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Abstract.

One of the meshless techniques that have been recently proposed for solving Boundary
Value Problems is the so-called Weighted Least Square (WLS) Method with a Point
Collocation approach. Meshless methods were initially intended for problems in which
mesh generation becomes a critical point in the overall process, and/or the subsequent
computing effort is extremely high, due to the geometrical complexity of the domain.
Obuviously, if mesh generation is discarded, the regular element by element kind of
interpolation procedures can mot be used anymore. Therefore, the essential concepts
of meshless methods rely on the availability of simple, efficient and robust interpolation
procedures for non-structured distribution of points. In substation grounding analysis
we can find a paradigmatic example of the extreme difficulties that mesh generation
may involve and/or may produce. The authors have developed a BEM formulation that
produces highly accurate results in the earthing analysis of large real grounding systems
with uniform and stratified soil models. However, it is not obvious how to extend the
BEM formulation in order to incorporate more realistic soil models. For this reason we
have turned our attention to meshless methods. In this paper we present a WLS point
collocation approach with extrinsic enrichment. In order to point out the performance of
the proposed technique we present several 2D application examples. On the other hand,
we present two numerical tests that have been designed to explore the possible stabilizing
properties of this method when it is applied to the transport equation.
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1 INTRODUCTION

For a wvariety of problems with large deformations, moving boundaries or
discontinuities, classical numerical techniques (such as finite elements, boundary
elements, finite volumes or finite differences) show significant unexpected difficulties®.
In general, one must refine the mesh beyond a given level in order to mitigate these
undesired effects. This increases the mesh generation cost, and implies a computational
effort that can easily become unaffordable. On the other hand, the mesh generation
process may become extremely complicated in problems with complex domains.

In recent years, the so-called ”meshless methods” have been proposed to overcome
these difficulties. The underlying key idea is that discretization becomes a fairly
straightforward process when it is not necessary to keep track of the topological and
geometrical restrictions of the available elements. In fact, the only target is to obtain
a reasonable distribution of nodes within the given domain. Thus, in contrast to other
techniques, meshless methods are specially attractive for the above mentioned problems,
since no kind of rigid connectivity is imposed a priori.

In order to retain the positive features of the Finite Element Method, one must
generate a local approximation to the solution in terms of the nodal values. A
certain kind of local interpolation can be constructed by means of the so-called kernel
approximation. This technique is used in the Smooth Particle Hydrodynamics method.
SPH was originally developed in the computational physics field, but it has been
recently applied to solve other problems in solid and fluid mechanics?. The Reproducing
Kernel Particle Method?, is similar to SPH, although several correction functions and
refinements are introduced in order to assure consistency near boundaries and for
nonuniform spacing.

Another possibility is to define the local approximation by means of least squares, as
occurs in the Diffuse Element Method?, proposed by Nayroles in 1992. In order to refine
the previous method, Belystchko et al. proposed a moving least squares interpolation®
which can be used in the resolution of partial differential equations with Galerkin
schemes (Element Free Galerkin method) or point collocation schemes.

However, the experience with this kind of methods shows that all of them imnply
a high computational cost, what reduces their range of applicability. For this reason,
some new ideas have been recently proposed, such as combining finite elements and
meshless interpolations (enrichment of Finite Elements with the Element Free Galerkin
method®, or with the Reproducing Kernel Particle Method”) and developing meshless
methods on the basis of the partition of unity concept (hp-Clouds method®, Partition of
Unity Finite Element Method?), which the aim of providing an efficient way to perform
h — p adaptativity.

One of the main advantages of the meshless methods based on the partition of
unity concept is that it is possible to include a priori knowledge about the differential
equation in the formulation. On the basis on this property, the application of
enrichment functions to the Element Free Galerkin Method has been investigated in
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crack propagation problems!’. This technique is particularly effective in the presence

of high gradients, concentrated forces, and large deformations, because it avoids the
remeshing process.

All these techniques are suitable to be applied for solving potential problems in
electrical engineering. In particular, a very interesting case is the grounding analysis'?,
where the use of standard numerical methods (such as finite elements) is precluded
due to the complexity of the domain. Furthermore, the possible existence of high
potential gradients in the vicinity of the earthing grid recommend the use of enrichment
approaches in the treatment of this kind of problems.

