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Abstract. An accurate design of grounding systems is essential to assure the safety of the persons, to
protect the equipment and to avoid interruptions in the power supply. In order to attain these targets, it is
necessary to compute the equivalent electrical resistance of the system and the potential distribution on the
earth surface in fault conditions. In this paper, a numerical approach for grounding analysis embedded in
stratified soils and its implementation in a high-performance parallel computer are presented. The feasibility
of this system is shown with its application to the grounding analysis in layered soils by using the geometry
of real grounding grids.
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1. Introduction. The interest for the prediction and the numerical simulation of prob-
lems related to the security have increased in last years with the construction of grounding
systems of large electrical installations. The “grounding” or “earthing” systems comprises all
interconnected grounding facilities of an specific area, being the “grounding grid” the main
element of these systems. A grounding grid in most of real electrical substations consists of
a mesh of interconnected cylindrical conductors, horizontally buried and supplemented by
ground rods vertically thrusted in specific places of the installation site.

The main objective of a grounding system is to provide means to carry and dissipate
electrical currents into the ground, in order to guarantee the continuity of the power sup-
ply and the integrity of the equipment and to ensure that a person in the vicinity of the
grounded installation is not exposed to a critical electrical shock. Thus, the apparent electri-
cal resistance of the grounding system must be low enough to guarantee that fault currents
dissipate mainly through the earthing electrode into the ground, while the values of electri-
cal potentials between close points on earth surface that can be connected by a person must
be kept under certain maximum safe limits (step, touch and mesh voltages)[1, 2].

Taking into account these previous aspects, it is obvious that the design of safe ground-
ing systems in electrical installations is essential to assure the security of the persons, to
protect the equipment and to avoid interruptions in the power service. Since the sixties, sev-
eral methods and procedures for the analysis and design of grounding systems of electrical
substations have been proposed, most of them based on practice, on semi-empirical works or
on intuitive ideas. Although these techniques represented an important improvement in the
grounding analysis area, some problems were reported such as large computational require-
ments, unrealistic results when segmentation of conductors was increased, and uncertainty
in the error bounds[1, 3].

Since the early days of the industrial use of the electricity the problem of obtaining the
potential sdistribution produced when a fault current is derived into the ground through
an earthing grid has been a challenging one. Although the physical phenomena of fault
currents dissipation into the earth is a well-known problem that can be modelled by means
of Maxwell’s Electromagnetic Theory, its application and resolution for the computing of
grounding grids of large installations in practical cases present some difficulties. First,
it is obvious that no analytical solutions can be obtained in a real case. Moreover, the
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specific geometry of the grounding systems (a mesh of interconnected bare conductors in
which ratio diameter/length is relatively small) precludes the use of standard numerical
techniques (such as the Finite Element Method or Finite Differences) since discretization
of the domain (the whole ground) is required, and obtaining sufficiently accurate results
should imply unacceptable computing efforts in memory storage and CPU time. For these
reasons, during the last years the authors have developed a general numerical formulation
based on the Boundary Element Method for the analysis of earthing systems embedded in
uniform soil models, which has been successfully applied to real grounding grids[4, 5, 6].
At present, for real problems, single-layer models (“uniform models”) run in real-time in
personal computers[7], while multiple-layer models break off the design process since the
computing time is out of range.

Next, we present a generalization of the BEM formulation for the analysis of grounding
systems embedded in stratified soils and the study of the parallelization of that code for
its implementation in a high-performance parallel computer. Furthermore, we apply this
approach to the analysis of a real grounding system in a layered soil model.

2. Mathematical Model of the Problem. Fault current dissipation into the ground
through a grounding grid can be described by means of Maxwell’s Electromagnetic Theory.
Thus, if one restricts the analysis to the electrokinetic steady-state response and neglects
the inner resistivity of the earthing conductors (then, potential can be assumed constant in
every point of the grounding electrode surface), the 3D problem can be written as

div(e) =0, o= —ygrad(V)in E ;
on,=0inTg; V=VWinl;
(2.1) V=0, if |g| — oo;

where FE is the earth, 4 is its conductivity tensor, I'g is the earth surface, ny is its normal
exterior unit field and T" is the electrode surface [5, 6]. Therefore, when the earthing electrode
is energized to a voltage Vr (Ground Potential Rise, or GPR) relative to a remote earth,
the solution to problem (2.1) gives potential V' and current density o at an arbitrary point
T.

