (1992).

In a recent paper, Vilar and Vilar (1998) proposed a recursive local
polynomial kernel estimator of the regression function and its derivatives
and studied its asymptotic behaviour. Now, in the current, a more general
recursive local polynomial estimator is formulated and both quadratic-mean
and strong consistency for this estimator are established along with the
corresponding rates of convergence.

The organization of this paper is as follows. In the second section, an
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estimator for the regression function and its derivatives is de�ned and a
recursive algorithm is derived. In the subsequent two sections asymptotic
properties of the proposed estimator are presented. Thus, in Section 3,
expressions for the bias and variance/covariance matrix are obtained. In
Section 4, almost sure convergence is proved and the rates of convergence
are established. In Section 5, a simulation study is presented which allows
us to achieve two important goals: �rstly, to illustrate the �nite sample
behaviour of the proposed estimator and secondly, to make a comparative
analysis between this estimator and other analogous nonrecursive and re-
cursive estimators. Finally, the appendix is devoted to the proofs of the
results.

2 Recursive local polynomial regression

Let (X;Y ) be a stationary stochastic process in R
2 with unknown joint

density function f(x; y). Our goal is to estimate the regression function,
m(x) = E(Y j X = x), and its derivatives based on an observed sample
f(Xt; Yt)gnt=1. If we assume that the (p+ 1)-th derivative of the regression
function at the point x exists, then we can estimate �j = m(j)(x)=(j!) for
j = 0; 1; : : : ; p, by minimizing the function

	(n)(~�) =
nX
t=1

0@Yt � pX
j=0

�j(Xt � x)j
1A2

!n;t; (2.1)

where ~� = (�0; �1; : : : ; �p) and the weights are !n;t = n�1Kn(Xt � x) and
Kn(u) = h�1n K

�
h�1n u

�
, K is a kernel function and hn the bandwidth. The

estimators of ~� are obtained as the solution to the weighted least squares
problem given in (2.1) and are called local polynomial kernel estimators. It
is interesting to observe that this class of estimators includes the classical
Nadaraya-Watson estimator, which minimize (2.1) when p = 0. Of special
interest also is the local linear kernel estimator corresponding to p = 1.

In this paper we study this class of estimators, modifying the weights
as follows

!n;t =
h�
t

Hn(�)
Kt (Xt � x) ; (2.2)

where ht is a sequence of bandwidths and Hn(�) =
P

n

t=1 h
�

t
with � 2 [0; 1].
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These weights are a particular case of those used by Deheuvels (1974) in
a context of nonparametric density estimation. More generally, Deheuvels
suggests the choice

!n;t =
htH(ht)
nX
i=1

H(hi)hi

Kt (Xt � x) ;

where H : (0;1) ! (0;1) is an arbitrary function. Thus, the weights
de�ned in (2.2) are obtained when H(h) = h��1. As will be shown in
section 3, � can be seen as another smoothing parameter, although its
e�ect over the variance-bias trade-o� is very much smaller than the one
due to the bandwidth sequence ht. Thus, the selection of an optimal value
for � is not relevant and this parameter is considered here in order to obtain
a more general estimator, which includes such recursive estimators as those
de�ned by Devroye and Wagner (1980) and Masry (1996a).

By minimizing (2.1) with the sequence of weights proposed in (2.2), we

obtain the estimator
b~�(n) which is recursive, as will be shown later. We �rst

introduce the minimization problem in matrix notation for a more concise
presentation of the results. Let us denote

~Y(n) =

0B@ Y1
...
Yn

1CA ; X(n) =

0B@ 1 (X1 � x) � � � (X1 � x)p
...

...
. . .

...
1 (Xn � x) � � � (Xn � x)p

1CA
and let W(n) = diag (!n;1; : : : ; !n;n) be the diagonal array of weights given
in (2.2).

