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Abstract
In this paper, we study different SPH formulations proposed to solve free surface problems. We center
our attention in the corrections added to the SPH method in order to increase its accuracy and to improve
its numerical behaviour. For this reason, we present three approaches called standard SPH, corrected
SPH and standard-corrected SPH. We compare them using a simple test where we study the evolution of
an elliptical water bubble. Furthermore, we also analyze the results obtained in more complex situations
related with “breaking dam” problems. This kind of examples allows to check the good behaviour of
these techniques.
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1 Introduction

The resolution of many problems related with large deformations, complex domains, etc, takes up a
high computational effort if the classical numerical techniques (finite elements, finite differences, etc)
are used. For this reason, in last years other methods have been proposed. One of them are the so-called
“meshless methods”. Its main feature is to avoid the rigid connectivity needed in other usual numerical
formulations to discretize the integration domain of the problem.

The first meshless method appeared in the70’s and it was called SPH (Smooth Particle Hydrodynamics)
[1]. First of all, it was applied to astrophysics problems. But nowadays it have been applied to electro-
magnetism and fluid problems, because of its versatility and good numerical behaviour.

In the field of the fluid mechanics, the SPH lets to follow in time the motion of a discrete number
of particles of a fluid [1]. For this reason, the linear and angular momentum preserving properties of
SPH formulations is the central issue. Regarding this subject, some corrections in the kernels and in the
gradient evaluation have been introduced. These improvements allow to achieve good results for example
in free surface flows [3, 4].

Taking into account all of this, the objectives of this paper are the following. First, we study some SPH
formulations and the differents corrections applied. We have considered three methods: the standard SPH,
the corrected SPH and the standard-corrected SPH. By the other hand, we analyze the results obtained
in some simple numerical tests and in more complex free surface problems, with special emphasis in
“breaking dam” problems.

2 Physical aspects of the problem

The objective of the problems we want to solve is to obtain the position of any fluid particlexxxxxxxxxxxxxx at any time
t. We consider compressible, newtonian and isentropic fluids. So, the momentum equation, the continuity
equation and the position equation can be grouped in the next system of three differential equations:

daaaaaaaaaaaaaa

dt
= FFFFFFFFFFFFFF (aaaaaaaaaaaaaa); aaaaaaaaaaaaaat = (vvvvvvvvvvvvvv,xxxxxxxxxxxxxx, ρ); FFFFFFFFFFFFFF (aaaaaaaaaaaaaa) =




ffffffffffffff + 1
ρ∇ · TTTTTTTTTTTTTT
vvvvvvvvvvvvvv

−ρ∇ · vvvvvvvvvvvvvv


 (1)

In this expressionρ(xxxxxxxxxxxxxx, t) is the fluid density andvvvvvvvvvvvvvv(xxxxxxxxxxxxxx, t) its velocity;ffffffffffffff are the external forces by unity
mass and∇ · TTTTTTTTTTTTTT the internal forces by unity volume.TTTTTTTTTTTTTT is the Cauchy Tensor and can be calculated using
the next constitutive equation:

TTTTTTTTTTTTTT = −pIIIIIIIIIIIIII + 2µ

(
DDDDDDDDDDDDDD − 1

3
tr(DDDDDDDDDDDDDD)IIIIIIIIIIIIII

)
; DDDDDDDDDDDDDD =

1
2
(∇vvvvvvvvvvvvvv +∇vvvvvvvvvvvvvvt), (2)

beingµ the fluid viscosity,IIIIIIIIIIIIII is the second order identity tensor andp is a stress scalar field that can be
evaluated using the thermodynamics expression:

p

po
= (k + 1)

(
ρ

ρo

)γ

− k, (3)

wherek andγ are adimensional parameters andpo andρo are the atmosferical standard values [5, 6].
Using these parameters, the sound velocity can be defined asc =

√
γk/ρ [1].

In next sections we will see how to approximate equation (1) in a numerical way.
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3 Weighted residual formulation: a Point Collocation approach

A variational form of equation (1) can be written as:
∫

Ω

{
daaaaaaaaaaaaaa

dt
− FFFFFFFFFFFFFF (aaaaaaaaaaaaaa)

}
ωdΩ = 0 (4)

In order to obtain a numerical approach to expression (4), we choosenc points inΩ, called collocation
points (xxxxxxxxxxxxxxic), and we apply a point collocation scheme. Thus the weighting functionω is given byω =
δ(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxic), beingδ the Dirac delta function. Therefore, equation (4) can be written as:

daaaaaaaaaaaaaa

dt

∣∣∣
xxxxxxxxxxxxxxic

− FFFFFFFFFFFFFF (aaaaaaaaaaaaaa)
∣∣∣
xxxxxxxxxxxxxxic

= 0; ic = 1, ..., nc (5)

In the next section we will approximateF (aaaaaaaaaaaaaa) in the space using the SPH method and then we will solve
the resulting equation in the temporal coordinate.

