
Journal of Parallel and Distributed Computing 189 (2024) 104881

Av
07
nc

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

A novel framework for generic Spark workload characterization and

similar pattern recognition using machine learning

Mariano Garralda-Barrio ∗, Carlos Eiras-Franco, Verónica Bolón-Canedo

CITIC, Universidade da Coruña, A Coruña, Spain

A R T I C L E I N F O A B S T R A C T

Dataset link: https://
github .com /mgarralda /hadoop -spark -cluster /
tree /main /spark -event -logs

Keywords:

Big data
Workload characterization
Apache spark
Pattern recognition
Machine learning

Comprehensive workload characterization plays a pivotal role in comprehending Spark applications, as it enables
the analysis of diverse aspects and behaviors. This understanding is indispensable for devising downstream
tuning objectives, such as performance improvement. To address this pivotal issue, our work introduces a novel
and scalable framework for generic Spark workload characterization, complemented by consistent geometric
measurements. The presented approach aims to build robust workload descriptors by profiling only quantitative
metrics at the application task-level, in a non-intrusive manner. We expand our framework for downstream
workload pattern recognition by incorporating unsupervised machine learning techniques: clustering algorithms
and feature selection. These techniques significantly improve the process of grouping similar workloads
without relying on predefined labels. We effectively recognize 24 representative Spark workloads from diverse
domains, including SQL, machine learning, web search, graph, and micro-benchmarks, available in HiBench. Our
framework achieves a high accuracy F-Measure score of up to 90.9% and a Normalized Mutual Information of
up to 94.5% in similar workload pattern recognition. These scores significantly outperform the results obtained
in a comparative analysis with an established workload characterization approach in the literature.

1.

ha

co

sp

ad

w

er

m

tio

fa

m

tu

of

fr

(𝑎

le

tio

*

ht

Re
 Introduction

With the volume of data increasing exponentially, the era of big data
s emerged as one of the most significant trends in high-performance
mputing. To extract valuable insights, big data workloads demand
ecialized environments on large-scale computing infrastructures. To
dress this requirement, Apache Spark™ [1] is a widely-used frame-
ork that provides a unified multi-language engine for computing het-
ogeneous workloads, such as data engineering, data analytics, and
achine learning applications. Comprehensive workload characteriza-
n is essential for understanding Spark applications. This, in turn,
cilitates the development of downstream objectives, such as perfor-
ance prediction models [11], workload prediction [25], and auto-
ning of big data applications [33], allowing for proactive optimization
 resource allocation. However, the distributed nature of Spark in-
astructure (𝑖𝑡), large datasets (𝑑𝑠), diverse application characteristics
𝑝𝑝), and numerous configuration settings (𝑐𝑠) present significant chal-
nges in characterizing Spark workloads.
As a definition, workload characterization [24] consists of a descrip-
n of the workload by means of several quantitative metrics, such as at

Corresponding author.

micro-architecture-level, system-level, and application-level. Neverthe-
less, most ongoing efforts in workload characterization tend to focus on
system-level properties, which include machine-specific details, rather
than pure workload characterization. This would involve understanding
the behavior and patterns of a workload without making any assump-
tions about the underlying system or hardware. Likewise, a generic
characterization adequately describes any type of workload without
focusing on any specific application or domain. A workload character-
ization derives a feature descriptor that is capable of reproducing its
behavior. However, it is difficult to define a suitable workload descrip-
tor in Spark due to the complexity of data processing, computation and
communication patterns. Furthermore, tens to hundreds of Spark prop-
erties are involved, which interact with each other in several complex
ways.

In general, we can identify two types of metrics to describe dis-
tributed applications: statics and dynamics. Static metrics of the work-
loads describe the inherent characteristics of the application such as
data properties and application settings. On the other side, dynamic
metrics describe the behavior of an application over time when it is ex-
ecuted on a given system. Thus, resource metrics can be presented as a
ailable online 26 March 2024
43-7315/© 2024 The Author(s). Published by Elsevier Inc. This is an open access a
/4.0/).

E-mail addresses: mariano.garralda@udc.es (M. Garralda-Barrio), carlos.eiras@udc.e

tps://doi.org/10.1016/j.jpdc.2024.104881

ceived 6 June 2023; Received in revised form 22 January 2024; Accepted 18 March
rticle under the CC BY-NC license (http://creativecommons.org/licenses/by-

s (C. Eiras-Franco), veronica.bolon@udc.es (V. Bolón-Canedo).

 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
https://github.com/mgarralda/hadoop-spark-cluster/tree/main/spark-event-logs
https://github.com/mgarralda/hadoop-spark-cluster/tree/main/spark-event-logs
https://github.com/mgarralda/hadoop-spark-cluster/tree/main/spark-event-logs
mailto:mariano.garralda@udc.es
mailto:carlos.eiras@udc.es
mailto:veronica.bolon@udc.es
https://doi.org/10.1016/j.jpdc.2024.104881
https://doi.org/10.1016/j.jpdc.2024.104881
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2024.104881&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

M

tim

si

lo

on

ta

w

ov

as

w

ch

H

a
m

fr

m

w

po

la

re

re

vi

en

vi

th

ha

lo

bu

lik

cl

da

cl

in

us

in

tio

ca

su

1.

ex

tr

tr

w

pu

of

m

pl

lik

se

1.

Sp

re

as

To

tio

pr

(la

bl

ni

as

Th

w

en

se

lo

an

m

ba

th

de

si

of

2.

no

so

in

or

(R

bu

w

of

a
ta

no

sh

no

si

gl

Th

un

fo

in

co

Co

fle

op

Th

an

de

fo

th

of

Fi
. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

e-series, which is a sequence of values typically measured at succes-
ve points in time spaced. The approach commonly adopted for work-
ad characterization [40] is based on the analysis of metrics collected
 the system while the application is running. Appropriate instrumen-
tion for data collection should be developed to ensure the quality for
orkload profiling measurements. The degree of intrusiveness and the
erhead introduced by the instrumentation system have to be as low
 possible in order not to perturb the behavior of the system and of its
orkload.

