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Summary

An algorithm based on Moving Least Squares Particle Hydrodynamics (MLSPH) to
solve free surface flow is presented. MLS shape functions remarkably improve stability
and accuracy of standard SPH algorithms, providing a clear framework for the derivation
of the discretized equations. Numerical performance is tested through a free surface flow
simulation.

Introduction

Meshless methods in computational mechanics are not simply different interpolation
schemes but constitute, indeed, a powerful and ambitious attempt to solve the equations
of continuum mechanics without the computational limitations associated to the explicit
partition of the domain into certain non-overlapping cells.

The Smoothed Particle Hydrodynamics (SPH) method was developed in late 70’s to
simulate fluid dynamics in astrophysics and later applied to engineering problems [1]. The
extension to solid mechanics was introduced by Libersky, Petschek et al. [2]. Johnson
and Beissel proposed a Normalized Smoothing Function (NSF) algorithm [3] and other
corrected SPH methods have been developed by Bonet et al. [4], and Chen et al. [5].
More recently, Dilts has introduced Moving Least Squares (MLS) shape functions into
SPH computations [6].

The ability of the Smoothed Particle Hydrodynamics method to handle severe distor-
tions allows this technique to be succesfully applied to simulate free surface flows. In this
paper we briefly review the MLS approximants, present the discrete model equations for a
compressible newtonian fluid and analyze one free-surface flow simulation.

Moving Least Squares Shape functions

Let us consider a function(x defined in a bounded, or unbounded, dom@inThe
basic idea of the MLS approach is to approximadm, at a given poins through a poly-
nomial least-squares fitting of m in a neighbourhood of a reference nadte

u( ~ G(m = (- )0 (x) 1)
where gh(x- X) is anm-dimensional polynomial basis amdis a set of parameters to be
determined, such that minimize the functional:

Z
J) = W(m-xkh) [um - Px-Xa(x)]’d0 )
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beingW (x- x h) a symmetric kernel with compact support (frequently chosen among the
kernels used in standard SPH) dmdhe smoothing length. I€ is discretized by a set

of n nodes or particles, a nodal integration scheme is used (the integral is evaluated using
the nodes as quadrature points), and the interpolation and weighting domains are moved to
the pointmwhere the approximation is to be evaluated, the stationary conditiahsvith

respect tax lead to [7]

(( = (@M~ (MPWy (awh (3)

wherewmgcontains certain nodal parameters of neighbouring nddés = PWy (&P,
and matrice® andW\y (3 can be obtained as:

P=(Wm-% Wm-X - EEy M) @
Wy (8 = diag{W (- ®Vi}, i=1....nx ®)

In the above equationsxgdenotes the total number of nodes within the neighbourhood of
point @andV; andx are, respectively, the tributary volume and coordinates associated to
nodei. Note that the tributary volumes of neighbouring nodes are included in nValtyix
obtaining an MLS version of Reproducing Kernel Particle Method [7]. Otherwise, we can
useW instead ofwWy,

W(m =diag{W(m-m}, i=1..nx (6)

which corresponds to the classical MLS approximation (in the nodal integration of the
functional (2), the same quadrature weight is associated to all nodes). Expression (3) can
be rearranged to identify the interpolation structure [7]:

(% = p' (@M~ (B (= Wy (7)

In this work a linear polynomial basigs(x- x) :(1, XX ,th> was used, providing

linear completeness.

Discrete Equations for Free Surface Flow Analysis

We consider a compressible newtonian fluid. The nodal integration of the Galerkin
weak form of the model equations yields [7]:



e Conservation of mass

doi ¢ .
gt =P J;! -0N; (x) (8)

e Linear momentum

dw 1 0

o Particle velocities

dx -
E—'y '_j

wN; (x) (10)

Mo

In the above equationg;, Vi, m;, wand f; denote density, associated volume, lumped
mass, velocity and force per unit mass of particlespectively. Preservation of linear and
angular momenta is a most important issue to be considered in free surface flow simulations
and will be achieved with the proposed algorithm, provided that first order consistency
shape functions are employed.

The internal forces are related to the Cauchy stress tamsehich is calculated using
the following constitutive equation:

o=-( +2p<D—:;tr(D]>; D:%(D'thli), (11)

beingu the fluid viscosityl the second order identity tensor apé pressure scalar field,
evaluated using the thermodynamic expression [1]:

pﬂo :(k+1)(;)>y—k, (12)

wherek andy are adimensional parameters gmdandp, are the atmospherical standard
values. Using these parameters, the sound velocity can be defined g&/k/p [1].

Field variables are updated following a second order predictor-corrector scheme as
exposed in [8].

Numerical Example

The performance of the algorithm proposed is tested through a free-surface flow sim-
ulation. Two breaking dams of fluids with densitE@0kg/m® and200tkg/m? are set up
in the configuration shown in figure 1. The results obtained (figures 2 and 3) demonstrate
the ability of SPH to simulate complex unsteady free-surface flow problems.
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Figure 1: Initial configuration.

Conclusions

We have presented an algorithm based on Moving Least Squares Particle Hydrody-
namics (MLSPH) to simulate free surface flows in engineering applications. The Galerkin
formulation provides a clear framework to derive the discrete equations and the moving
least squares approximation remarkably improves the standard SPH kernel stimates. The
numerical results are encouraging and demonstrate that particle methods constitute a very
attractive tool in the modelization of complex free-surface flows.
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