4 Functional interpolation: the SPH method

A SPH approximation can be understood as a smoothing interpolation technique in which the estimated
valueuh(xxxxxxxxxxxxxx) of a functionu(xxxxxxxxxxxxxx) at a pointxxxxxxxxxxxxxx is obtained by using its values at a set of disordered points of
a certain domainΩ, weighted by a kernel functionK(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) in the next way [7]:

u(xxxxxxxxxxxxxx) ≈ uh(xxxxxxxxxxxxxx) =
∫

rrrrrrrrrrrrrr∈Ω
K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr)u(rrrrrrrrrrrrrr)dΩ (6)

It is obvious that the weighting function plays a role of fundamental importance. Furthermore, it is the
responsible for the local character of the approximation. One of the options to enforce this, is to define
the weighting function so that it takes its maximum value at the pointxxxxxxxxxxxxxx, while the information of any
other point is weighted according to their distance toxxxxxxxxxxxxxx. Then, if the weighting function vanish outside a
certain surrounding region, the approximation will have the desired local character. For example:

K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) =





H(z)

∣∣∣∣∣
z=|(xxxxxxxxxxxxxx−rrrrrrrrrrrrrr)/h|

> 0, if rrrrrrrrrrrrrr ∈ B(xxxxxxxxxxxxxx);

0, in any other point.

(7)

beingH(z) an adequate function, such as a gaussian function, a cubic spline or any other function with
similar characteristics [9]. B(xxxxxxxxxxxxxx) is a selected suitable subdomain in the neighbourhood of the given point
xxxxxxxxxxxxxx, for instance

B(xxxxxxxxxxxxxx) = {rrrrrrrrrrrrrr ∈ Ω / |rrrrrrrrrrrrrr − xxxxxxxxxxxxxx| ≤ 2h} (8)

The so-called dilation parameterρ plays a very important role in (7), since it contributes to characterize
the support of the weighting function.

On the other hand, the kernelK(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) must verify the consistency requirements, which depend on the
highest order of the polynomial that must be exactly represented by the approximation.

In order to achive this, the weighting function must satisfy that [13]:
∫

rrrrrrrrrrrrrr∈Ω
K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr)dΩ = 1; (9)
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∫

rrrrrrrrrrrrrr∈Ω
K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr)dqu(xxxxxxxxxxxxxx)(rrrrrrrrrrrrrr − xxxxxxxxxxxxxx)dΩ = 0; q = 1, ..., m (10)

An example of weighting function with lineal consistency is the cubic spline [13].

Now it is necessary to explain how to construct the discrete form, i.e., how to calculate the previous
integrals in a numerical way

uh(xxxxxxxxxxxxxx) =
∫

rrrrrrrrrrrrrr∈Ω
K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr)u(rrrrrrrrrrrrrr)dΩ '

np∑

ip=1

V (rrrrrrrrrrrrrrip)K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrrip)u(rrrrrrrrrrrrrrip) = ûh(xxxxxxxxxxxxxx). (11)

beingrrrrrrrrrrrrrrip the integration points,V (rrrrrrrrrrrrrrip) the integration weighting functions andnp the total number of
non-structured integration points inΩ. In this paper, these integration points are also called nodal points.

The new difficult in the discrete case is that the consistency conditions in (10) are not verify. For this
reason, some correction functionW (xxxxxxxxxxxxxx, rrrrrrrrrrrrrrip) must be used. Therefore, equation (11) must be written in
the next way:

ûh(xxxxxxxxxxxxxx) =
np∑

ip=1

V (rrrrrrrrrrrrrrip)W (xxxxxxxxxxxxxx, rrrrrrrrrrrrrrip)K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrrip)u(rrrrrrrrrrrrrrip) (12)

4.1 Kernel correction

The objective of the kernel correction is to achieve a discrete approximation with consistency orderm.
For example, we can choose the nextW (xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) correction function [13]