The current density vector field o describes the stream of electric charges in the vicinity
of each point. Thus, the scalar product o*(z)n gives the electric charge flux, i.e. the amount
of charge flowing per unit of surface and unit of time, in the direction of the vector n at
the point . In the steady state, by definition, the amount of charge does not vary at any
point. Therefore, the equilibrium equation div(e) = 0 in E is just a standard conservation
law that expresses the indestructibility of charge. Obviously, this law can easily be derived
from Maxwell’s equations [8, 9].

The constitutive equation & = —y grad(V) is a generalized version of Ohm’s law.
In essence, Maxwell’s equations predict an ir-rotational electric field intensity & for the
steady state. Therefore, a so-called electric scalar potential V' must exist, such that & =
—grad(V) [8,9]. Thus, the above constitutive equation establishes a linear relation between
the current density o and the electric field intensity € at each point, in terms of the so-called
conductivity tensor 4. If the medium being dealt with is homogeneous, the conductivity
tensor is constant. If the medium is isotropic, the conductivity tensor can be substituted by
a scalar conductivity v. Hence, in the case of a one-dimensional homogeneous and isotropic
medium, the constitutive equation simply says that the current intensity per unit of surface
is proportional to the loss of electric potential per unit of length, that is a known form of
Ohm’s law.

Since the scalar product o'n,; gives the electric charge flux in the direction of the normal
to the earth surface, it must be clear now that the natural boundary condition e‘ny; = 0 in
IE is equivalent to consider the air as a perfect insulator. On the other hand, the essential
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boundary condition V' = Vr in I' comes from neglecting the resistivity of the earthing
electrode.

On the other hand, the essential boundary condition V' — 0 if || — oo assigns a null
(arbitrary but convenient) value to the reference potential at remote earth [9]. Additionally,
the potential V' must satisfy some theoretical regularity requirements at infinity, the so-called
“normal conditions” [9, 10, 11].

Now, for known values of V on I'g and o on I, it is straightforward to obtain the design
and safety parameters of the grounding system[1, 2]. Thus, the leakage current density o (&)
at an arbitrary point £ on the earthing electrode surface, the ground current I (total surge
current being leaked into the earth) and the equivalent resistance of the earthing system
Req, can be written as

(22) o(€) =o'em, = [ o, R

er Ir
being n the normal exterior unit field to I'. Since V and & are proportional to the GPR,
the assumption Vr = 1 is not restrictive at all and it will be used from now on.

Most of the methods proposed for grounding analysis are based on the hypothesis that
soil can be considered homogeneous and isotropic, and thus  is substituted by an appar-
ent scalar conductivity v that must be experimentally obtained[1]. It is obvious that this
assumption does not introduce significant errors if the soil is essentially uniform (both in
horizontal and vertical directions) in the surroundings of the grounding grid[1], and this
model can be used with loss of accuracy if the soil resistivity changes slightly with depth.
However, since parameters involved in the grounding design can significantly vary if soil
electrical properties change through the substation site (e.g., changes of the material na-
ture, changes of humidity), it seems advisable to develop advanced models that could take
into account variations of soil conductivity in the surroundings of the installation.

It is clear that to take into account the real variation of the soil conductivity in the
vicinity of a grounding site would never be affordable, neither from the economical nor from
the technical point of view. Hence, a more practical proposed soil model (and still quite
realistic when conductivity is not markedly uniform with depth) consists of considering the
soil stratified in a number of horizontal layers, defined by an appropriate thickness and an
apparent scalar conductivity that must be experimentally obtained. In fact, it is widely
accepted that two-layer (or even three-layer) soil models should be sufficient to obtain good
and safe designs of grounding systems in most practical cases[1]. This chapter is devoted to
studying the application of high performance computing techniques to two-layer soil models
by means of parallelization, and its final implementation.