Empirical Spark workload models can be built using supervised ma-
ine learning techniques, as demonstrated by previous research [16].
owever, creating accurate models for workload similarity analysis at
low cost can be a challenging and time-consuming process. This is
ainly attributed to the challenges of accurately labeling training data
om specific environments, such as large hardware infrastructure and
ulti-layer software stacks (e.g., databases, distributed file systems),
hich arise from the intricate interdependencies among these com-
nents. Moreover, supervised models are limited to recognizing only
beled workloads present in the training set, which can result in incor-
ct identification of previously unseen workloads. Therefore, further
search is needed to improve the scalability and accuracy of super-
sed models for workload similarity analysis, especially in dynamic
vironments where new workloads are frequently executed.
Unsupervised learning techniques are a viable alternative to super-
sed machine learning for recognizing previously unseen workloads, as
ey do not require semantic labeling. Clustering techniques [23,39,22]
ve been widely used in Spark applications to identify similar work-
ads by grouping them based on similar behavior. This simplifies the
ilding of models for classification, performance, and optimization,
e those presented in [25], [36], and [27], respectively. To validate
ustering models through specialized metrics, experimental labeled
tasets are usually used, and these involve assigning ground truth
asses to the data for evaluation purposes. In that sense, benchmark-
g is a useful approach for workload evaluation models. One widely
ed benchmark for big data processing systems is HiBench [21], which
cludes a set of workloads that cover various big data processing func-
ns. These workloads are representative of real-world domains, and
n be used to evaluate Spark applications under different conditions,
ch input data sizes and application settings.

1. Motivation

In big data analytics, applications often prioritize exploration and
perimentation, resulting in less repetitive workloads compared to
aditional small data systems. As a result, in Spark production infras-
uctures, multiple types of workloads are run on a daily basis, each
ith different application settings (optimal or suboptimal), and/or in-
t/output data sizes. However, lack of sufficient prior information
ten leads to unknown underlying execution behaviors of workloads,
aking it challenging to recognize patterns among various Spark ap-
ications. This characterization is essential for downstream activities
e identifying workload similarities and ultimately contributes to sub-
quent Spark-based optimization efforts.

2. Our contribution

This study introduces a novel framework for effective characterizes
ark workloads, serving as the foundation for downstream pattern
cognition. Our approach represents each set of Spark task metrics
 time-series, enabling in-depth analysis of their temporal behavior.
 characterize the workloads, we apply cumulative sum transforma-
ns and higher-order polynomial regressions. This feature engineering
ocess enables the construction of interpretable workload descriptors
tent vectors) and enhances domain understanding compared to other
2

ack-box approaches. w
Journal of Parallel and Distributed Computing 189 (2024) 104881

To identify similar patterns, we employ machine learning tech-
ques, including both partitional and hierarchical clustering, as well
 univariate and multivariate filters for unsupervised feature selection.
is significantly enhances our ability to recognize Spark workloads
ithin the HiBench as experimental validation results. These workloads
compass representative domains such as SQL, machine learning, web
arch, graph processing, and micro-benchmarks. We run each work-
ad with different application settings on several input data sizes to
alyze the variability of the workload descriptors. In summary, the
ain contributions of this paper are as follows:

• We propose a novel framework for characterizing Spark appli-
cations by building consistent workload descriptors in a generic,
individual and scalable manner.

• We establish downstream similar pattern recognition of workloads
using unsupervised machine learning techniques.

• We analyzed 24 representative Spark workloads from HiBench
across several domains and evaluated them using a range of clus-
tering metrics, including geometric, internal, and external measure-
ments.

The rest of the paper is organized as follows. Section 2 describes the
ckground. Section 3 introduces the related work. Section 4 depicts
e methodology of the framework. Section 5 explains the experimental
sign. Section 6 describes the results for workload characterization and
milar pattern recognition. Section 7 assess the practical applicability
 the framework. Section 8 concludes the paper.

 Background

In short, Spark applications run on the Driver, which is a specific
de within the cluster not participating in distributed computation. At
ftware level, Spark has two main operations: transformations executed
 lazy mode and actions immediately executed, such as count(), read()
 write(). Those operations are applied on resilient distributed dataset
DD) across computation nodes (workers) of the cluster. Spark has
ilt-in optimizers to improve execution plans based on the type of
orkload (e.g., SparkSQL compile SQL plans).
Internally in Spark (Fig. 1), a workload consists of many jobs, each

 which is represented as a directed acyclic graph (DAG). A job is
sequence of stages triggered by an action. A stage is a sequence of
sks that not require a shuffle (data re-partitioned across the computer
des) in-between, that is, they can all be run in parallel without a
uffle. Depending on the job, stages could be running in parallel. Every
de in a DAG represents a task, which is a single operation applied to a
ngle partition (logical chunk of dataset). Each task is executed by sin-
e thread (core) in an Executor (JVM running in Spark worker node).
is means that the Spark framework considers tasks as the smallest
it of parallelism. Thus, by focusing on application task-level metrics
r Spark workload characterization, we can gain a suitable understand-
g of their behavior.
Among the pivotal Spark parameters that influence parallelism, key
ntenders include the count of executors, the allocation of executor-
res, the memory allocation for each executor, and the strategic shuf-
Partitions. The latter parameter influences workloads with SparkSQL
erations by determining the partition count used in data shuffling.
is is a fundamental aspect of transformations like grouping, joining,
d aggregation.
Running a given Spark workload 𝑛 times, the generated DAGs are
terministic. This means that the behavior of stages (actions and trans-
rmations) and their logical parallelism remains the same. However,
e actual number of tasks running in parallel depends on the number
 cores available in the system as well as the Spark application settings.
g. 2 shows two executions of the same Spark workload (wordcount)

ith different core settings (1 vs 8 cores). Examining the timeline of the

Journal of Parallel and Distributed Computing 189 (2024) 104881M. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Fig. 1. Architecture plan for executing Spark workload application.

Fig. 2. Window timeline of stage tasks for two Spark wordCount executions, using 1 and 8 cores, respectively.

re

pa

ex

m

se

zi

to

th

lik

he

CP

in

By

in

lo

in
spective stages, we can observe that the number of tasks executed in
rallel varies, which strongly affects performance.
Spark provides a REST API [2] to access task metrics collected by
ecutors during task execution with fine-grained granularity. These
etrics can be accessed at runtime or just finished, and an ordered
quence of internal event logs is also available as a downloadable
pped SparkEventLog file. Task-level metrics, such as shuffling, execu-
rs, deserialization, and serialization time, offer valuable insights into
e behavior of specific tasks in a Spark workload. For instance, metrics
3

e ‘shuffle write time’, ‘shuffle bytes written’, and ‘shuffle records written’ 𝑊
lp identify tasks with high shuffling overheads. Similarly, ‘executor
U’ time and ‘executor deserialize time’ help identify computationally
tensive tasks or those experiencing significant network serialization.
 analyzing these task-level metrics as features, we can gain valuable
sights into the patterns of Spark workloads.
If 𝛼, 𝛽, 𝛾, … 𝜔 is a list of 𝑛 features that completely describe a work-
ad (𝑊), we can represent it as a workload descriptor (𝑊𝑑) by apply-
g a function (𝑓), as follows:

workload

= 𝑓 (𝑖𝑡, 𝑑𝑠, 𝑎𝑝𝑝, 𝑐𝑠) ←←→

characterization
[𝛼, 𝛽, 𝛾,…𝜔] =𝑊𝑑, (1)

M

th

(𝕎
ap

ob

𝕎

ou

qu

th

3.

qu

an

se

as

in

la

po

m

cu

sy

m

liz

w

ch

m

m

tio

sy

pr

co

ch

Sp

in

to

si

pe

ap

ch

aff

a
ev

pr

of

Th

iz

m

da

of

sp

tio

th

pe

cl

a
do

pr

on

tio

ty

in

of

ba

to

ac

sy

le

ba

tiv

w

th

an

w

m

w

fo

an

a
to

de

Ph

fil

PA

of

lo

fr

og

ch

th

de

off

tio

in

am

re

fo

pr

ap

en

bo

4.

lo

A

em

to

w

La

m

4.

fil

tr

4.
. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

erefore, a matrix (m ⋅ n) represents a set of workload descriptors
𝑚,𝑛) in Eq. (2). This matrix serves as a foundation for feature-based
proach solutions. Decoupling feature extraction from the downstream
jectives offers flexibility and reusability.