Then, by assuming the invertibility of Xt

(n)
W(n)X(n), standard weighted

least squares theory leads to the solution

b~�(n) = �Xt

(n)W(n)X(n)

�
�1

Xt

(n)W(n)
~Y(n) = S�1

(n)
~T(n); (2.3)

where S(n) is the (p+ 1)� (p+ 1) array whose (i; j)-th element is sn;i+j�2
with

sn;i =
1

Hn(�)

nX
t=1

h�
t
(Xt � x)iKt (Xt � x) ; for 0 � i � 2p, (2.4)
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and ~T(n) = (tn;0; tn;1; : : : ; tn;p)
t with

tn;i =
1

Hn(�)

nX
t=1

h
�

t
(Xt � x)iKt (Xt � x)Yt; for 0 � i � p: (2.5)

The case of � = 0 in (2.3), giving rise to !n;t = n�1Kt (Xt � x), has
recently been studied by Vilar and Vilar (1998). Another case of particular
importance is that corresponding to constant local �tting (p = 0). In
this case, when � = 0, a recursive version of the Nadaraya-Watson kernel
estimator is obtained, whose explicit expression is given by

bmn(x) = b�n;0(x) = P
n

t=1Kt(Xt � x)YtP
n

t=1Kt(Xt � x)
: (2.6)

Some results about the asymptotic behaviour of (2.6) can be found in
Greblicky and Pawlak (1987) using independent observations, and in Rou-
ssas and Tran (1992) under dependence conditions.

Note that both S(n) and ~T(n) can be computed recursively. In fact, it
follows directly from (2.4) and (2.5) that

S(n+1) =
Hn(�)

Hn+1(�)
S(n) + !n+1;n+1~x(n+1)~x

t

(n+1); (2.7)

~T(n+1) =
Hn(�)

Hn+1(�)
~T(n) + !n+1;n+1Yn+1~x(n+1); (2.8)

where ~x(n+1) = (1; (Xn+1 � x); : : : ; (Xn+1 � x)p) t.
If we now substitute (2.7) and (2.8) in (2.3) it is straightforward to

derive thatb~�(n+1) = b~�(n) + !n+1;n+1

�
Yn+1 � ~x t(n+1)

b~�(n)�S�1(n+1)~x(n+1): (2.9)

This identity allows us to conclude that the estimator (2.3) can be
computed recursively. Moreover, in order to update the matrix S�1

(n+1)
for

each additional observation, matrix algebra can be used to obtain

S�1
(n+1)

=
�
1 + ~h

� 
S�1
(n)
�
~hKn+1 (Xn+1 � x)S�1(n)~x(n+1)~x t(n+1)S

�1
(n)

1 + ~hKn+1 (Xn+1 � x) ~x t(n+1)S
�1
(n)
~x(n+1)

!
;

(2.10)
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where ~h = h
�

n+1=Hn(�).

From expressions (2.9) and (2.10) a recursive algorithm for obtaining the

estimator b~�(n+1) can be easily deduced by following the lines of the Plackett-
Kalman iterative algorithm for regression models. Figure 1 summarizes its
owchart.

3 Mean squared error

In this section we establish precise asymptotic expressions for both the bias
and the variance/covariance matrix of the regression function estimators
and their derivatives as de�ned in (2.3). In order to do this, the following
assumptions will be employed in our analysis:

(A1) The kernel function K(u) is bounded with a bounded support.

(A2) The sequence of bandwidths fhng satis�es hn > 0 , hn # 0, nhn "1
and � = limn!1

1
n

P
n

i=1

�
hi

hn

�
<1 for 0 �  � 2� + 2p� 1.

(A3) Both stationary processes (Xt; Yt) are strongly mixing (�-mixing)

and
P

1

k=1 k
� [�(k)]1�2=Æ <1, for some Æ > 2 and � > 1� 2=Æ.

(A4) i) The joint probability density of Xt and Xt+s, f(x; y; s) satis�es

jf(x; y; s)� fX(x)fX(y)j � cst: <1; for all x; y and s � 1;

where fX denotes the marginal density of Xt.

ii) The conditional probability density fXtjYt
veri�es

fXtjYt
(xtjyt) � cst: <1:

iii) For all s� 1, the conditional probability density fXtXt+sjYtYt+s

veri�es
fXtXt+sjYtYt+s

(xtxt+sjytyt+s) � cst: <1:

(A5) EjYtjÆ <1; for some Æ > 2:

From now on we use the following notation. Let �j =
R
ujK(u) du and

�j =
R
ujK2(u) du and let ~�� = (��+p+1�p+1; : : : ; ��+2p+1�2p+1)

t.
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With r > p+ 1, compute
b~�(r)

n = r

Save
b~�(n), Hn (�) and S

�1
(n)

Choose hn+1 and compute:

~h = H�1
n

(�)h�
n+1

Observe Xn+1 and compute:bYn+1 = ~x t(n+1)

b~�(n)
Compute:

a) Æ = ~hKn+1(Xn+1 � x)

b) � = 1 + Æ~x t(n+1)S
�1
(n)~x(n+1)

c) S�1
(n+1) =

�
1 + ~h

��
S�1
(n) � Æ��1S�1

(n)~x(n+1)~x
t

(n+1)S
�1
(n)