The physical phenomena underlying fault current dissipation into the earth can be
described in terms of Maxwell’s Electromagnetic Theory. In certain hypothesis, the
problem can be written in terms of a Neumann Exterior Problem. In this case, it is
necessary to discretize a semi-infinite domain (the soil) and to impose the boundary
conditions on the surface of a grid of conductors which length is huge in comparison
with its diameter'?. This specific geometry precludes the use of standard numerical
techniques (such as Finite Differences or Finite Elements), since the obtention of
sufficiently accurate results would imply unacceptable computing efforts.

In order to solve these problems, the authors have developed a Boundary Element
numerical formulation that has proved to produce highly accurate results in the earthing
analysis of large real grounding systems with uniform and stratified soil models'®.
However, it is not obvious how to extend this BEM formulation in order to incorporate
more realistic soil models.

For this reason, we have turned our attention to meshless methods based on Weighted
Least Square approaches combined with point collocation schemes'*. This kind of
methods do not require any kind of mesh, what could enable the computational analysis
of grounding grids even for those cases in which mesh generation is unaffordable in
practice.

The first results that have been obtained for this kind of problems with meshless
methods'® can be described as very encouraging. Furthermore, we propose the use
of enrichment procedures, i.e., techniques which allow to introduce some information
about the solution in the numerical formulation, in order to improve the quality of the
results while reducing the computational cost.

In this paper we present a WLS point collocation approach with extrinsic enrichment.
In order to point out the performance of the proposed technique, we present several 2D
application examples. On the other hand, we present two numerical tests that have
been designed to explore the possible stabilizing properties of this method when it is
applied to the transport equation.
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2 FUNCTIONAL APPROXIMATION BASED ON A LOCAL WEIGHTED
LEAST SQUARES TECHNIQUE

The Weighted Least Squares methodology is an effective numerical tecnique for the
approximation of a certain function in terms of a given set of non-structured data.
Essentially, to obtain a WLS approximation at a given point () we perform a local
weighted least square fitting on a certain neighbourhood of the given point.

Let Q be the whole interpolation domain, and let u(r) be a function defined for all r
in Q. First, we construct a local approximation @(r) to the function u(r) in the vicinity
of the given point z as'®

ar) =S pira =plre  plr) = () , (1)
=1 z2=(r-x)/p

where (2z) is a complete base of selected interpolating functions (generally polynomials
of a certain order) in 2z, a is the corresponding set of n, unknown coefficients to be
determined, and p is the so-called dilation parameter. In expression (1), p does not play
an essential but a harmless role, that is scaling the values of the coefficients a.

For a given scalar product < -,- > in €2 we define the quadratic functional associated
to the residual error distribution

Qla) =<u—ta,u—u>
=<u,u>-2<u,u>+<uu> (2)
=< u,u > —2<u,pt>a+at<p,pt>a.

Now, since

00
{—Q} =-2 <p,u>+2<p,pt>a,
Oa

we can obtain the least square fitting coefficients @* that minimize the quadratic
functional (2). Thus

Q"

Oa
where the so-called moment matrix < p,p! > is a Gram matrix, that is positive
semidefinite at least. If the scalar product is well defined and the interpolating functions
are well selected the moment matrix is positive definite, what guarantees that the

unknown vector a* is uniquely determined. Then, we can write the least squares
approximation as

=0 — a* =<pp >"T<pu>, (3)
a=a*

a(r) :Pt(f')a :pt(r) <p,pt >l p,u > . (4)
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The above stated approximation gives a least square fitting that is intended to be
valid for all points r in a neighbourhood of the given point . In particular, when r = &
the latter expression gives the approximation

pl(z) <p,p' > l<pu>. (5)

£

&
2
)

*

&
I

It is easy to prove that this kind of approximation is exact in the whole domain if u(r)
belongs to the space of interpolating functions defined in (1), since

%

ur)=p'(MB = @) =p'(x)<pp > '<pp >B=ux). (6)

Therefore, the approximation reproduces exactly any polynomial function up to the
order considered in (1).
Usual choices for the scalar product are