𝑚,𝑛 =
⎡⎢⎢⎢⎣
𝛼1 𝛽1 𝛾1 ⋯ 𝜔1
𝛼2 𝛽2 𝛾2 ⋯ 𝜔2
⋮ ⋮ ⋮ ⋱ ⋮
𝛼𝑚 𝛽𝑚 𝛾𝑚 ⋯ 𝜔𝑚

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
𝑊𝑑1
𝑊𝑑2
⋮

𝑊𝑑𝑚

⎤⎥⎥⎥⎥⎦
(2)

Based on the workload characterization function defined in Eq. (1),
r framework treats the infrastructure (𝑖𝑡) as a fixed parameter. Conse-
ently, we concentrate on the remaining arguments: the dataset (𝑑𝑠),
e application characteristics (𝑎𝑝𝑝), and the configuration settings (𝑐𝑠).

 Related work

Characterizing Spark workloads is a fundamental step for subse-
ent domain activities, including optimization, performance modeling,
d pattern recognition—of which the latter is a key part of our re-
arch. However, prior studies have not adequately emphasized the core
pect of generic workload characterization, leading to an insufficiency
 the existing literature. In this section, we provide an overview of re-
ted studies, establishing a conceptual link to our work.
One of the first papers that addressed Spark workloads [13], pro-
sed a method for characterizing TPC-H queries based on system-level
etrics, such as I/O, memory and CPU usage, to optimize query exe-
tion on Apache Spark. In their work [14], the authors also rely on
stem-level metrics for JVM characterization, specifically designed for
achine learning workloads in Spark. Their approach involves the uti-
ation of statistical methods to thoroughly analyze and optimize the
orkload. The work presented in [8] focuses on the micro-architectural
aracterization of Apache Spark, analyzing the computation and com-
unication patterns of the workload. The authors in this study use
etrics such as cache hit rate, memory bandwidth, and CPU utiliza-
n. Nevertheless, characterizing Spark workloads based solely on
stem-level or micro-architectural metrics may not provide a com-
ehensive understanding of the application’s behavior, especially for
mplex workloads that involve iterative processing or large-scale ma-
ine learning models.
Performance analysis offers an additional approach to characterizing
ark workloads. In recent years, there has been an increasing interest
 using machine learning techniques to develop performance models
 predict the execution time of Spark workloads. Such models can as-
st users in optimizing resource allocation and enhancing application
rformance. For example, in [40], they utilize micro-architectural and
plication job-level metrics for workload characterization, and ma-
ine learning techniques to identify the most important metrics that
ect the performance of big data workloads. In [30], the authors use
combination of system-level and application stage-level metrics to
aluate the performance of Spark workloads. One limitation of this
oposal is its lack of generalizability to all Spark workloads, as the set
 extracted features may only be applicable to SparkSQL applications.
e research work presented in [27] proposed, in terms of character-
ation, a combination of system-level metrics (e.g., CPU utilization,
emory usage, disk I/O) and application-specific metrics (e.g., input
ta size, number of RDD partitions, number of stages). The weakness
 this study is that it requires access to the application code and its
ecific metrics, which may not be available in some scenarios. Addi-
nally, the work assumes a linear relationship between the metrics and
e application performance, which may not always hold in practice.
To further explore the theme of workload characterization through
rformance models, a study by [36] leverages a range of features in-
uding input data size, number of tasks, and memory usage to develop
performance prediction model. Specifically, the authors employ a ran-
4

m forest regression algorithm to train the model, enabling accurate ev
Journal of Parallel and Distributed Computing 189 (2024) 104881

edictions of the execution time of Spark workloads. However, they
ly evaluate their approach on a limited set of benchmark applica-
ns, and it is unclear how well their technique generalizes to other
pes of Spark applications. Another performance model is presented
[12] by leveraging a subset of important features from a large set

 profiling metrics. The authors suggest a feature selection algorithm
sed on a combination of statistical techniques and domain knowledge
 identify the most relevant metrics for prediction.
Pattern recognition is an important aspect of Spark workload char-
terization that can help in understanding the behavior of complex
stems. For instance, in the study conducted by [17], a machine
arning-based Spark and Hadoop workload classification was proposed
sed on container performance patterns. They demonstrated the effec-
eness of their proposal by accurately classifying Spark and Hadoop
orkloads based on their performance characteristics. In [25], the au-
ors proposed a semantic-aware method to workload characterization
d consolidation in cloud data centers. They argue that traditional
orkload characterization techniques rely on manually defined perfor-
ance metrics that may not accurately reflect the behavior of complex
orkloads. Their study uses semantic information about the tasks per-
rmed by the workloads to automatically identify their characteristics
d consolidate them onto shared resources. The path involves using
combination of machine learning and semantic reasoning techniques
 capture the workload semantics and make informed consolidation
cisions. Another study [25] conducted by the same authors presents
ase Annotated Learning (PAL) technique suggested for workload pro-
ing, detection and resource usage prediction for Spark workloads.
L leverages phase annotation to capture the performance behavior

 Spark jobs and uses clustering algorithms to identify similar work-
ad patterns. To achieve this, they introduce a novel machine learning
amework that uses annotated execution traces to automatically rec-
nize and classify Spark workload phases. However, the workload
aracterization results pertain specifically to a downstream objective,
us limiting the overall generalizability of the approach.
Overall, profiling dynamic metrics can provide a comprehensive un-
rstanding of Spark workload execution. Machine learning techniques
er more flexibility and generalization capabilities compared to tradi-
nal metrics-based mechanisms. Although supervised machine learn-
g models can capture complex relationships, they require a significant
ount of labeled data to train, which may not be readily available in
al Spark environments. Thereby, our framework eliminates the need
r additionally semantic information in the workload characterization
ocess and downstream similar pattern recognition. Furthermore, our
proach is scalable to new Spark environments and previously un-
countered applications since it generates workload descriptors with
th a generic and individual nature.