Consequently, if the soil is formed by C' horizontal layers with different conductivities
and the grounding electrode is buried in the layer b, the mathematical problem (2.1) can be
written in terms of the following Neumann exterior problem[12, 13, 14]

div(e.) =0, 6. = —.grad(V.) in E., 1 < ¢ < C;
oln,=0inTg, V,=1inT;
V. — 0if |g| — o0, oln. =0’ n.in T,
(2.3) 1<e<C—-1;

being E. each one of the soil layers, 7. the scalar conductivity of layer E., V. the potential
at an arbitrary point of layer E. and o, the corresponding current density, I'. the interface
between layers E. and E.;1 and m. the normal field to T'.[12, 14].

3. Variational Form of the Boundary Value Problem. As we have exposed, the
real geometry of grounding systems in most of real electrical substations consists of a grid of
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interconnected bare cylindrical conductors, horizontally buried and supplemented by rods,
so ratio diameter/length uses to be relatively small (~ 1073).

Although this geometry is straightforward to describe, it implies serious difficulties to
the modellization of the problem: it is obvious that no analytical solutions can be obtained
in a real case, and the use of standard numerical techniques (FEM or FD) should involve
a completely out of range computing effort since discretization of the domain (the 3D do-
mains F.) is required. Consequently, and taking into account that potential values are only
required on the earth surface and the equivalent resistance can be easily obtained in terms
of the leakage current density o on I' (0 = o'n, where n is the normal exterior unit field to
I'), we turn our attention to a Boundary Element approach which would only require the
discretization of the grounding surface T'[5, 6]. For this, it is first necessary to derive an
expression to relate the potential V' and the leakage current density o.

Since the surroundings of the substation site are levelled and regularized during the
construction of the electrical installation, earth surface I'g and interfaces I'. between layers
can be assumed horizontal. Thus, with this assumption the application of the “method of
images” and Green’s Identity to problem (2.3) yields the following integral expression[12, 14]
for potential V. (z.) at an arbitrary point . € F., in terms of the unknown leakage current
density o(£€) at any point € of the electrode surface I' C Ej:

(3.1) Ve(ze) // kpe(zc, &) o(€)dT, Vx,. € E,

47T”yb

where integral kernels kp.(z.,€) are formed by infinite series of terms corresponding to
the resultant images obtained when Neumann exterior problem (2.3) is transformed into
a Dirichlet one[12, 14, 16]. In the case of uniform soil, the series are reduced to only two
summands, since there is only one image of the original grid[4, 5, 6].

Weakly singular kernel ky.(z., &) depends on the conductivity of the layers, and on the
inverse of the distances from the point z. to the point £ and to all the images of & with
respect to the earth surface I'y and to the interfaces ' between layers[12, 14]. A general
form to express these integral kernels is given by:

V(%)
r(ze, €'(€))

being 9! a weighting coefficient that only depends on a certain ratio x defined in terms of
the layer conductivities and r(z., & (£)) the Euclidean distance between the points z. and &',
being £° the point £ on the electrode surface (£°(€) = €), where &' (I # 0) are the images of £
with respect to the earth surface and to the interfaces between layers[12, 14]. For example,
in the particular case of a two-layer soil model ratio x is given by (v1 —v2)/(71 + 72) and
four cases must be considered depending on the layer where the points . and & are located.
In each case, several series with different locations of their images and different weighting
coefficients are added. Explicit expressions of these kernels can be found in [12, 14, 16].
Now, since the expression for the potential (3.1) also holds on electrode surface I' (where
potential is known by the boundary condition Vy(x) = 1, Vx € T'), the leakage current
density o must satisfy the following Fredholm integral equation of the first kind on I':

(3.3) / /X () ( o / Fin(x. & >dr—1> ar =,

for all members w(x) of a suitable class of test functions defined on I'[4, 5, 6]. It is obvious
that a numerical approach based on the Boundary Element Method seems to be the best
choice to solve equation (3.3).