<fg>= [  wEfrerd2  amd < fg>= z w(ry,)f(ri,)o(ri,). (7)

’Lp—

where w(r) and w(r;,) allow to assign suitable weightings to the different areas of the
domain 2. It is important to notice that the positive definiteness of the moment matrix
is not automatically guaranteed in the discrete case, unless the points distribution fulfills
certain prerequisites'®

We wish to construct a FEM type discrete approximation u”(z) to the function u(r)
at every point  in (1, in terms of the values {u;,}, where u;, = u(r;,), being {r; } for
ip =1,...,np the nodal points selected within the domain Q The answer is 1ndeed in
expression (5). Thus, if we adopt

uh(

) =p'(2) <p.p' > '<pu>, (8)
with the discrete scalar product given in (7) we get

Np

u(@) = u(2) = Y N (@)uy,, (9)

where

1

N, () = p'(z) <p.p' >~ w(ri,)p(r;,). (10)

At this point we must remark that the local values of the approximating function do
not necessarily fit the nodal unknown values (that is u ('rj ) # uy, for jp =1,...,np),
due to the least square character of the approximation. However, the assertion (6)
guarantees that the partition of unity is fulfilled by the trial functions defined by (10).
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In general we seek for a local rather than a global approximation, since the latter
should destroy the sparseness of the matrices involved in the numerical formulation.
Since we wish to enforce the local character of the approximation, we expect that most
of the trial functions NN; (x) vanish at any given point, namely

Niy(z) =0 Viy | ;, ¢ B(z)

being B(z) a selected suitable subdomain in the neighbourhood of the given point z,
for instance

B(z)={recQ/|r—z| <R}.

The local character of the approximation can be induced by the choice of a truncated
weighting function, that must take its maximum value at the given point and must
vanish outside a selected surrounding region, for example

w 0, ifr e B(z);
wir) = O gy T TP (1)
=0, otherwise,

being W (z) an adequate function, such as a gaussian function or a conoidal. Hence,
the dilation parameter p plays its more important role in (11), since it contributes to
characterize the support of the weighting function”. In practice, the parameter R is
adjusted for each point in order to ensure that no less than a minimum number ng of
nodes are taken into account in the interpolation. Therefore, the approximated value
of the function at any point & is constructed in terms of the information provided by
a certain number of its closest (at least ng) nodal points. On the other hand, for each
node Tj, We can consider the set Qz-p of all the points € 2 which approximated value

ul(z) is affected by the nodal term u;,. The proper definition of the approximation at
every point requires that all these subdomains cover the whole interpolation domain 2.
Moreover, these subdomains must overlap, and every point £ € {2 must belong to the
subdomains of as many nodal points (at least ng) as to ensure the uniqueness of the
interpolation (ns > ngy) and the convergence of the method. We can also point out that
the approximation (9) reduces to the usual type of FEM interpolation (that is, it fits
the nodal values) when ng = ng, since no effect of least squares is presented. On the
other hand, the standard least square aproximation is reproduced when the weighting
function is constant and equals the unity*®.
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3 ENRICHMENT OF WLS APPROXIMATIONS

The enrichment of a certain numerical approach is intended as a better alternative
to perform extremely expensive mesh refinements in several problems of computational
mechanics. In general, the enrichment process consists of introducing some information
about the solution of the problem into the trial functions (e.g. its behaviour near
singularities or discontinuities in the domain). The enrichment techniques were
developed in the mid-seventies for finite element methods, and have been succesfully
applied to different problems since then'".

This technique has been recently applied to meshless methods. The experience shows
that it is simpler and easier to enrich this kind of approaches than the regular finite
element formulations. In the early research, the enrichment of meshless methods was
carried out both intrinsically and extrinsically'®. The intrinsic enrichment consists of
the inclusion of special functions in the complete polynomial basis of the weighted
least squares interpolation. In this case, it is not necessary to increase the number
of unknowns, although additional computational effort is required to obtain the trial
functions. In contrast to this approach, the extrinsic enrichment is based on the addition
of enrichment functions to the set of trial functions. This requires the introduction of
new unknowns in the numerical scheme, but the polynomial basis of the interpolation
is not modified!’.