�
Observe Yn+1 and compute:

en+1 = Yn+1 � bYn+1

b~�(n+1) =
b~�(n) + Æ

1� ~h
en+1S

�1
(n+1)

~x(n+1)

n = n+ 1

Figure 1: Recursive algorithm for updating
b~�(n).
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Theorem 3.1. Let us assume that conditions (A1)-(A5) hold. Then

(i) For every continuity point x of fX , we have

H(n)E

�b~�(n) � ~�

���� (X1; : : : ;Xn)

�
=

m(p+1)(x)

(p+ 1)!
hp+1n S�1~�� + oP

�
hp+1n (1; : : : ; 1) t

�
;

where H(n) = diag (1; hn; : : : ; h
p
n) and S denotes the (p+ 1)� (p+ 1)

matrix whose (i; j)-th element is such that si;j = si+j�2 with sk =
��+k�k=�� for 0 � k � 2p.

(ii) If �2
Y
(x) denotes the V ar (Y jX = x), then for every continuity point

x of �2
Y
fX whenever fX(x) > 0, we have

V ar

�
H(n)

b~�(n) ���� (X1; : : : ;Xn)

�
=

1

nhn

�2
Y
(x)

fX(x)
S�1 ~SS�1 + oP

�
1

nhn

�
;

where ~S denotes the matrix whose (i; j)-th element is such that esi;j =esi+j�2 with esk = �2�+k�1�k=�
2
�, for 0 � k � 2p.

Asymptotic expressions for the conditional bias and variance of the
recursive local polynomial �t proposed in this paper are directly derived
from Theorem 3.1. For j = 0; : : : ; p, these are given by:

Bias
h bm(j)(x)

��� (X1; : : : ;Xn)
i
= hp+1�jn

m(p+1)(x)

(p+ 1)!
j!Bj (1 + oP (1)) ; (3.1)

Var
h bm(j)(x)

��� (X1; : : : ;Xn)
i
=

1

nh
2j+1
n

�2
Y
(x)

fX(x)
(j!)2Vj (1 + oP (1)) ; (3.2)

where the terms Bj and Vj denote the j-th element of S�1~�� and the j-th
diagonal element of S�1 ~SS�1 respectively.

The expressions (3.1) and (3.2) generalize those derived by Vilar and Vi-
lar (1998) for the particular case of � = 0 and coincide with those obtained
in Masry and Fan (1997) for the nonrecursive local polynomial estimator
under similar dependence conditions but with di�erent values for Bj and Vj .
Therefore, the most important consequence of Theorem 3.1 is that both the
recursive estimate and the nonrecursive one exhibit the same convergence
rate with respect to their mean squared errors.
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In order to compare several kernel regression smoothers, we have listed
in Table 1 the asymptotic expressions for the conditional bias and the condi-
tional variance of the following estimators: the Nadaraya-Watson estimator
(NW), the estimator obtained by local linear �tting (LL), and their recur-
sive versions (RNW and RLL), which are obtained from (2.3) letting p = 0
and p = 1 respectively. These asymptotic expressions are derived from
Theorem 3.1 for the estimators based on local linear �tting and from Theo-
rem 4.1 in Vilar and Vilar (1993) for the recursive version of the Nadaraya-
Watson estimator.

Estimator Bias Variance

NW

(p = 0)
h2
n

�
1

2
m00(x) +

m0(x)f 0
X
(x)

fX(x)

�
�2

1

nhn

�2
Y
(x)

fX(x)
�0

RNW

(p = 0)
h2
n

�
1

2
m00(x) +

m0(x)f 0
X
(x)

fX(x)

�
��+2

��
�2

1

nhn

�2
Y
(x)

fX(x)

�2��1

�2
�

�0

LL

(p = 1)
h2
n

m00(x)

2
�2

1

nhn

�2
Y
(x)

fX(x)
�0

RLL

(p = 1)
h2
n

m00(x)

2

��+2

��
�2

1

nhn

�2
Y
(x)

fX(x)

�2��1

�2
�

�0

Table 1: Pointwise bias and variance of local polynomial regression smoothers.