(32) kbc iIIC, Zkbc iIIC, a kéc(mcag) =

3
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4. BEM Numerical Formulation.

4.1. General 2D approach. The numerical resolution of the variational form (3.3)
requires the discretization of the domain (the surface of the cylindrical conductors) and the
leakage current density that flows from the grounded electrode. Thus, for given sets of N/
trial functions {IV;(€)} defined on T, and M two dimensional boundary elements {I"*}, the
leakage current density ¢ and the electrode surface I' can be discretized as follows:

N M
(1) o© =3 N, r=r

Now, if we take into account that kernels (3.2) are given by series, integral expression (3.1)
for potential V,(z.) can also be discretized as

N M Ly
(42) ‘/C(ﬁc) = Z Ui‘/c,i(xc> c i $c Z Z i xc
1=1 a=1 =0

(13) vele) = o= [ Mg N ar:
.

where [, represents the number of terms that is necessary to consider until convergence is
achieved.

On the other hand, for a given set of NV test functions {w;(x)} defined on I, variational
form (3.3) is reduced to the following linear system:

N
ZRjiUi:Vj (]:1,,N)

(4.4) In M
DO I o
B=1 a=11=0 B=1

being coefficients Ri@‘ and I/f :

Bal _ 1 _ ! _ a s
(@5) w5 = g [ N garnar,

(4.6) = /X o’

where [ represents the number of terms that is necessary to consider until convergence is
achieved.

It is important to emphasize that the solution of linear equations (4.4) provides the
values of the intensities o; (i = 1,...,N) leaking from the nodes of the grid. With these
values, it is possible to compute the potential at any point on the earth surface or even at
any inner point —by means of (4.2) and (4.3)— , the leakage current density o —by means
of (4.1)—, and all the design and safety parameters of the grounding system[1, 5, 6].

Nevertheless, the statement of the above linear system requires the discretization of a
2D domain: the whole surface I' of the grounding electrodes, which implies a large number
of degrees of freedom in practical cases. Besides, its matrix is full and the computation of its
coefficients requires to perform double integration on 2D domains. For all these reasons, it
is necessary to introduce some additional hypotheses in order to decrease the computational
cost.
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4.2. Approximated 1D boundary element approach. An approximated bound-
ary element numerical approach to the previous one presented can be derived if the real
geometry of the grounding systems in practice is considered. Thus, since the ratio between
the diameter and the length of the grounded conductors is very small (~ 10~3), the hypoth-
esis of circumferential uniformity (i.e., the leakage current density o is constant around the
cross section of the cylindrical conductors of the grounding grid) can be assumed producing
a notable fall of the computational cost[1, 5, 6]. In this way, discretizations (4.1) and (4.4)
become much simpler, since the classes of test and trial functions are restricted to those
with circumferential uniformity, while only the axial lines of the grounding electrodes have
to be discretized[5, 6].

Now, for a given level of mesh refinement, the number of element contributions Rf . and

Vf that we need to compute in order to state linear system (4.4), as much as the number of
unknowns o; are significantly smaller than in the previous 2D approach, since it is required
the discretization of a simpler domain: the axial lines of the grounding electrodes. Despite
of this important reduction in the computation effort, extensive computing is still necessary
mainly because of the circumferential integration on the perimeter of the electrodes that
are involved in the integral kernels[5, 6]. However, these circumferential integrals can be
performed in an approximated way if suitable simplifications in the general approach are
introduced[12, 14].

The selection of different sets of trial and test functions in the numerical scheme allows
to derive different formulations. Further discussion in this paper is restricted to the case
of a Galerkin type approach, since the matrix of coefficients is symmetric and positive
definite[5, 6]. As the 1D approximated expressions for terms V% and Ri@‘ "in (4.3) and
(4.5) are formally equivalent to those obtained in the case of uniform soil models[12, 14],
these terms can be computed by using the highly efficient analytical integration techniques
derived by the authors to compute these coefficients for the uniform soil case[5, 6, 9, 12, 14].