W (xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) = ppppppppppppppt(xxxxxxxxxxxxxx) < pppppppppppppp, ppppppppppppppt >−1
K pppppppppppppp(rrrrrrrrrrrrrr) ⇒ K∗

m(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) = ppppppppppppppt(xxxxxxxxxxxxxx) < pppppppppppppp, ppppppppppppppt >−1
K pppppppppppppp(rrrrrrrrrrrrrr)K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr), (13)

where

pppppppppppppp(rrrrrrrrrrrrrr) = ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ(zzzzzzzzzzzzzz)

∣∣∣∣∣
zzzzzzzzzzzzzz=(rrrrrrrrrrrrrr−xxxxxxxxxxxxxx)/h

, (14)

beingϕϕϕϕϕϕϕϕϕϕϕϕϕϕ(zzzzzzzzzzzzzz) the selected polinomial base andK∗(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) the corrected kernel. The scalar product can be
calculated using:

< f, g >K=
np∑

ip=1

V (rrrrrrrrrrrrrrip)K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrrip)f(rrrrrrrrrrrrrrip)g(rrrrrrrrrrrrrrip), (15)

and the function approximationu(xxxxxxxxxxxxxx) can be written as:

ûh(xxxxxxxxxxxxxx) = ppppppppppppppt(xxxxxxxxxxxxxx) < pppppppppppppp, ppppppppppppppt >−1
K < pppppppppppppp, u >K , (16)

In the physical problems we solve, it is necessary to approximate the gradient of some functions. The
first alternative we show is to calculate the gradient of expression (16).

4.2 Gradient correction

The gradient approximation can also be evaluated by correcting the gradient in a direct way. There are
different alternatives. For example, if we define the scalar product as [13]

< f, g >1=
np∑

ip=1

V (rrrrrrrrrrrrrrip)f(rrrrrrrrrrrrrrip)g(rrrrrrrrrrrrrrip), (17)
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the correction function̂ŴŴŴŴŴŴŴŴŴŴŴŴŴW can be calculated as

Ŵ̂ŴŴŴŴŴŴŴŴŴŴŴŴW =< ∇K∗
0 , (xxxxxxxxxxxxxx− rrrrrrrrrrrrrr)t >−1

1 ; (18)

being∇K∗
0 (xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) the gradient of a zero-order corrected kernel:

∇K∗
0 (xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) = ∇ < 1, 1 >−1

K K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr)+ < 1, 1 >−1
K ∇K(xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) (19)

Therefore, the so-called one-order mixed kernel-gradient correction is:

∇∗1K∗
0 (xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) =< ∇K∗

0 , (xxxxxxxxxxxxxx− rrrrrrrrrrrrrr)t >−1
1 ∇K∗

0 (xxxxxxxxxxxxxx, rrrrrrrrrrrrrr) (20)

and the gradient approximation:
∇hu(xxxxxxxxxxxxxx) =< ∇∗1K∗

0 , u >1 (21)

5 Spatial discretization schemes

In this section we applied the studied interpolation techniques in order to solve equation (1). We use three
different discretization schemes.

Firstly, we approach the so-called standard SPH method, that is, the SPH method without any correction.
Therefore, the consistency conditions are not verify. Furthermore, it is considered a non viscous fluid but
it is introduced an artificial viscosity.

In second place, we approach the corrected SPH method. In this case, the kernel correction is applied
to approximate any function and the mixed kernel-gradient correction is applied to approximate its gra-
dient. In order to preserve linear momentum and angular momentum it is necessary to use a zero-order
correction and a one-order gradient correction. Furthermore, in this case it is considered a viscous fluid.

Finally, we propose a new formulation. We have called it standard-corrected SPH method. The objective
of this approach is to analyze how the corrections and the use of an artificial viscosity affect the results
obtained.

In all the cases, the integration weights are calculated using the volume associated to each particle. That
is, if the mass of each particle is calledmj , its coordinatesrrrrrrrrrrrrrrj and its densityρj , this integration weights
are:V (rrrrrrrrrrrrrrj) = mj/ρj [1].