 Methodology framework

In this section, we present our framework for generic Spark work-
ad characterization and the goal of downstream pattern recognition.
visual overview of the proposed framework is presented in Fig. 3. Our
phasis is on feature engineering to construct interpretable descrip-
rs, thereby characterizing workloads in latent space. Subsequently,
e delve into cluster algorithms employed for the pattern recognition.
stly, we employ unsupervised feature selection algorithms to rank the
ost relevant features, thus enhancing this goal of the framework.

1. Workload characterization phase

The first phase of our framework focuses on the collection and pro-
ing of task execution metrics. Subsequently, we employ a range of
ansformations techniques to derive meaningful workload descriptors.

1.1. Data collecting and profiling
Firstly, we commence by examining an arbitrary set (N) of specific

ents within the SparkEventLog file, such as jobs, stages, and tasks.

Journal of Parallel and Distributed Computing 189 (2024) 104881M. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Fig. 3. The proposed workflow of our framework for generic Spark workload characterization and downstream similar pattern recognition.

U

lo

fo

of

ag

tim

w

co

(𝑒

∀𝑖

pr

th

ab

O

he

as

th

ty

tis

of

in

in

m

to

in

Sp

co

Li

of

co

to

w

ea

al

pr

ta

ta

Sp

𝕋

on

el

m

tf

w

ue

in

tr

da

w

Ta

4.

fa

at

tr
Table 1

Executor task metrics, as delineated within the Spark monitoring and in-
strumentation documentation [2].
Metrics at the task-level

1 Executor Run Time 13 Output: Bytes Written

2 Executor CPU Time 14 Output: Records Written

3 Executor Deserialize Time 15 Shuffle Read: Records Read

4 Executor Deserialize CPU Time 16 Shuffle Read: Remote Blocks Fetched

5 Result Size 17 Shuffle Read: Local blocks Fetched

6 JVM GC Time 18 Shuffle Read: Remote Bytes Read

7 Result Serialization Time 19 Shuffle Read: Local Bytes Read

8 Memory Bytes Spilled 20 Shuffle Read: Remote Bytes Read Disk

9 Disk Bytes Spilled 21 Shuffle Read: Fetch Wait Time

10 Peak Execution Memory 22 Shuffle Write: Bytes Written

11 Input: Bytes Read 23 Shuffle Write: Records Written

12 Input: Records Read 24 Shuffle Read: Write Time

pon observation, it becomes evident that each individual event is al-
cated a synchronized sequential 𝑖𝑑 number, in accordance with the
rmulation depicted in Eq. (3) Apache Spark achieves synchronization
 time exposed in log files by utilizing a common reference time, lever-
ing system-level time synchronization mechanisms, and consistently
estamping log events. This ensures that log events from different

orkers and executors can be accurately ordered and analyzed in the
ntext of a Spark application.

𝑣𝑒𝑛𝑡𝑖𝑑
starts at
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑡𝑖𝑚𝑒𝑥)⇒ (𝑒𝑣𝑒𝑛𝑡𝑖𝑑+1

starts at
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑡𝑖𝑚𝑒𝑥′),

𝑑 ∈ {0…N− 1}, 𝑥 ≤ 𝑥′
(3)

To create a Spark workload descriptor, we exclusively analyze and
ofile task execution metrics collected from the specified log file once
e application has finished. The complete roster of task metrics avail-
le in the Spark version employed in this study, is displayed in Table 1.
ur selection of these metrics is based on domain-specific compre-
nsion. Each task metric corresponds to a crucial low-level execution
pect of Spark applications, which clarifies the systematic logging of
ese metrics by Spark. In prior research [33], the authors utilized these
pes of metrics to characterize Spark workloads, computing several sta-
tical summaries for each one.
A significant aspect of our study is our ability to represent the values

 each task metric as a time-series. This allows us to obtain valuable
sights into their behavior throughout the execution life cycle, extend-
g beyond basic statistical characterization. Consequently, each task
5

etric servers as an independent attribute (Task-feature) contributing us
 the composition of the workload descriptor. To enhance understand-
g, we provide an illustrative example by partially examining a specific
arkEventLog from an executed Spark workload. The log file (Fig. 4) ac-
mmodates task events, notably the SparkListenerTaskStart and Spark-
stenerTaskEnd events, which are recorded sequentially. The number
 entries in these events (Task ID) essentially corresponds to the total
unt of tasks executed by the application across the employed execu-
rs. When we focus on a SparkListenerTaskEnd event, we observe that
e can extract a set of task metrics, as delineated in Table 1. Hence,
ch task metric can be characterized as a time-series of values that
igns with Eq. (3), contributing to the composition of the Task-features.
Up to this point, a resulting descriptor consists of a matrix (𝕋𝔽) com-
ised of Task-features (Tf) time-series, each of which is represented by
sk metric values (tf). Its dimensions are determined by the number of
sk metrics (𝑚) and the total count of tasks (𝑛) generated by a specific
ark workload, as illustrated in Eq. (4).

𝔽𝑚,𝑛 =
⎡⎢⎢⎢⎣
𝑡𝑓1,1 𝑡𝑓1,2 𝑡𝑓1,3 ⋯ 𝑡𝑓1,𝑛
𝑡𝑓2,1 𝑡𝑓2,2 𝑡𝑓2,3 ⋯ 𝑡𝑓2,𝑛
⋮ ⋮ ⋮ ⋱ ⋮

𝑡𝑓𝑚,1 𝑡𝑓𝑚,2 𝑡𝑓𝑚,2 ⋯ 𝑡𝑓𝑚,𝑛

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
Tf1
Tf2
⋮
Tf𝑚

⎤⎥⎥⎥⎦ (4)

Importantly, we employ a non-standard min-max scaling approach
 individual Tf time-series data. This approach prioritizes the mod-
ing of behavior patterns over absolute statistical summaries of task
etric values. The process is as follows:

′
𝑚,𝑛

=
tf𝑚,𝑛 −𝑚𝑖𝑛(Tf𝑚,∶)

𝑚𝑎𝑥(Tf𝑚,∶) −𝑚𝑖𝑛(Tf𝑚,∶)
, (5)

here 𝑚𝑖𝑛(Tf𝑚,∶) and 𝑚𝑎𝑥(Tf𝑚,∶) are the minimum and maximum val-
s of the 𝑚𝑡ℎ time-series of 𝕋𝔽 , respectively.
Fig. 5 illustrates a task time-series metric for varying input data sizes

 a specific Spark workload. It’s important to highlight that the dis-
ibutions in the figures exhibit patterns in the timing and manner of
ta writing. This enables us to establish mechanisms for identifying
orkloads that exhibit similar behavior, as well as on the rest of the
sk-features.