The example presented in the next section corresponds to the analysis of a grounding
system embedded in a two-layer soil model. Obviously, this boundary element formulation
can be applied to any other case with a higher number of layers. However, CPU time
may increase up to un-admissible levels, mainly due to the poor rate of convergence of the
underlying series expansions, and the need to evaluate double series (in three-layer models),
triple series (in four-layer models), and so on.

4.3. Total efficiency of the numerical approach. An important aspect of the nu-
merical formulation proposed is its total computational cost. Thus, for specific discretization
(M elements of p nodes each, and a total number of N degrees of freedom), a linear system
(4.4) of order N’ must be generated and solved.

Matrix generation process requires O(M?p?/2) operations, since p? series of contribu-
tions of type (4.5) have to be computed for every pair of elements, and approximately half of
them are discarded because of symmetry. In uniform soil models these series are formed by
only two terms, while in two-layer models the series have an infinite number of them, that
will be numerically added up until a tolerance is fulfilled or an upper limit of summands is
achieved. Consequently, matrix generation will be much more expensive in two-layer mod-
els. In connection with the linear system solving process, it requires O(N3/3) operations
(since the matrix is symmetric but not sparse) if the resolution is carried out with a direct
method.

Hence, most computing effort is devoted to matrix generation in small/medium prob-
lems, while linear system resolution prevails in medium/large ones. In these cases, the use
of direct methods for the linear system resolution is out of range. Therefore iterative or
semiiterative techniques will be preferable. The best results have been obtained by a di-
agonal preconditioned conjugate gradient algorithm with assembly of the global matrix[5].
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This technique has turned out to be extremely efficient for solving large scale problems,
with a very low computational cost in comparison with matrix generation. So the cost of
the system resolution should never prevail.

On the other hand, once the leakage current has been obtained, the cost of computing the
equivalent resistance is negligible. The additional cost of computing potential at any given
point (normally at the earth surface) by means of (4.2) only requires O(Mp) operations,
since p series of contributions of type (4.3) have to be computed for every element. However,
if it is necessary to compute potentials at a large number of points (i.e. to draw contours),
computing time may be important.

5. Application Examples to Grounding Analysis. This boundary element ap-
proach has been integrated in a Computer Aided Design system for grounding analysis.
The computer program has been developed for running in sequential mode (in conventional
computers) or in parallel mode (in parallel computers). In this section two examples of
earthing analysis are presented by using the geometry of grounding grids of real electrical
substations. Further on, we will discuss the implementation of the numerical code and
its parallelization, that is, the distribution of different tasks of the program among several
processors.

5.1. Example 1: the Barbera grounding system. The first example we present
is the grounding grid of the Barbera substation. This earthing grid is formed by a grid of
408 segments of cylindrical conductor of the same diameter (12.85 mm) buried to a depth of
80 cm. The grounding system has a right-angled triangle shape of 143x89 m and protects
a total area of 6,600 m? (Figura 5.1). The grid has been discretized in 408 linear leakage
current elements which implies 238 degrees of freedom. The Ground Potential Rise (GPR)
considered in this study has been 10 kV.

In order to illustrate the capacity of the numerical approach, this grounding system
has been calculated by using a uniform soil model (y = 0.016 (2m)~!), and a more in-
teresting two-layer soil model (the conductivities of the upper and the lower layer are
y1 = 0.005(Qm)~! and v = 0.016(Qm)~! respectively, and the thickness of the upper
layer is 1.0 m).

Figure 5.2 shows the potential distribution on the earth surface obtained for the uniform
soil case and for the two-layer soil model. The equivalent resistance and the total surge
current of the earthing system computed in each case has been 0.3128 2 and 1=31.97 kA
(for the uniform soil model), and 0.3704 © and 1=26.99 kA (for the two-layer soil model).

5.2. Example 2: the Balaidos grounding system. Next we present the analysis
of a substation grounding considering 3 different soil models by using the presented BEM
approach. The earthing grid is formed by a mesh of 107 cylindrical conductors (diameter:
11.28 mm) buried to a depth of 80 cm, supplemented with 67 vertical rods (each one has
a length of 1.5 m and a diameter of 14.0 mm) (Figure 5.3). The Ground Potential Rise
considered has been 10 kV, and the numerical model used in the analysis has been a Galerkin
formulation with a discretization in 241 elements.