Table 1 shows clearly that the bounds obtained for the pointwise bias in
both the recursive case (BiasR) and the nonrecursive case (BiasNR) satisfy
the relationship

BiasR = B(�) BiasNR; with B(�) =
��+2

��
;

whereas the corresponding relationship for the variance is given by

VarR = V (�)VarNR; with V (�) =
�2��1

�2�
:

Thus, if the usual selection of bandwidth hn = Cn�� is considered, then
for all � 2 [0; 1] we have

B(�) =
1� ��

1� (2 + �)�
and V (�) =

(1� ��)2
1� �(2� � 1)

;

with B(�) > 1 and V (�) < 1, in this case. Therefore, it is clear that the
recursive estimators exhibit larger bias and smaller variance than their ana-
logous nonrecursive estimators. If the variance-bias trade-o� that performs



218 J.M. Vilar and J.A. Vilar

the mean squared error is analysed, it can be derived that the mean squared
error is larger for the recursive estimator than for the non-recursive one.

Note that if � 2 [0; 1], then B(�) increases with �, unlike V (�) which
decreases with �. Thus, values for � close to 1 lead to smoother estimation
and values for � close to 0 produce a less biased estimate.

4 Almost sure convergence

Next we establish the almost sure consistency for the recursive estima-

tors
b~�(n). The employed technique makes use of one result of almost sure

consistency for strongly mixing processes according to Masry (1987) (see
Theorem 3 in Masry's paper). The proof of this result is based on the no-
tion and properties of mixingales due to McLeish (1975) and it was used to
obtain rates of almost sure convergence for kernel-type recursive estimators
of the probability density function.

In addition to the conditions (A1)-(A5), the following assumptions will

be needed in order to show the almost sure convergence of
b~�(n).

(A6) The functionm(p+1)(x) is bounded and is uniformly continuous on R.

(A7) The sequence fhng is such that nhj+�n " 1, for j = 0; : : : ; 2p + 1,

and
P

1

t=1(th
1�1=Æ
t

)�2 <1, for some Æ > 2.

(A8) For some Æ > 2 and " > 0, the mixing coeÆcients � (k) satisfy

1X
n=1

(log n) (log logn)1+" [�(n)]1�2=Æ
"

1X
t=n

�
th

1�1=Æ
t

�
�2

#
<1:

Theorem 4.1. If the assumptions (A1), (A2), (A4.ii), (A5), (A6), (A7)
and (A8) hold, then

H(n)

�b~�(n) � ~�

�
�! 0; almost surely as n!1: (4.1)

The next task is to derive a rate of almost sure convergence for
b~�(n).

For this, we need to change assumption (A8) for the stronger condition:
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(A9) For some Æ > 2 and " > 0, the mixing coeÆcients � (k) satisfy

1X
n=1

(log n) (log logn)1+" [�(n)]1�2=Æ <1:

Theorem 4.2. If the assumptions of Theorem 4.1 and (A9) hold, then

H(n)

�b~�(n) � ~� � = o

 
(log n) (log log n)1+"

nh
2(1�1=Æ)
n

!1=2

+O(hp+1n ) a.s. (4.2)

So, if the smoothing parameter is chosen in the way

hn = cst:

�
(log n) (log logn)

n

� 1
4+2(p�1=Æ)

(4.3)

then �
n

(log n) (log logn)

� p+1

4+2(p�1=Æ) 1

(log logn)"=2

!
H(n)

�b~�(n) � ~�

�
�! 0 a.s.

The rates of almost sure convergence for the individual components b�n;j
are directly derived from Theorem 4.2.

Corollary 4.1. Under assumptions of Theorem 4.2, we have�bm(j)
n (x)�m(j)(x)

�
= o

 
(log n) (log log n)1+"

nh
2(1+j�1=Æ)
n

!1=2

+O(hp+1�jn )

almost surely, for j = 0; 1; : : : ; p:

By choosing hn as in (4.3) we obtain that �
n

(log n) (log logn)

� p+1�j
4+2(p�1=Æ) 1

(log logn)"=2

!�bm(j)
n (x)�m(j)(x)

�
�! 0;

(4.4)
almost surely, for j = 0; 1; : : : ; p:

Note that the rate of almost sure convergence for bm(j)
n (x) in (4.4) is

faster when Æ approaches to 2. Nevertheless, in this case assumptions
(A8) and (A9) become more restrictive in the sense that the mixing coef-
�cients � (k) decay more quickly and, therefore, the dependence condition
is stronger.
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5 Simulation study

With the purpose of comparing the proposed nonparametric estimation
method with other classical methods, a numerical study with simulated
samples is performed in this section.