5.1 The standard SPH method

If it is used the standard SPH method, the motion of each fluid particlexxxxxxxxxxxxxxi can be calculated by using the
expression:

dvvvvvvvvvvvvvv(xxxxxxxxxxxxxxi)
dt

= ffffffffffffff(xxxxxxxxxxxxxxi) +
n∑

j=1

mj

( p(xxxxxxxxxxxxxxi)
ρ(xxxxxxxxxxxxxxi)2

+
p(xxxxxxxxxxxxxxj)
ρ(xxxxxxxxxxxxxxj)2

+ ΠΠΠΠΠΠΠΠΠΠΠΠΠΠi,j

)
∇rrrrrrrrrrrrrrK(rrrrrrrrrrrrrrj , xxxxxxxxxxxxxxi) (22)

dρ(xxxxxxxxxxxxxxi)
dt

= −ρ(xxxxxxxxxxxxxxi)
n∑

j=1

V (rrrrrrrrrrrrrrj)
(
vvvvvvvvvvvvvv(rrrrrrrrrrrrrrj)− vvvvvvvvvvvvvv(xxxxxxxxxxxxxxi)

)t · ∇rrrrrrrrrrrrrrK(xxxxxxxxxxxxxxi, rrrrrrrrrrrrrrj);
dxxxxxxxxxxxxxxi

dt
= vvvvvvvvvvvvvv(xxxxxxxxxxxxxxi) (23)

It can be observed that it is considered a non viscous fluid. However an artificial viscosity has been
introduced. This viscosity is defined as [14]:

ΠΠΠΠΠΠΠΠΠΠΠΠΠΠi,j =

{
−αci,jµi,j+βµ2

i,j

ρi,j
, for vvvvvvvvvvvvvvt

i,j · rrrrrrrrrrrrrri,j < 0;
0, in any other case,

(24)
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being:

µi,j =
hvvvvvvvvvvvvvvt

i,j · rrrrrrrrrrrrrri,j

rrrrrrrrrrrrrr2
i,j + 0.01h2

; ρi,j =
1
2
(
ρ(xxxxxxxxxxxxxxi) + ρ(rrrrrrrrrrrrrrj)

)
; (25)

ci,j =
1
2
(ci + cj); vvvvvvvvvvvvvvi,j = vvvvvvvvvvvvvv(xxxxxxxxxxxxxxi)− vvvvvvvvvvvvvv(rrrrrrrrrrrrrrj); rrrrrrrrrrrrrri,j = rrrrrrrrrrrrrri − rrrrrrrrrrrrrrj . (26)

A typical value ofα is α = 0.01 andci is the sound velocity atxxxxxxxxxxxxxxi [1]. In problems like the one we try to
solve, it is usual to takeβ = 0 [1].

Furthermore, in this method the velocity introduced in the continuity equation and in the equation that
calculates the position of each particle are corrected in order to smooth the results obtained with the
momentum equation. The next expressions are used:

dvvvvvvvvvvvvvv(xxxxxxxxxxxxxxi)
dt

= ffffffffffffff(xxxxxxxxxxxxxxi) +
n∑

j=1

mj

( p(xxxxxxxxxxxxxxi)
ρ(xxxxxxxxxxxxxxi)2

+
p(xxxxxxxxxxxxxxj)
ρ(xxxxxxxxxxxxxxj)2

+ ΠΠΠΠΠΠΠΠΠΠΠΠΠΠi,j

)
∇rrrrrrrrrrrrrrK(rrrrrrrrrrrrrrj , xxxxxxxxxxxxxxi) (27)

vvvvvvvvvvvvvv∗(xxxxxxxxxxxxxxi) = vvvvvvvvvvvvvv(xxxxxxxxxxxxxxi) + ε
n∑

j=1

mj

(
vvvvvvvvvvvvvvi,j

ρi,j

)
K(xxxxxxxxxxxxxxi, rrrrrrrrrrrrrrj) (28)

dρ(xxxxxxxxxxxxxxi)
dt

= −ρ(xxxxxxxxxxxxxxi)
n∑

j=1

V (rrrrrrrrrrrrrrj)
(
vvvvvvvvvvvvvv∗(rrrrrrrrrrrrrrj)− vvvvvvvvvvvvvv∗(xxxxxxxxxxxxxxi)

)t · ∇rrrrrrrrrrrrrrK(xxxxxxxxxxxxxxi, rrrrrrrrrrrrrrj);
dxxxxxxxxxxxxxxi

dt
= vvvvvvvvvvvvvv∗(xxxxxxxxxxxxxxi) (29)

This correction is called XSPH and it tries to keep the particles more orderly and, in high speed flows, it
prevents fluids interpenetrating. A usual value ofε is 0.5 [1].