1.2. Cumulative sum transformation
We are dealing with complex time-series of tasks influenced by
ctors such as non-normal distributions, serial correlations, and fluctu-
ing averages and variances. Cumulative sums are widely recognized
ansformations that bolster the analysis of sequential data, empowering

ers to gain insights into the intricate characteristics embedded within

Journal of Parallel and Distributed Computing 189 (2024) 104881M. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Fig. 4. A portion of a SparkEventLog file sheds light on the profiling of task metrics thoughtfully via an ordered sequence of events. It is adhering to the formulation
presented in Eq. (3).

Fig. 5. Displayed time-series patterns of Wordcount for the task bytes-written metric across three input data sizes. The x-axis time scale, representing the number of
tasks (IDs) executed in the workloads, has been normalized to facilitate visualization.

tim

ro

in

ha

tio

to

Cu

𝑧𝑚

w

se

𝑧′
𝑚

𝜎

tiv

va

tr

(o

al

ac

4.

em

al

no

an

pa

at
e-series data. In their publication [34], the authors introduced a
bust statistical method for executing a specific transformation, here-
after referred to as Cusum, on intricate sequential values. This method
rmoniously aligns with the complexities of our time-series 𝕋𝔽 .
In detail, the Cusum is the cumulative sum of standardized devia-
ns from a Task-feature, calculated as a running sum of Tf normalized
 its mean (𝜇) and standard deviation (𝜎). Hence, to calculate the
sum, Tf is first standardized:

,𝑛 = (tf ′
𝑚,𝑛

− 𝜇𝑚,∶)∕𝜎𝑚,∶ (6)

here 𝑧𝑚,𝑛 is the standardized value for tf𝑚,𝑛, the 𝑛𝑡ℎ value in Tf𝑚 time-
ries. Second, the cumulative sum of standardized values is calculated:

=

{
𝑧𝑚,𝑛 + 𝑧𝑚,𝑛−1, if 𝑛 > 1

(7)
6

,𝑛
𝑧𝑚,𝑛, if 𝑛 = 1 vi
The resulting Task-feature Cusum time-series (Tf𝑠) has a 𝜇 = 0 and
= 1, leading to 𝑧′ values being multiples of 𝜎. In Cusum space, posi-
e 𝑧′ values indicate a deviation of tf ′ above the mean, while negative
lues indicate a deviation below the mean. The slopes in the Cusum
ends, whether decreasing or increasing, indicate that the values are
n average) below or above the Tf mean, respectively. This approach
lows us to move towards our final workload descriptor, which is char-
terized by applying a higher-order polynomial regression.

1.3. Higher-order polynomial regression
To map the complete Cusum time-series into a latent space, we
ploy the well-established higher-order polynomial regression (PR)
gorithm. This mapping process involves identifying the optimal poly-
mial fit of a specified degree that encapsulates the prevailing trends
d patterns. Consequently, this strategy efficiently diminishes the im-
ct of noise and minor fluctuations inherent in the time series. These
tributes make it particularly well-suited for our objectives, as it pro-

des interpretability and simplicity, in contrast to the utilization of

Journal of Parallel and Distributed Computing 189 (2024) 104881M. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Fig. 6. E.g., Workload Task-features characterized by High-order polynomial regressions.

m

th

Sq

im

as

ro

an

M

w

at

ve

or

na

st

ob

be

bi

ba

ys

tr

Tf

w

fo

pr

fin

ob

tr

la

PR

𝑊

𝑊

4.

si

se

no

fo

tio

m

te

be

ne

in

Se

te

ob

in

su

no

pr

4.

of

in

fiv

an

w

(A

to

to

w

da

fo

cl

sc

w

po

w

to

cl

in

te

th

It
di

4.

ac

w

ore intricate techniques such as neural networks. The coefficients of
e approximating polynomial sequence are determined using the Least
uares Method, which minimizes the squared deviations of the approx-
ating sequence from the experimental values of the time-series. To
sess the accuracy of the regression, we utilize the Mean Absolute Er-
r (MAE), which is a prevalent measure of forecast error in time-series
alysis, described as follows:

AE = 1
𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − �̂�𝑖| (8)

here 𝑛 represents the number of points, 𝑦𝑖 is the actual observed value
 time 𝑖, and �̂�𝑖 is the predicted or interpolated value at time 𝑖. The
rtical bars | ⋅ | denote the absolute value.
Fig. 6 shows the different transformations of Task-features from the
iginal time-series values, passing through the Cusum process, and fi-
lly fitted by linear, quadratic, and cubic regressions. These outcomes
rongly indicate that a single linear trend falls short in representing the
served features adequately. Regressions that accommodate nonlinear
havior offer a notably more accurate approximation. For instance, cu-
c polynomial regressions generally exhibit a better fit for time-series
sed on the MAE. However, as a preview of our upcoming result anal-
is, our key observation is that the quadratic order provides a better
ade-off between bias and variance for the purpose of our research.
Lastly, in accordance with the guidelines presented in Eq. (9a), each

𝑠 is characterized using higher-order polynomial regression (Tf𝑝),
ith 𝛽 denoting the coefficients and 𝜉 representing the MAE. There-
re, all Tf𝑝 are standardized to possess an equal count of features,
oviding a rationale for the comparison of diverse workloads. In the
al stage of our characterization phase, we concatenate (⊕) all Tf𝑝 to
tain the definitive feature vector (as expressed in Eq. (9b)). This in-
oduces a novel representation of an executed Spark workload (𝑊𝑑) in
tent space for downstream objectives.

(Tf𝑠) = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑖𝑥𝑖 + 𝜉 ⇒ Tf𝑝 =
[
𝛽0, 𝛽1,⋯ , 𝛽𝑖, 𝜉

]
(9a)

𝑢=𝑚+1, 𝑣=𝑖+1+𝑛 =

⎡⎢⎢⎢⎢⎢⎣

𝛽0,0 𝛽0,1 𝛽0,2 ⋯ 𝛽0,𝑖 𝜉1
𝛽1,0 𝛽1,1 𝛽1,2 ⋯ 𝛽1,𝑖 𝜉2
𝛽2,0 𝛽2,1 𝛽2,2 ⋯ 𝛽2,𝑖 𝜉3
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝛽𝑚,0 𝛽𝑚,1 𝛽𝑚,2 ⋯ 𝛽𝑚,𝑖 𝜉𝑛

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

Tf𝑝1
Tf𝑝2
Tf𝑝3
⋮
Tf𝑝𝑛

⎤⎥⎥⎥⎥⎥⎦
⇒

1, 𝑢⋅𝑣 =
[
Tf𝑝1 ⊕ Tf𝑝2 ⊕ Tf𝑝3 ⊕,⋯ ,⊕ Tf𝑝𝑛

]
=𝑊𝑑

(9b)

2. Similar pattern recognition phase

As a downstream objective, we expand our framework to recognize
milarities among workloads. We define similarity as the degree of re-
mblance between workloads, whether they are of the same type or
7

t, based on their descriptors characteristics. This provides insights m
r enhancing Spark-based solutions, including optimization considera-
ns.