The different soil models considered are the following: Model A is a uniform soil model
with a conductivity of 0.020 (Q2m)~!; Model B is a 2-layered soil model formed by an upper
layer of 0.0025 (2m)~! and a thickness of 70 cm and a lower layer with a conductivity
of 0.020 (2m)~! (consequently, all electrodes of the grounding grid are buried in the lower
layer); and Model C is also a 2-layered soil model formed by an upper layer of 0.0025 (Qm)~!
and a thickness of 1 m and a lower layer with a conductivity of 0.020 (2m)~! (consequently,
most electrodes of the grounding grid are buried in the upper layer while part of the vertical
rods are in the lower layer).

Figure 5.4 shows the potential distribution (x10kV') on the earth surface obtained by
using the soil models A, B and C. Table 5.1 shows the Equivalent Resistance of the grounding



330 I. Colominas, J. Gémez, F. Navarrina, M. Casteleiro and J. M. Cela

(m)

140-

120-

100~

80 -

60 - |

20 - ]

:

0 20 40 60 80  (m)

F1c. 5.1. Barberd grounding system: Plan of the grounding grid.

TABLE 5.1
Balaidos Grounding System: Equivalent Resistance of the grounding grid and Total Current leaked to
the ground for the different soil models

Soil Model | Equivalent Resistance (€2) | Total Current (kA)
A 0.3366 29.71
B 0.3522 28.39
C 0.4860 20.58

system and the Total Current that flows to the ground for each case. As it is shown, results
noticeably vary when different soil models are used, and in consequence, the grounding
design parameters (Equivalent Resistance, Touch-Voltage, Step-Voltage and Mesh-Voltage)
significantly change.

As we can see in these examples, results obtained by using a multiple-layer soil model can
be noticeably different from those obtained by using a single layer (or uniform) soil model.
Therefore, it could be advisable to use multi-layer soil formulations to analyze grounding
systems as a general rule, in spite of the increase of the computational effort. In fact, the
use of this kind of advanced models should be mandatory in cases where the conductivity
of the soil changes markedly with depth.

However, while single-layer models run in real time in conventional computers for the
analysis of medium /big size grounding grids, multiple-layer models require in general an out
of order computing time. In the next section, the main aspects of the parallelization of the
multi-layer boundary element numerical approach for grounding analysis are discussed.
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F1G. 5.3. Balaidos Grounding System: Plan of the grounding grid (vertical rods are marked with black
points).

6. Parallelization of the Proposed BEM Approach.

6.1. Parallel computer and parallelization mode. The numerical approach has
been implemented on a CAD system, which has been compiled and run onto an Origin 2000
Silicon Graphics computer at the Furopean Center for Parallelism of Barcelona (CEPBA).
The compilation process of the code has been made in sequential and parallel modes, and
the executions have been run for the uniform and the two-layer models [15].

As we have exposed in previous sections, the most critical time-consuming process of
this numerical formulation based on the Boundary Element Method is matrix generation,
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TABLE 6.1
Barberd Grounding System: CPU time in sequential execution for each process of the program in the
two-layer grounding analysis obtained with the O2000 computer

Process CPU time(s)
Data Input 0.737
Data Preprocessing 0.045
Matrix Generation 1723.207
Linear System Solving 0.211
Resuts Storage 0.015

followed by computation of potential at a large number of points once the leakage current
density has been obtained. Since both processes accept massive parallelization, computing
time could be reduced under acceptable levels, even for cases of extremely large models, if
the number of available processors is high enough, in spite of the efficiency loses due to the
data transfer overhead and the system administration workload. Table 6.1 summarizes the
CPU time required in each process of the implementation of the numerical approach for the
Barbera grounding system in the two-layer soil model case. It is evident that the matrix
construction is the most expensive part of it.