5.2 The corrected SPH method

Taking into account equations (13) and (20), the motion of each fluid particle can be approximated by
using the expression:

dvvvvvvvvvvvvvv(xxxxxxxxxxxxxxi)
dt

= ffffffffffffff(xxxxxxxxxxxxxxi)− 1
ρ(xxxxxxxxxxxxxxi)

n∑

j=1

V (rrrrrrrrrrrrrrj)TTTTTTTTTTTTTT (rrrrrrrrrrrrrrj)∇∗rrrrrrrrrrrrrrK∗(xxxxxxxxxxxxxxi, rrrrrrrrrrrrrrj); (30)

dρ(xxxxxxxxxxxxxxi)
dt

= ρ(xxxxxxxxxxxxxxi)
n∑

j=1

V (rrrrrrrrrrrrrrj)vvvvvvvvvvvvvv(rrrrrrrrrrrrrrj)t · ∇∗rrrrrrrrrrrrrrK∗(xxxxxxxxxxxxxxi, rrrrrrrrrrrrrrj);
dxxxxxxxxxxxxxxi

dt
= vvvvvvvvvvvvvv(xxxxxxxxxxxxxxi) (31)

being

TTTTTTTTTTTTTT (rrrrrrrrrrrrrrj) = p(rrrrrrrrrrrrrrj)IIIIIIIIIIIIII + 2µ
[
DDDDDDDDDDDDDD(rrrrrrrrrrrrrrj)− 1

3
tr

(
DDDDDDDDDDDDDD(rrrrrrrrrrrrrrj)

)
IIIIIIIIIIIIII
]
; (32)

DDDDDDDDDDDDDD(rrrrrrrrrrrrrrj) =

(
∇vvvvvvvvvvvvvv(rrrrrrrrrrrrrrj) +∇vvvvvvvvvvvvvv(rrrrrrrrrrrrrrj)t

)

2
;∇rrrrrrrrrrrrrrvvvvvvvvvvvvvv(rrrrrrrrrrrrrrj) = −

n∑

k=1

V (rrrrrrrrrrrrrrk)vvvvvvvvvvvvvv(rrrrrrrrrrrrrrk)∇∗1K∗
0 (rrrrrrrrrrrrrrj , rrrrrrrrrrrrrrk) (33)
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5.3 The standard-corrected SPH method

In this third case, we use the same corrections as in the previous formulation. But now, we have replaced
the natural viscosity with the artificial used in the standard SPH method. The equations we solve are:

dvvvvvvvvvvvvvv(xxxxxxxxxxxxxxi)
dt

= ffffffffffffff(xxxxxxxxxxxxxxi) +
n∑

j=1

mj

( p(xxxxxxxxxxxxxxi)
ρ(xxxxxxxxxxxxxxi)2

+
p(xxxxxxxxxxxxxxj)
ρ(xxxxxxxxxxxxxxj)2

+ ΠΠΠΠΠΠΠΠΠΠΠΠΠΠi,j

)
∇∗1K∗

0 (rrrrrrrrrrrrrrj , xxxxxxxxxxxxxxi) (34)

dρ(xxxxxxxxxxxxxxi)
dt

= ρ(xxxxxxxxxxxxxxi)
n∑

j=1

V (rrrrrrrrrrrrrrj)vvvvvvvvvvvvvv(rrrrrrrrrrrrrrj)t · ∇∗1K∗
0 (xxxxxxxxxxxxxxi, rrrrrrrrrrrrrrj);

dxxxxxxxxxxxxxxi

dt
= vvvvvvvvvvvvvv(xxxxxxxxxxxxxxi) (35)

6 Time discretization

In this section a time integration scheme is approached. Many different techniques have been proposed
by other authors [3, 14]. In this paper we center our attention in a one-step method. So equation (1) can
be approximated in the next way:

uuuuuuuuuuuuuui+1 = uuuuuuuuuuuuuui + ∆tΦ(xxxxxxxxxxxxxxi, uuuuuuuuuuuuuui), (36)

whereΦ(xxxxxxxxxxxxxxi, uuuuuuuuuuuuuui) depends on the one-step method used.