The regression model is of the form Yt = m(Xt) + "t, with t = 1; : : : ; n,
where m(x) and "t denote respectively the theoretical regression function
and the error of the model. In particular, we have chosen m(x) = sin(5�x),
the design points Xt have been drawn from a uniform density on [0; 1] and,
�nally, the responses have been generated using an AR(1) structure for "t,
"t = �"t�1 + et, fetg being a sequence of i.i.d. random variables with a
common normal distribution of mean 0 and standard deviation 0:4. The
described model therefore satis�es the �-mixing dependence condition.

The regression function is estimated at N = 200 equally spaced points
in the interval [0; 1] and four nonparametric estimators are evaluated: the
Nadaraya-Watson estimator (NW), the recursive Nadaraya-Watson given
in (2.6) (RNW), the local linear �tting (LL) and the recursive local linear
�tting (RLL). As the kernel function we chose the quartic kernel, K(u) =
15(1�u2)2=16 if juj � 1. Concerning the selected bandwidth in the recursive
estimators, we have used values in the form ht = Ct�1=5, where C is a
parameter to be empirically evaluated by minimizing the average mean
squared error (AMSE) for each estimator.

In order to study the behaviour of the RLL estimator and the inuence
of the sample size we carried out the study for n = 200, 300, 400 and 500.
In Figure 2, we display the quotient between the mean squared error of the
RLL estimator proposed above and the NW, RNW and LL estimators.

The good performance of the recursive estimator by local polynomial
�tting (RLL) (which has been computed with � = 0 in all cases) is clearly
shown in Figure 2. Moreover, it is interesting to note that the polynomial
estimators have smaller mean squared error than the classical Nadaraya-
Watson estimators for all employed sample sizes. On the other hand, al-
though the results provided by nonrecursive estimators present a slight
improvement with respect to those obtained by the recursive estimators,
the di�erences are very small. Similar graphs to Figure 2 are obtained when
the study is performed with other regression functions.

In the second step of our study, the performance of the four estimators
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LL

RLL

NW

RNW

200 300 400 500

0.7

0.85

1

1.15

Figure 2: Relative eÆciency, as a function of n, of the estimators LL, NW and

RNW with respect to the RLL estimator, with � = 0:6.

is analysed in terms of the amount of dependence, and similar conclusions
can be deduced. In Figure 3, we show the graph of the variance for the
four estimators as a function of �, and Figure 4 displays the graph of the
relative eÆciency of all estimators with respect to the RLL estimator for
each correlation value.

Once more it is clear from Figure 3 and Figure 4 that, independently
of the correlation, the proposed recursive estimator exhibits a better per-
formance than both the RNW and the NW estimators, being a little bit
worse than the LL estimator.

The above considerations, together with the computational eÆciency
of recursive estimators with respect to nonrecursive ones when the ob-
servations are sequentially received, allows us to state that the proposed
estimator is quite competitive.

Appendix: proofs

The proof of Theorem 3.1 is obtained by following a reasoning scheme
analogous to the one carried out in proving Theorems 1-2 in Vilar and
Vilar (1998) and is therefore omitted.
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Figure 3: Variance of the four analysed estimators as a function of �, with n = 200.
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Figure 4: Relative eÆciency, as a function of �, of LL, NW and RNW estimators

with respect to the RLL estimator, with n = 200.
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A.1 Proof of Theorem 4.1

In order to establish the validity of (4.1), the following steps are performed:

Step 1: By the continuity of the �rst p + 1 derivatives of m at the point
x, we may perform a p-th order Taylor series expansion in a neighborhood
of x, so that for jXt � xj � ht, t = 1; : : : ; n, we have

m (Xt) =

pX
j=0

m(j)(x)

j!
(Xt � x)j + 't: (A.1)

If an integral remainder 't is considered, then we �nd

't =
1

p!
(Xt � x)p+1

Z 1

0

upm(p+1) (Xt + u (x�Xt)) du

= pt +
m(p+1)(x)

(p+ 1)!
(Xt � x)p+1 ;

where

pt =
(Xt � x)p+1

p!

Z 1

0

(1�w)p
h
m(p+1) (x+ w (Xt � x))�m(p+1) (x)

i
dw;

and so we can replace (A.1) by

m (Xt) =

p+1X
j=0

m(j)(x)

j!
(Xt � x)j + pt: (A.2)

Equation (A.2) can be also written in matrix notation as follows

~M(n) = X(n)
~�+

m(p+1)(x)

(p+ 1)!