To address similarity pattern recognition, we employ unsupervised
achine learning techniques with a dual objective. First, detecting clus-
rs or groups of workloads that exhibit similar behaviors but may not
 readily discernible within the workload descriptors. The effective-
ss of this goal will be evaluated based on the quality and mean-
gfulness of the patterns uncovered based on the type of workloads.
cond, selecting relevant features that contribute significantly to bet-
r pattern discrimination, enhancing the efficiency of the downstream
jective. Besides, it contributes to reduction in dimensionality avoid-
g irrelevant characteristics, while retaining essential information. The
ccessful achievement of these objectives ensures that our framework
t only uncovers latent patterns but also provides a clear and inter-
etable representation of workload similarities.

2.1. Clustering algorithms
The goal of clustering is to identify inherent groupings within a set

 unlabeled data, where objects within each group are similar accord-
g to a certain criterion. Clustering algorithms can be divided into
e categories: partitioning, hierarchical, density-based, grid-based,
d model-based methods. In this similar pattern recognition phase,
e prioritize the application of partitioning (K-Means) and hierarchical
gglomerative) algorithms to a set 𝕎 (Eq. (1)) of workload descrip-
rs (Eq. (9b)), which have been previously standard min-max scaling
 [0, 1] range. These representative algorithms are widely used and
ell-suited for identifying meaningful patterns or structures within the
ta. Furthermore, in preliminary analysis, they exhibited the best per-
rmance based on the requirements of this study.
In our proposal, the K-Means partitional algorithm uses the Eu-

idean distance to determine the proximity between the workload de-
riptors and the corresponding centroids to form the cluster. Besides,
e rely on an improvement of the K-Means (K-Means++) algorithm pro-
sed in [7]. It introduced an improved initialization step in K-Means
hich selects centroids that are farther apart, reducing the likelihood
 converge to a suboptimal solution. Conversely, the Agglomerative
ustering is a “bottom-up” approach where each 𝑊𝑑 is assigned to an
dividual cluster at the initial step of the observation. Then, the clus-
rs are progressively merged until they become one cluster. We define
e Agglomerative clustering by applying a Ward’s linkage method [19].
links clusters based on the same method as the K-Means (Euclidean
stance) to merge existing clusters.

2.2. Feature selection
Unsupervised feature selection (UFS) methods can be categorized,
cording to the strategy used for selecting features, mainly as filter,
rapper, and hybrid methods [38] as in supervised feature selection

ethods [15,9]. Focusing on UFS methods based on the filter approach,

Journal of Parallel and Distributed Computing 189 (2024) 104881M. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Table 2

Showing the details of 216 samples with 24 unique HiBench workloads, including infor-
mation on input data sizes and the maximum number of executed tasks. The (*) symbol
indicates that the SQL plan has been generated by the Spark optimizer for the workload.
The values within parentheses indicate the number of tasks created by Spark.
Workloads Input data sizes

Category Type Small Medium Large

Micro Sleep 0 (4) 0 (9) 0 (9)

Sort 9.4 KB (202) 824.0 KB (202) 85.0 MB (202)

Terasort 6.4 MB (202) 640.0 MB (206) 6.4 GB (248)

WordCount 9.4 KB (4) 82.1 MB (4) 821.2 MB (14)

Repartition 716.8 KB (202) 716.8 MB (206) 7.1 GB (248)

SQL Aggregation* 0 (200) 0 (200) 0 (200)

Join* 40.3 KB (801) 572.9 KB (801) 5.3 MB (801)

Scan* 0 (1) 0 (1) 0 (1)

Web Search Page Rank 84.3 KB (16) 34.0 MB (24) 4.1 GB (24)

Machine
Learning

Bayes* 107.3 MB (24) 127.8 MB (51) 440.9 MB (51)

Kmeans* 25.5 MB (271) 6.7 GB (271) 46.0 GB(621)

Logistic Regr. 21.9 MB (8260) 2.1 GB (8895) 275.0 GB (9581)

ALS 381.4 KB (1402) 2.0 MB (1402) 18.8 MB (1402)

PCA 51.0 KB (476) 262.1 KB (436) 16.3 MB (434)

GBT 926.1 KB (29300) 36.6 MB (65300) 2.9 GB (138020)

Random Forest 165.0 KB (1725) 2.8 MB (2605) 51.1 MB (2601)

SVD 852.9 KB (224) 16.1 MB (220) 64.0 MB (220)

Linear Regr.* 330.4 KB (23396) 1.2TB (23189) 3.6TB (42795)

LDA* 251.8 MB (2394) 1.1 GB (2358) 2.8 GB (2355)

SVM 501.1 MB (22904) 50.1 GB (22904) 4.0TB (45204)

GMM* 22.1 MB (247) 4.0 GB (232) 26.0 GB (392)

Correlation* 1.2 GB (635) 2.2 GB (438) 3.3 GB (635)

Summarizer 40.2 MB (213) 16.0 GB (219) 30.8 GB (430)

Graph NWeight 271.9 MB (232) 2.1 GB (232) 4.8 GB (232)

th

va

th

an

(m

la

th

st

le

fil

ba

Le

go

ha

un

en

as

fe

5.

m

M

ta

5.

ex

ph

pl

pe

W

vC

on

cl

la

su

(T

pe

Ta

w

m

na

na

ar

to

sp

an

to

ex

st

w

pu

va

se

in

sc

Th

ro

21

ev

Eq

ev
ese can be categorized as univariate and multivariate. Within the uni-
riate filter methods, two main groups can be highlighted: methods
at assess the relevancy of each feature based on Information Theory,
d those methods that evaluate features based on Spectral Analysis
anifold learning) using the similarities among objects. Regarding the
st group, SPEC (SPECtrum decomposition) [41] is a univariate filter
at evaluates the relevance of a feature by its consistency with the
ructure of the graph induced from the similarities among objects.
On the other hand, NDFS (Nonnegative Discriminative Feature Se-

ction) [28] is a good performance and interpretability multivariate
ter method. It is based on Spectral Analysis derived from the SPEC
sed on Spectral Analysis combined with Sparse Learning. Sparse
arning refers to those methods that seek a trade-off between some
odness-of-fit measure and the sparsity of the results. In order to en-
nce this similar pattern recognition phase, we rely on SPEC/NDFS
ivariate/multivariate filters because they are one of the most refer-
ced and relevant UFS. These filter methods provide a feature ranking
 output, making it possible to obtain a sorted list of the most relevant
atures of the workload descriptors within 𝕎.