In this paper, we use a variant of the modified Euler method. We try to calculate the value of the position,
the velocity and the density of each particle at a timeti+1 knowing its values at a timeti. For this reason,
we predict its values at a time between calledti/2 and we correct then using now the subscriptti+1/2.
Taking all of this into account, we solve

vvvvvvvvvvvvvvi/2 = vvvvvvvvvvvvvvi +
∆t

2

(dvvvvvvvvvvvvvv

dt

)
i− 1

2

; xxxxxxxxxxxxxxi/2 = xxxxxxxxxxxxxxi +
∆t

2
vvvvvvvvvvvvvvi; ρi/2 = ρi +

∆t

2

(dρ

dt

)
i
. (37)

vvvvvvvvvvvvvvi+ 1
2

= vvvvvvvvvvvvvvi +
∆t

2

(dvvvvvvvvvvvvvv

dt

)
i/2

; xxxxxxxxxxxxxxi+ 1
2

= xxxxxxxxxxxxxxi +
∆t

2
vvvvvvvvvvvvvvi+ 1

2
; ρi+ 1

2
= ρi +

∆t

2

(dρ

dt

)
i+ 1

2

. (38)

vvvvvvvvvvvvvvi+1 = 2xxxxxxxxxxxxxxi+ 1
2
− xxxxxxxxxxxxxxi; xxxxxxxxxxxxxxi+1 = 2vvvvvvvvvvvvvvi+ 1

2
− vvvvvvvvvvvvvvi; ρi+1 = 2ρi+ 1

2
− ρi (39)

This time integration scheme implies an explicit formulation.

7 Examples

7.1 Evolution of an elliptical water bubble

As a simple test of the three SPH formulations, we calculate the flow of an elliptical water bubble in
two dimensions when the velocity field is linear in the coordinates,vvvvvvvvvvvvvvo = (−100x, 100y). The initial
configuration is a unit circle. We study the two axes evolution,a andb. If the fluid remains incompressible
(ab = cte = 1), the problem can be solved in an analytical way [1].

In figure 1 we show the results obtained using the standard SPH, the corrected SPH and the standard-
corrected SPH. The parameters we use are:γ = 7, k = 285, 714 MN/m2 andρo = 1000 kg/m3. In
figure (1a) it can be observed the initial particle configuration. In all cases, we use1308 unstructured
particles. In figure (1b) we compare the value of the productab. It could be equals1. The corrected SPH
method and the standard-corrected method have a similar behaviour and the errors obtained are lower
that those obtained with the standard SPH method.

7
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Figure 1:Initial position of the particles and numerical errors comparison.

7.2 “Breaking dam” with a slope dowstream

In this example we simulate a simplified breaking dam with a slope downstream. In this case, the external
forces are the gravity. Furthermore, the boundaries determine the motion of the particles. In this paper,
we consider that the boundary particles exert central forces on fluid particles. These forces are calculated
using the Lennard-Jones expression, based on the forces between molecules. For a boundary and fluid
particle separated by a distancerrrrrrrrrrrrrr the force per unit massf(rrrrrrrrrrrrrr) has the form:

f(rrrrrrrrrrrrrr) =

{
D

[(
r0
r

)4
−

(
r0
r

)2] rrrrrrrrrrrrrr
r2 , if r ≤ r0;

0, in other case
(40)

whereD (with dimension velocity squared) is a scalar factor which was chosen to be comparable to or
exceed the kinetic energy per unit mass of the particles. In this case, we choseD ≈ 5gH, beingg the
gravity andH the water initial height, andr0 is chosen to be the initial particle spacing.

In figure2, it is shown the results obtained with this method. Each graphic represents the position of all
the particles at intermediate times.

8 Conclusions

In this paper, the SPH method applied to free surface problems have been studied. Three different formu-
lations have been analyzed: the standard SPH method, the corrected SPH method and standard-corrected
SPH method. In both cases, first we have approached the equations that represents the physical problem
we try to solve, then we have selected the points or particles where we want to calculate the solution and,
finally, we have approximated the differential equation in spacial and in time dimensions and we have
replaced it by an algebraic equation. Furthermore, we have center our attention in the approach of the
corrections applied to preserve linear and angular momentums.

The standard-corrected SPH method allows to analyze the influence of the corrections that have been
introduced in the formulation and the importance of the viscosity terms. The conclusion is that the cor-
rection factors improve the accuracy of the results more than the use of a natural viscosity.

In the same way, the second example solved shows the good properties of these techniques to deal with
free surface problems, like those called “breaking dam” problems. It could be interesting in future to
compare these numerical results with some experimental tests. Moreover, this example has showed us
the influence of the formulation used to approximate the boundary conditions. For this reason, we are
now studing other techniques to treat with these areas of the fluids.
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Figure 2:Time evolution of fluid particles in a “breaking dam” problem with a slope downstream
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