The 02000 used in our work is a high-performance computer with 64 MIPS R10000
processors at 250 MHz. It has a peak performance of 32 GFlops. Internally, the 02000 is
organized in clusters of 2 processors sharing a main memory of 256 Mbyte. Each processor
has 4 Mbyte of cache memory. The clusters are connected by an hypercube network. Each
processor can access all the distributed main memory through the network. Then, the 02000
can be programmed as an 8 Gbyte shared memory machine. The input/output devices have
a capability of 1.2 Gbytes/s.

The parallelization mode selected for this problem has been the use of compiler di-
rectives, following the present OpenMP standard. This selection is justified because: a)
a shared memory computer is available for running the program (necessary condition for
using compiler parallelization directives), b) the use of compiler directives grants clearness
to a parallel code that may be handled in the future, ¢) the OpenMP syntax assures the
portability of the parallel code to any shared memory computer, and d) as we will see below,
the loop to be run in parallel is transformable into an adequate form so that directives are
efficient. A parallelization scheme that mixes threads and message passing in boundary
element applications can be found in reference [17].

6.2. Parallelization of the code. In the sequential program, the matrix generation
process is performed by means of a double loop that couples every element with all the
other M(M + 1)/2 cycles. Into each cycle, the elemental matrix corresponding to a pair
of elements is calculated and immediately assembled into the system matrix. If we try to
parallelize this double loop, we find that the assembly of the elemental matrices causes a
dependency between the actions of the threads or processes. This drawback can be avoided
by taking the assembly process out of that loop, which implies first the computation and
the storage of all the elemental matrices and, after this step, the assembly in a sequential
mode. This scheme requires approximately twice the memory space than the original one,
but in any case this memory space is not very large. If ' = O(103) then the matrix size is
O(10%) bytes.

Then, the target code is the nested DO loops that compute the elemental matrices, and
we can parallelize the outer loop or the inner one. This is the first choice studied. Figure
6.1 shows the evolution of the speed-up factor obtained with different number of processors
for both types of parallelization in the analysis of the Barberd grounding system with a
two-layer soil model (the speed-up factor has been referenced to the sequential CPU time).
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Fic. 6.1. Barberd grounding system: Comparison between the speed-up obtained with the parallelization
of the outer loop (in continuous line) and the inner loop (in discontinuous line).

These results have been obtained with the schedule option “Dynamic,1” (we will discuss
the schedule options below), and they correspond to the minimum of 4 CPU time measures
made for the same option (the variance of the four ones is very small, anyway), in order
to approximate better the strict value. In some cases, we have obtained speed-ups bigger
than the number of processors due to small errors in the measurement of CPU time by
the processors, and to the additional optimization of the code that the parallel compiler
introduces.

Results are better when the outer loop is parallelized because the granularity is bigger
in that way, and so the cost of managing the parallel execution is minor: since the numerical
approach leads to a symmetric formulation, the coupling of every element of the grid with
each one of the others can be represented by a triangle of M columns, of which the first one
has M rows and the last one has 1 row. Hence, if the outer loop is parallelized, the columns
of the triangle, that is, the cycles of the outer loop, are distributed among the processors.
Whereas, if the inner loop is parallelized, the rows of one column are distributed among the
processors. In this case, when computations on that column are finished the program moves
sequentially to the next one, where another distribution of its rows among the processors
is performed. This effect of granularity is, of course, more sensible when the number of
processors grows, as figure 6.1 shows.

As the parallelization of the outer loop is preferable, and the cycles that it is necessary
to distribute among the processors have very different sizes, the way to do this distribution
becomes a decisive question. Table 6.2 summarizes the speed-up factors (referenced to the
sequential CPU time) obtained for the outer-loop parallelization with different number of
processors by using different “schedule” OpenMP options. Since the size of the cycles is
linearly decreasing, “static” schedules with a high “chunk” (i.e., the number of cycles in
a task) are the less profitable ones. When no chunk value is specified, all the columns
are uniformly distributed in the beginning. “Dynamic” schedules improve this behavior
because as each processor finishes a task, it dynamically takes the next one. Best results are
obtained for a dynamic schedule with a chunk parameter of 1 column. This is the most lively
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TABLE 6.2
Barberd Grounding System: Speed-up factors for different schedules and number of processors in the
outer loop parallelization for the two-layer soil model