 Experimental design

This section outlines the details of the experimental setup and the
etrics used to evaluate the effectiveness of our proposed framework.
oreover, we conduct a compatible comparative analysis with an es-
blished workload characterization approach in the literature.

1. Experimental setup

We bypass the necessity of a large Spark infrastructure since our
periments prioritize capturing workload-generated patterns over em-
asizing execution time. Notably, current trends in Spark cluster de-
oyment lean towards container-based methods [18]. Hence, our ex-
riments were carried out within a containerized environment [4].
8

e set up a Spark cluster on a computer with 36 GB RAM and 16 co
ores, consisting of 1 master and 3 worker nodes. The cluster is based
 Ubuntu 20.04, Spark v2.4.8, and Hadoop v2.7.7 images, which in-
ude Hive and Hadoop Distributed File System (HDFS). Workloads are
unched into Spark cluster using the properly parameterized spark-
bmit command.

To assess our framework, we integrate all 24 Spark task metrics
able 1). We also introduce an additional derived task metric (tasks
r stage), adhering to the same principles, resulting in a total of 25
sk-features. Furthermore, we have selected all 24 available Spark
orkloads from HiBench, detailed in Table 2. These selections were
ade considering their diversity across application domains and inter-
l attributes, including the existence of built-in SQL plans and the
ture of tasks involved. Input data sizes (small, medium, and large)
e associated to workload-specific configurations in Hibench, leading
 non-uniform sizes across workloads. For instance, Page Rank uses the
ecific parameter ‘hibench.pagerank.pages’, which represents its number
d does not accurately reflect the size in bytes. Hence, we present the
tal input bytes linked to the workloads to improve clarity.
The SQL workloads, defined by a zero input data size, are tailored to
clusively engage with Hive data, thus abstaining from accessing data
ored in HDFS. Notably, this last constraint is applicable to the Sleep
orkload as well. We executed each workload on the three different in-
t data sizes to assess its scalability and ability to handle datasets of
rying sizes. Plausible Spark application settings regarding the cluster
tup and input data sizes under which each workload runs are shown
 Table 3. These settings are based on the most relevant properties de-
ribed in Section 2 that have a significant impact on performance [31].
is approach allows us to comprehensively assess the effectiveness and
bustness of our framework.
Specifically, we conducted an comprehensive analysis on a set of
6 = 24 (unique workloads) ⋅ 3 (settings) ⋅ 3 (input data sizes) rel-
ant workload descriptors. This set, hereafter denoted as 𝕎 as per
. (2), was thoughtfully selected to ensure the reliability of the results,
en with a limited number of samples, yet sufficient for validating and

mparing our proposal. By carefully curating high-quality samples, our

Journal of Parallel and Distributed Computing 189 (2024) 104881M. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Table 3

Experimental design: Workload samples across various plausible application settings and input
data sizes. The number of shuffle partitions applies exclusively to workloads that involve Spark-
SQL transformations (Table 2).
Setting
id

Executor
instances

Executor
cores

Executor
memory

Shuffle
partitions

Applying to
datasets

Total
samples

1 1 4 4 GB 200 small - medium 48

2 3 3 3 GB 200 small - medium - large 72

3 3 3 3 GB 100 small - medium - large 72

4 3 3 5 GB 200 large 24

ai

tio

de

m

ni

to

th

sh

ch

ca

pr

se

an

th

5.

to

m

co

fo

𝜇E

w

th

di

th

ob

fo

po

gr

𝕎

⌀F

th

po

as

cu

ne

(N

bo

si

di

N

w

ne

pa

N

ba

5.

an

a
as

al

vi

of

ni

in

kn

w

ev

ob

m

of

5.

be

be

Ra

na

sc

5.

na

cl

ba

as

In

tio

ba

eq
m is to filter out extraneous factors, such as inappropriate applica-
n settings, thereby avoiding the generation of irrelevant workload
scriptors. This approach underscores our commitment to deriving
eaningful insights, where each workload descriptor contributes sig-
ficantly to the overall understanding of the problem.
It is worth noting that each workload was executed multiple times

 ensure the consistency of the built feature descriptor. To validate
is, we computed the Euclidean distance between runs. Our analysis
owed that the differences were negligible for our purposes, thus we
ose one arbitrary run of each sample. To prevent Spark from dynami-
lly creating and managing executors, we disabled ‘dynamic allocation’
operty in our experiments. Any remaining parameters that were not
t explicitly were left at their default values. Ultimately, given that our
alysis relies on distance-based measurements, we interchangeably use
e term “points” to refer to the samples or “data points” to denote 𝕎.

2. Workload descriptors evaluation metric

To geometrically evaluate the variability of the workload descrip-
rs (𝑊𝑑) across the proposed application settings, we calculate the
ean Euclidean distance (𝜇ED) between descriptors, considering its
rresponding input data sizes (𝑖𝑑𝑠). The calculation is performed as
llows:

D(𝑊𝑑, 𝑖𝑑𝑠) =
1

𝑛(𝑛− 1)

𝑛∑
𝑖=1

𝑛∑
𝑗=1,𝑗≠𝑖

‖𝑥𝑖 − 𝑥𝑗‖2 (10)

here, 𝑥𝑖 and 𝑥𝑗 represent the 𝑖𝑡ℎ and 𝑗𝑡ℎ points, and || ⋅ ||2 represents
e Euclidean distance. The double summation computes the sum of the
stances between every pair of distinct points in 𝕎. The final value is
en normalized by the total number of pairs of points (𝑛(𝑛 − 1)) to
tain the mean distance between the points. To establish a foundation
r distance-based comparisons, we utilize the concept of the furthest
int pair (FPP), as detailed in Equation (11). The FPP is defined as the
eatest Euclidean distance encountered between any two points within
, akin to conceptualizing the diameter (⌀):

PP𝕎 =max
𝑖,𝑗

‖𝑥𝑖 − 𝑥𝑗‖2 (11)

In effectively harnessing geometric comparisons, we must address
e curse of dimensionality [26] phenomenon, where distances between
ints in high-dimensional spaces converge to a constant. Consequently,
 dimensions increase, data sparsity emerges, impacting clustering ac-
racy and thereby reducing interpretability and modeling effective-
ss. To address this phenomenon, we utilize Nearest Neighbor Density
ND) [20], which quantifies the average distance to 𝑘-nearest neigh-
rs for each point, and becomes relatively invariant in higher dimen-
ons. By leveraging NND, we determine the influence of the curse of
mensionality, calculated as:

ND(𝑥𝑖) =
1
𝑘

∑
𝑗∈NearestNeighbors(𝑥𝑖)

‖𝑥𝑖 − 𝑥𝑗‖2 (12)

here NND(𝑥𝑖) quantifies the average distance of 𝑥𝑖 to its 𝑘 nearest
ighbors, reflecting the density of neighboring points around 𝑥𝑖. The
9

rameter 𝑘 specifies the number of nearest neighbors considered, and cl
earestNeighbors(𝑥𝑖) represents the set of 𝑘 points that are closest to 𝑥𝑖
sed on Euclidean distance.