On the other hand, its local quality has turned out to be the main advantage of
extrinsic enrichment. In fact, special techniques are required to mix nodal points with
different basis functions, if intrinsic approaches are used to achieve partial enrichment.
The reason is that no functions can be deleted from the basis without introducing
discontinuities in the approximation. On the contrary, an extrinsic enrichment can be
constructed by means of the partition of unity concept. In this case, since the consistency
is assured by the partition of unity (given by the trial functions formed with the basis of
WLS interpolants) the enrichment of the approximation may be performed locally, by
extrinsically adding functions of a new basis'®. For these reasons, we focus our attention
in the extrinsic enrichment of meshless methods on the basis of a weighted least squares
approach.

The basic ideas are quite simple. Let u(r) be a function defined for all = in Q.
As we did before, we wish to construct a FEM type discrete approximation uh(:z:)
to the function u(r) at every point z in €, in terms of the nodal values {u; }, for
ip = 1,...,my. Let’s suppose that we have additional information, such that for a
certain kind of functions u®(r), the difference [u(r) — u®(r)| is easier to approximate
than the original function wu(r). Thus, for approximation purposes it seems preferable
to split u(r) = u®(r) + [u(r) — u®(r)], in order to approximate the latter term by means
of (5), instead of approximating the original function itself. Thus, if we adopt

uM(z) = u(z) + pl(z) <p,p' > T<pu—ut >, (12)
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with the discrete scalar product given in (7) we get
u(z) ~ul (@) = u(@) + Y Ny, (@) (ui, — ul(ry,)). (13)

where the trial functions N; (z) are identical to the ones that were defined by (10) for
the non-enriched case. The enrichment term u®(r) is normally expressed as

Z = K'F(r), (14)

where k is the vector of unknowns associated to the basis of enrichment functions F(r).
Another type of extrinsic enrichment in meshless methods, that is simpler and
computationally faster than (14), can be obtained by using the partition of unity
concept!®. In this case, the approximation is modified by adding extrinsically a basis of
enrichment functions to the existing WLS approximation. These new functions can be
polynomials of higher order than the WLS interpolants basis, or functions contained in
the exact solution of the problem, which are smoothly added to the WLS approximation
by multiplying it by a partition of unity. Since trial functions in WLS approximations
are partitions of unity, this extrinsic enrichment procedure frequently takes the form

ny(ip)

u(z) ~ Z N, (@) (ug, + Z ki i Fj(ri,)), (15)

ip=1

where n(ip) is the number of enrichment functions corresponding to the nodal point
ip (ny may be different for each nodal point), and k;,; are the unknowns associated to
the basis of enrichment functions.

In this paper, we will consider the extrinsic enrichment technique based on the
partition of unity approach for WLS meshless methods. Although the number of degrees
of freedom increases due to the enrichment (if a nodal point i, is enriched, then the total
number of unknowns to obtain for the node becomes n¢(ip) + 1, instead of one), this
enhancement procedure can be applied locally in different parts of the approximation,
and it is also quite straightforward to implement in a meshless code.

4 BOUNDARY VALUE PROBLEM APPROXIMATION BASED ON A
POINT COLLOCATION SCHEME

In previous sections we have presented the WLS interpolation and the different kind
of enrichments that can be performed. In this section we focus on how to obtain the
discretized equations of a boundary value problem. Thus, if A and B are two differential
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operators, €2 the domain of our problem and I' its boundary (I' = I't UT,), a scalar
BVP can be written as,

A(u)=b in Q, (16)

with the boundary conditions,
B(u)=t in T4, u—up =0 in Ty, (17)

where u is the solution, b and ¢ represent the actions in €2 and I't, and uy, is the prescribed
value of v in T'y,.