�
(X1 � x)p+1 ; : : : ; (Xn � x)p+1

� t
+ ~P(n); (A.3)

where ~M(n) and ~P(n) denote respectively the vectors (m (X1) ; : : : ;m (Xn))
t

and (p1; : : : ; pn)
t.

On the other hand, let us consider the vector ~T ?(n) =
�
t?n;0; : : : ; t

?

n;p

�t
,

whose j-th component is given by

t?n;j = (Hn(�))
�1

nX
t=1

h�
t
(Xt � x)jKt (Xt � x) (Yt �m(Xt)) : (A.4)
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From (A.3) and (A.4) it follows that

S�1
(n)
~T ?(n) = S�1

(n)
~T(n) � ~� � m(p+1)(x)

(p+ 1)!
S�1
(n)
~B(n) � S�1(n) ~R(n); (A.5)

where
~B(n) = (sn;p+1; : : : ; sn;2p+1)

t ;

~R(n) = X t

(n)W(n)
~P(n) = (rn;0; : : : ; rn;p)

t : (A.6)

Equation (A.5) together with (2.3) lead to

b~�(n) � ~� = S�1
(n)
~T ?(n) +

m(p+1)(x)

(p+ 1)!
S�1
(n)
~B(n) + S�1

(n)
~R(n): (A.7)

The previous equation is analogous to the one deduced by Masry (1996b)
for the estimate obtained by local polynomial �tting in the nonrecursive
setting. In the same way, in the work mentioned above, expression (A.7)
provides us the starting point for establishing the proof of Theorem 4.1.
In fact, the next three steps consist of proving the strong consistency of
each one of the elements of the matrices on the right-hand side of equation
(A.7). In order to do this, the following almost sure convergence result for
strong mixing processes, jointly with Kronecker's lemma, will be used.

Theorem A.1. (Masry (1987)) Let fXtg be a strong mixing process and

let fgtg be a sequence of Borel measurable functions on R
d . Let Zt =

gt (Xt)�E (gt (Xt)) and put Sn =
P

n

t=1 Zt. If

1X
t=1

h
E
�
jZtjÆ

�i2=Æ
<1; (A.8)

and

1X
n=1

(logn) (log log n)1+" [�(n)]1�2=Æ
1X
t=n

h
E
�
jZtjÆ

�i2=Æ
<1 (A.9)

for some " > 0 and Æ > 2, then
P

n

t=1 Zt converges almost surely to a �nite

limit as n!1.
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Step 2: We prove that under assumptions (A1), (A2), (A6), (A7) and
(A8), we have

h�(p+j+1)n rn;j �! 0; almost surely as n!1, for j = 0; : : : ; p, (A.10)

and therefore we can write

h�(p+1)n H�1
(n)
~R(n) �! 0; almost surely as n!1; (A.11)

where it is important to note that the convergence result (A.11) must be
interpreted in the sense that each element of the matrix converges almost
surely.

In order to establish (A.10), we proceed as follows. Let us put

1

hp+j+1n

rn;j =
1

hp+j+1n

[rn;j �E (rn;j)] +
1

hp+j+1n

E (rn;j) = �r +�d:

First, we will show that the deterministic part, �d, tends to zero. Let

Vt;j = (Xt � x)jKt (Xt � x) pt:

By making a change of variable, we obtain

E (Vt;j) =
hp+j+1
t

p!

Z
vp+j+1K(v)It(x; v)f(x+ vht) dv;

where It(x; v) =
R 1
0
(1�w)p[m(p+1)(x+wvht)�m(p+1)(x)]dw. Under (A6),

jIt(x; v)j � (
R 1
0
(1�w)pwdw)jvjht and hence

jE (Vt;j)j �
hp+j+2
t

p!

�Z 1

0

(1� w)pwdw
��Z

R

��vp+j+2K(v)
�� fX(x+ vht)dv

�
(A.12)

From the application of Bochner's lemma to the last integral in (A.12), we
conclude that

E (Vt;j) = O
�
hp+j+2
t

�
: (A.13)

From expression (A.6) it follows that

rn;j =

nX
t=1

h�
t

Hn(�)
Vt;j ; (A.14)
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and we can use (A.13) and (A.14) to obtain

1

hn
j�dj =

1

h
p+j+2
n

jE (rn;j)j �
1

h
p+j+2
n

nX
t=1

h
�

t

Hn(�)
jE (Vt;j)j �

cst.