Schedule () | Number of Processors

1 2 4 8
Static 1.01 | 1.32 | 2.32 | 4.38
Static,64 1.02 | 1.76 | 1.86 | 3.55
Static,16 1.02 | 1.94 | 3.59 | 6.23
Static, 4 1.01 | 2.01 | 396 | 7.36
Static, 1 1.02 | 2.03 | 4.03 | 7.99

Dynamic,64 | 1.02 | 2.02 | 3.56 | 3.55
Dynamic,16 | 1.02 | 2.02 | 4.08 | 7.87
Dynamic, 4 1.01 | 2.04 | 3.99 | 7.90
Dynamic, 1 1.02 | 2.03 | 4.09 | 8.05
Guided,64 1.02 | 1.97 | 3.56 | 3.56
Guided,16 1.02 | 1.99 | 3.96 | 8.03
Guided, 4 1.02 | 2.01 | 411 | 7.93
Guided, 1 1.02 | 2.07 | 3.95 | 8.38

TABLE 6.3
Balaidos Grounding System: CPU Time (in s) by using 1,2,4 and 8 processors for different soil models
(in brackets, the speed-up factors).

Soil Model Number of Processors
1 2 4 8
A 2.44 (1) — — —
B 81.26 (1) 40.85 (1.98) 20.41 (3.98) | 10.09 (8.05)
C 443.28 (1) | 218.10 (2.03) | 111.38 (3.98) | 53.53 (8.28)

scheme, since there are never waiting processors, although it requires the biggest amount of
parallelization management. “Guided” schedules distribute initially all the columns among
all the processors into pieces with size exponentially varying. In this case, results are very
similar to those obtained with the “dynamic” ones. In general, for any schedule, we obtained
worse results when the chunk parameter and the number of processors are high because then
some processors do not get any work.

Therefore, as we can see, speed-up factors obtained for the outer parallelization are
very close to the number of processors for good schedules, that is, “dynamic” or “guided”
with low chunk parameters. This fact reveals that the parallelization of this loop is very
profitable: in the example, the Barbera grounding analysis in a two layer soil model, 99.9%
of the work of the whole processing program is dealt with only 408 tasks.

The conclusions of this analysis with the Barbera grounding system have been applied
to the second example. Table 6.3 shows the CPU times and speed-up factors obtained in the
matrix generation process of the grounding analysis for the three soil models considered by
using different number of processors. As we can see, the results agree with those obtained
for the Barberd case. Now, as in the previous example, in some cases speed-up factors bigger
than the number of processors are obtained due to small errors in the measurement of CPU
time by the processors and to the additional optimization of the code that the parallel
compiler introduces. Finally, it is important to remark that the increase in the CPU time
in the model C is due to the type of soil model considered. In this case, a part of the
vertical rods are in the upper layer and other part in the lower, and consequently integral
kernels combining electrodes in different layers have to be used [12]. These integral kernels
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are different from those used in the model B (all the electrodes are in the same layer) and
they involve series with a lower rate of convergence.

7. Conclusions. Accurate analysis of grounding systems of electrical installations re-
quires the use of multilayer soil models when the soil is not essentially uniform in the
surroundings of the earthing grid. At present, while uniform soil models run in real-time in
conventional computers, the use of models with a small number of soil layers breaks off the
design process due to the important computing time required in practical cases.

In last years, the authors have developed a BEM numerical approach for the analysis
of grounding systems embedded in stratified soils that has been implemented in a high
performance parallel computer. This numerical approach accepts massive parallelization
since most of the computing time is required in the computation of the elemental matrices
corresponding to the contribution of each electrode of the grounding grid. Results obtained
with different parallelization options prove that the proposed multi-layer Boundary Element
formulation can be a real-time design tool, as high-performance parallel computing becomes
a widespread available resource in engineering.
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