The application of the weighted-residuals method leads to the variational form of the
above stated problem in terms of the trial approximation u” to the solution u

g (A" — bl d2 +
/r . Wb [B(uh) — 1] dT + (18)

h .
/7-€I*uw.1]'tp [U _uP] dF — 0, ]p::l,...,np

which must hold for the test functions {w; }, {w§p} and {w}-‘p} defined on 2, Ty and T'y,

respectively.
If we do not perform any enrichment, for a given set of n;, trial functions defined on

Q the approximation u” to the solution u can be discretized as,

np
u(z) = u(2) = Y N, (@)u;, (19)
ip=1
where ny, are the total scattered points of the solution domain, and the trial functions
Ni, () can be constructed by using the previous WLS methodology.

Now, we can derive different numerical formulations from the variational form (18).
In order to take advantage of the meshless character of the approximation we can use
a point-collocation approach (w; = w§ = wj = 6(r —rj,), where 6(-) is the Dirac
delta)'®. Several different approaches have been proposed by other authors!, but some
kind of auxiliar grid is then inexorably required to evaluate the resulting integrals. If
the differential operators A and B are linear, and we use a point-collocation scheme,

the following set of equations is obtained:
Ku = f, (20)

where the coefficient matrix K is sparse but not necessarily symmetric, f contains the
contribution of b, ¢ and up, and u contains the unknown values of the function at the
nodal points.

Obviously, if enrichment functions are used to define the WLS interpolation it will
be necessary to use more collocation-points in (18) in order to obtain all the unknowns,
as we have explained in the previous section.
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5 NUMERICAL EXAMPLES

5.1 Potencial problems

In previous works?® we have studied the applicability of the weighted least squares
meshless methods to the analysis of potential problems in the electrical engineering field.
In this section, we compare the results that are obtained when a standard weighted least-
squares approach and an enriched one are applied for the numerical solution of two 2D
potential problem tests.

As a first example, we have selected the following 2D axisymmetrical test problem:

AV =0, LOS\/x2+y2§L17

1, V(x,y)' 0, (21)

v<x,y>\ _ _
VLo VTPl

that has been solved by using 2D trial functions. The analytical solution to the above
stated problem is given by V(z,y) = <ln L1 —Iny/z2 + y2>/(ln Ly —1n Ly).

Thus, for the enrichment function In \/z2 + y2 and for a given set of n,, trial functions
N; defined on the domain, the approximations V to the solution V can be written as:

Tp
Without enrichment functions: vh = > Nijui,.
ip=1
Tp
With enrichment functions: vh = > N, (uip + ki1 F (r))
ip=1

(22)

(1) =n(ya? +%), Lo< /a2 +y2 < Ly,
(r) =0, Lo < /22 + 42 < rg;
(r)
(r)

Total enrichment: F

(), o<y <
=0, r < \Jr2+y? <Ly

In the above expression, n) is the total number of nodal points of the solution domain.
The weighting function that has been used is the truncated gaussian with a = 0.25 and
kE=1.1.

Figures la and 2a show the numerical approximation of the surface that has been
obtained when Ly = 10~% and L = 1. In figures 1b and 2b we present the nodal points
distribution. In figures l¢, 1d, 2¢ and 2d we present a comparison between the analytical
solution and the approximations obtained by using a weighted least squares approach

£
Local enrichment: F
F

11
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with or without enrichment funtions along a radial line. As we show in this example, the
use of enhanced approaches allows to obtain very good approximations. In particular,
the use of partial enrichment in selected parts of the domain may be specially worth
while, since it opens the possibility to improve the numerical approximation with a low
computing effort.

As a second example, we solve the above problem with non symmetric boundary

conditions:
AV:O, LOS\/.’E2—|—y2§L1,

—1, V(z,y) = sin(6), (23)
ER=L, VAL,

which analytical solution is given by

V(w,y)‘

x2 + y2 Ly
_ 2, .2 L [2_ .2
Vi) = 1 In(y/=? +47) i A 00) (24)
’ InL; —In Ly L1 Lo
Ly L

The approximation V" to the solution V can be written in the same form as in the
previous example, using the same enrichment function.

In figure 3 we present the analytical solution (3a) and the results obtained when 225
nodal points (see 3b) are used. In this case, we compare the analytical solution and the
approximations obtained by using the weighted least squares approach with or without
enrichment functions along five different radial lines (3¢, 3e, 3g, 3i, 3k). The relative
errors are compared in figures 3d, 3f, 3h, 37, 3l. In figure 4 we present the results
obtained for a distribution of 900 nodal points (see 4b).