"
1

n

nX
t=1

�
ht

hn

�� #�1 " 1
n

nX
t=1

�
ht

hn

�p+j+2+�#
:

Now, under assumption (A2), we can use Toeplitz's lemma to conclude that

lim
n!1

1

hn
�d = cst.

�p+j+2+�

��
) �d = O (hn) = o (1) : (A.15)

Next, in order to prove that �r tends to zero almost surely, it is useful to
introduce the following notation:

For j = 0; : : : ; p and t = 1; 2; : : : , let

at;j = hp+j+1
t

Ht(�) and Zt;j =
h
�

t

at;j
[Vt;j �E (Vt;j)] : (A.16)

From (A.14) and (A.16), we can write

�r = h�(p+j+1)n [rn;j �E (rn;j)] =
1

an;j

nX
t=1

at;jZt;j: (A.17)

Now we show that the sequence fZt;jgt satis�es conditions (A.8) and (A.9)
for some " > 0 and Æ > 2.

In a similar way to that followed to obtain (A.13), we �nd

E
�
jVt;jjÆ

�
� cst. h

(p+j+1)Æ+1
t

: (A.18)

From (A.16) and (A.18) it follows that

h
E
�
jZt;jjÆ

�i2=Æ
� cst.

 
h�
t
h
1=Æ
t

Ht(�)

!2

;

and, by assumption (A2), we conclude that Ht(�) = O (th�
t
). Therefore,

we have h
E
�
jZt;j jÆ

�i2=Æ
� cst.

 
h
1=Æ
t

t

!2

: (A.19)
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Now, the conditions (A.8) and (A.9) are straightforwardly derived from
(A.19) and the assumptions (A7) and (A8).

Hence Theorem A.1 is applicable and
P

n

t=1 Zt;j converges almost surely
to a �nite limit as n ! 1. From this, and since the sequence an;j is
increasing to in�nity by (A7), we can use Kronecker's lemma to obtain the
convergence almost surely to zero of �r. This fact, jointly with (A.15),
leads to the proof of (A.10).

Step 3: We prove that under assumptions (A1), (A2), (A7) and (A8), we
have

h�jn sn;j �!
��+j

��
fX(x)�j; almost surely as n!1, for j = 0; : : : ; 2p+ 1

and therefore we can write

H�1
(n)
S(n)H

�1
(n)
�! fX(x)S; almost surely as n!1;

and
h�(p+1)n H�1

(n)
~B(n) �! fX(x) ~B; almost surely as n!1;

where ~B = (sp+1; : : : ; s2p+1)
t.

We will start with the identity

1

hjn
sn;j �

��+j

��
fX(x)�j =

1

hjn
[sn;j �E (sn;j)]+

�
1

hjn
E (sn;j)�

��+j

��
fX(x)�j

�
= �0

r +�0

d:

As in the previous proof, it follows that �0

d
tends to zero from (A1) and

(A2).

If, as in (A.17), we write �0

r = (
P

n

t=1 a
0

t;j
Z 0
t;j
)=a0

n;j
, where the sequences

a0
t;j

and Z 0
t;j

are now given by

a0t;j = h
j

t
Ht(�) and Z 0t;j =

h�
t

a0
t;j

�
V 0

t;j �E
�
V 0

t;j

��
; (A.20)

with
V 0

t;j = (Xt � x)jKt (Xt � x) ;
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then analogous arguments to those used in step 2 lead to

E
���V 0

t;j

��Æ� � cst.
h
jÆ+1
t

hÆ
t

and
h
E
���Z 0t;j��Æ�i2=Æ � cst.

 
h
1=Æ
t

tht

!2

:

(A.21)

From (A.21) and the assumptions (A7) and (A8), we can show that the
sequence fZ 0

t;j
gt satis�es conditions (A.8) and (A.9). Therefore, the almost

sure convergence of �0

r is concluded from Theorem A.1 and the Kronecker's
lemma.

Step 4: We prove that under assumptions (A1), (A2), (A4.ii), (A5), (A7)
and (A8), we have

h�jn t?n;j �! 0; almost surely as n!1, for j = 0; : : : ; p,

and therefore we can write

H�1
(n)
~T ?(n) �! 0; almost surely as n!1:

Note that
1

hjn
t�n;j = �00

r =
1

a0
n;j

nX
t=1

a0t;jZ
00

t;j :

where a0
t;j

is given as in (A.20) and Z 00
t;j

= [V 00

t;j
�E(V 00

t;j
)]h�

t
=a0

t;j
, being

V 00

t;j = (Xt � x)jKt (Xt � x) [Yt �m (Xt)] : (A.22)

It is clear that conditioning in (A.22) on Yt we �nd, for Æ > 2,

E
���V 00

t;j

��Æ� =

Z
jxt � xjÆj KÆ

t (xt � x)
�Z
jyt �m (xt)jÆ fYt (yt) dyt

�
�

fXtjYt
(xt jyt ) dxt:

Therefore, in this case, an asymptotic bound for [E(jZt;j jÆ)]2=Æ may be
derived as follows.

Since K has compact support and m is continuous, there exists a con-
stant Ct such that Ct = sup

jxt�xj�ht
jm (xt)j. This fact, together with

assumption (A4.ii), allows us to conclude that

E
���V 00

t;j

��Æ� �
Z
hÆj
t
jvjÆj 1

hÆ�1
t

KÆ (v)

�Z
(jytj+ Ct)

Æ fYt (yt) dyt

�
dv

� hÆj
t

hÆ�1
t

�Z
jvjÆjKÆ (v) dv

�
E
�
jYtjÆ

�
:
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Finally, assumptions (A1) and (A5) lead to

E
���V 00

t;j

��Æ� = O
�
h
(j�1)Æ+1
t

�
and

h
E
���Z 00t;j��Æ�i2=Æ � cst.

 
h
1=Æ
t

tht

!2

(A.23)
and the result is achieved by using (A.23) in the same way as in the two
previous steps.

Step 5: The decomposition of the error
b~�(n) � ~� given in equation (A.7)

allows us to write

H(n)

�b~�(n) � ~�

�
=

�
H�1
(n)
S(n)H

�1
(n)

�
�1 �

H�1
(n)
~T ?(n)

�
(A.24)

+
m(p+1)(x)

(p+ 1)!

�
H�1
(n)
S(n)H

�1
(n)

�
�1
�

1

h
p+1
n

H�1
(n)
~B(n)

�
hp+1n

+
�
H�1
(n)
S(n)H

�1
(n)

�
�1
�

1

h
p+1
n

H�1
(n)
~R(n)

�
hp+1n

= �1 + �2 + �3:

From the convergence results derived in steps 2, 3 and 4, we obtain that
�1 = o(1), �2 = O(hp+1n ) and �3 = o(hp+1n ). The strong consistency for the
estimator ~�(n) is therefore established.

A.2 Proof of Theorem 4.2

Let

�n =

0@ nh
2(1�1=Æ)
n�

(log n) (log logn)1+"
�
1A1=2

:

The sequence of real numbers �n is such that �n > 0 and �n " 1.
Therefore, if it is proved that �n�i = o(1) a.s. for i = 1; 2; 3 then (4.2)
follows from equation (A.24). But, in view of the found orders for �1, �2
and �3 in the above proof, it is enough to show that

�nh
�j

n t?n;j �! 0; almost surely as n!1; for j = 0; : : : ; p:
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For j = 0; : : : ; p and t = 1; 2; : : : let us put

�nh
�j

n t?n;j =
1

 n;j

nX
t=1

 t;jWt;j;

where

 t;j =
h
j

t
Ht (�)

�t

and

Wt;j =
�th

�

t

Ht (�)
Ut;j with Ut;j =

�
Xt � x
ht

�j
Kt (Xt � x) (Yt �m (Xt)) :

Proceeding in a similar way to that employed to bound V 00

t;j
in step

4 of the proof of Theorem 4.1, it is obtained that E(jUt;j jÆ) = o(h1�Æ
t

).
Thereforeh

E
�
jWt;j jÆ

�i2=Æ
� cst.

�
1

t (log t) (log log t)1+"

�2
: (A.25)

From (A.25) and (A9) it is deduced that the sequence of random vari-
ables fWt;jgt for j = 0; 1; : : : ; p; satis�es (A.8) and (A.9) of Theorem A.1.
On the other hand, Kronecker's lemma is applicable since  n;j > cst.n1=2

h
j+1=2
n and so  n;j tends to in�nity by assumption (A7). Thus, the almost

sure convergence of f�nh�jn t?
n;j
g follows from Theorem A.1 and Kronecker's

lemma and the proof is therefore complete.
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