In this example we confirm that enhanced approaches allow to obtain very good
results. As it can be observed, a much higher number of scattered nodal points would
be necessary with a standard formulation to obtain results of the same quality as those
obtained with enrichment functions.

5.2 Transport problems

In these examples we show the results obtained when an enriched weighted least
squares approach, combined with a point collocation scheme, is applied to a 1D high
advective transport problem.

As first example we consider the next 1D numerical test defined by:

o6 9%

12
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In this case, the analytical solution is given by ¢(z) = (e“/k — ew/k>/(e“/k — 1).
We use as enrichment functions the normalized eigenfunctions of the boundary problem

(el ~ 1) /(0 —1).

The approximations th to the solution ¢ can be written in the form:

p
Without enrichment functions: o = > Niug,.
i=1,

Tp
With enrichment functions: ot = > N, (u?p + ki1 F1 (1:))

i=1,
oru/k _q (26)
Total enrichment: Fi(z) =—F7——, 0<z<L
ek _1
Fi(z) =0, 0 <zx<xp;
) exu/k 1
Local enrichment: Fi(z) = —F——=, z9<z<2x;
ek 1
Fi(z) =0, rx] <z <1

In figure 5 we present the results obtained when the total number of nodal points of
the solution domain is n, = 10 and the weighting function is the truncated gaussian
with @ = 0.25 and k£ = 1.1. We also compare the results obtained with £k =1, v = 25
and k =1, u = 50.

We remark the notable stabilizing effect of the enrichment functions. Furthermore,
as the enriched zone is increased, the solution obtained is more stable (the relation
between the imaginary part and the real part of the eigenvalues decrease?!). This fact
is more evident as the relation between u and k& becomes higher.

The second example related to the transport equation consists of the resolution
of the following boundary value problem:

2
S -u g, 0 <a <L 0 =1 610
f(@) = 2(u/B)[2(u/k)e? — (u/k)z — 1)~ (/22 (/b), (27)

The analytical solution to this problem is given by:

b(x) = fiu/k(e‘”“/’“ 1) (1= VR 4 (1720 /)

In the following we use the same enhancement functions of the preceding example,
that is (exu/k — 1)/<eu/k — 1), and we only enrich the zone 0,9583 < x < 1,0000, where

14
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Fig. 5. Transport problem: Comparison of results obtained by using different WLS
formulations and eigenvalues representation.

the highest gradients are recorded within the whole domain. Results can be observed in
figure 6 for diferent cases (k =1, uw =50 and k = 1, u = 500), when the total number
of nodal points in the solution domain is n, = 25 and the weighting function is the
truncated gaussian with a = 0.25 and k = 1.1.

As it happened in the previous example, the enriched formulation is much more
stable than the non-enriched one. Furthermore, as more the advetion increases, as the
stabilization effect is more clearly appreciated.

6 CONCLUSIONS

In this paper, we have studied the enrichment of Weighted Least Squares
interpolations with a point collocation approach. The performance of this kind of
enriched formulations has been tested in problems related to the Potential Theory.
Furthermore, we have shown the stabilizing features of this technique when it is applied
to the transport equation.

The proposed meshless method incorporates enrichment techniques. The meshless
character may represent an important improvement. The improvement can be dramatic
in cases where the use of standard numerical techniques is precluded, due to the large
computational effort required by the discretization process. On the other hand, the
enrichment techniques allow to obtain highly accurate results with relatively coarse
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Fig. 6. Transport problem: Comparison of results obtained by using different WLS
formulations and eigenvalues representation.

meshes. This feature is particularly valued in some specially difficult problems, since no
expensive mesh refinement needs to be performed, even in the presence of high gradients.
As we can observe in the presented examples, the results are very promising, while
the required computational cost does not become unreasonable whatsoever. Further
analysis must be done in both mathematical and numerical aspects, in order to
introduce the enrichment procedure into more practical problems and another meshless
approaches. Finally, the stabilization properties of this formulation seem to be really
outstanding. Therefore, further research should be performed in this direction too.
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