3. Clustering evaluation metrics

In the field of clustering evaluation, determining the effectiveness
d efficiency of an algorithm can present a significant challenge. As
result, a wide range of evaluation methods have been developed to
sess the performance of clustering algorithms [10]. These methods
low us to objectively measure the quality of clustering results, pro-
ding us with a deeper understanding of the strengths and limitations
 different algorithms. Generally speaking, clustering validation tech-
ques can be classified into two categories [35]: internal (based on the
formation intrinsic to the data alone) and external (based on previous
owledge about data) metrics. Although we are facing real problems
hich do not provide prior information about the workloads, external
aluation metrics are useful for allowing us to compare the results
tained from unsupervised models against a ground truth class assign-
ent. Indeed, these metrics function as tools for evaluating the accuracy
 the similarity pattern recognition within our framework.

3.1. Internal metrics
Based on the information intrinsic to the data alone, a clustering can

 considered to be good when it has a high separation (inter-cluster)
tween clusters and a high compactness (intra-cluster) within clusters.
ther than addressing these aspects individually, we lean on an inter-
l metric that endeavors to quantify both measures within a singular
ore [29]:

• Silhouette score: It measures the difference between the distance
from a point of a cluster to other points of the same cluster and the
distance from the same point to all the points of the closest cluster,
defined as follows:

Silhouette = 1
𝑛

𝑛∑
𝑖=1

𝑏(𝑖) − 𝑎(𝑖)
max{𝑎(𝑖), 𝑏(𝑖)}

(13)

where 𝑛 is the number of points, 𝑎(𝑖) represents the average dis-
tance of points 𝑖 to other points within the same cluster (cohesion),
and 𝑏(𝑖) is the smallest average distance of point 𝑖 to points in dif-
ferent clusters (separation). The score is bounded between −1 for
incorrect clustering and +1 when clusters are highly dense and well
separated. Scores around zero indicate overlapping clusters.

3.2. External metrics
Given the knowledge of the ground truth class for the points, exter-
l metrics enable the measurement of the similarity with the predicted
usters. The most considerable external evaluation metrics [6,32] are
sed on matching sets and information theory. Set matching metrics
sume that there is a one-to-one mapping between clusters and classes.
formation theory-based metrics are a category of clustering evalua-
n metrics that quantify the similarity between the cluster assignments
sed on the concept of information entropy. Anticipating upcoming
uation explanations, we use 𝐶 to denote the set of predicted class

usters being evaluated relative to their corresponding ground truth

M

cl

𝑚

ev

to

pa

m

fo

cl

ou

su

cl

nu

(i

of

po

G

im

w

tic

re

6.

w

ex

no

an

to

pe

us

w

ap

le

pa

6.

re

se

pl

fir

na

H

po

m

gr

Ta

cl

tu

ex

fo

im

a
Cu

ca

re

ge

to

A

se

th

co

lo

qu

tio

al

ca

or

sc

te

Tf
. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

asses, denoted as 𝐺. The number of distinct classes is symbolized by
, and 𝑛 represents the total point count in the set.

• F-Measure is calculated as the harmonic mean of Purity and Inverse
Purity, which both belong to the matching sets class. Purity mea-
sures the degree to which clusters are composed of points from the
same class, i.e., it penalizes the noise in a cluster. However, it does
not reward grouping points from the same class together. Purity
is computed by taking the weighted average of maximal precision
values.

Purity(𝐶,𝐺) = 1
𝑛

𝑘∑
𝑖=1

𝑚
max
𝑗=1

𝑛𝑖𝑗

𝑛𝑖
, (14)

where 𝑛𝑖𝑗 represents the number of points that belong to both the
𝑖th cluster and the 𝑗th class, 𝑛𝑖 represents the size of the 𝑖th cluster.
Inverse Purity rewards grouping points together, but it does not pe-
nalize mixing points from different classes. It focuses on the cluster
exhibiting the highest representation for each class, defined as:

Inverse Purity(𝐶,𝐺) = 1
𝑛

𝑚∑
𝑗=1

𝑘
max
𝑖=1

𝑛𝑖𝑗

𝑛𝑗
, (15)

where 𝑛𝑗 represents the size of the 𝑗th class. The remaining pa-
rameters maintain consistency with the definitions in the previous
equation.

Let’s now elucidate the F-Measure, a more robust metric matching
each class with the cluster that has a highest combined Purity and
Inverse Purity, as follows:

F-Measure =
(1 + 𝛽2) × Purity × Inverse Purity
𝛽2 × Purity+ Inverse Purity

(16)

where the parameter 𝛽 controls the trade-off between Purity and
Inverse Purity. We set the value of 𝛽 to 1, which is commonly used.
All set matching metrics are bound by from 0 to 1, where the higher
value the better.

• Normalized Mutual Information (NMI) is categorized within the
information theory-based. NMI measures the degree of similarity
between the predicted class clusters and the true classes, taking into
account the sizes of the clusters and the classes. NMI ranges from 0
to 1, where a value of 1 indicates perfect agreement between two
labelings, and a value of 0 indicates no agreement beyond chance.
Consistent with the earlier notations, it is expressed as:

NMI = 2𝐼(𝐶,𝐺)
𝐻(𝐶) +𝐻(𝐺)

, (17)

where 𝐼(𝐶, 𝐺) is the Mutual Information (MI) between the two
labelings:

I(𝐶,𝐺) =
𝑘∑
𝑖=1

𝑚∑
𝑗=1

𝑛𝑖𝑗

𝑛
log

𝑛𝑖𝑗𝑛

𝑛𝑖𝑛𝑗
, (18)

and 𝐻(𝐶) and 𝐻(𝐺) are the entropies of the predicted and ground
truth classes, respectively:

H(𝐶) = −
𝑘∑
𝑖=1

𝑛𝑖

𝑛
log

𝑛𝑖

𝑛
; H(𝐺) = −

𝑚∑
𝑗=1

𝑛𝑗

𝑛
log

𝑛𝑗

𝑛
(19)

By analyzing all of the above metrics, we obtain a comprehensive
aluation of the clustering algorithms applied to the workload descrip-
r points. In the context of similarity pattern recognition, we place
rticular emphasis on evaluating the external metrics, which are com-
only used and well-suited for this purpose. It is important to note that
r all points, ground truth classes were removed prior to conducting
ustering and feature selection analysis. This was done to ensure that
r similarity pattern recognition framework was able to perform un-
10

pervised algorithms, without relying on any prior knowledge of the do
Journal of Parallel and Distributed Computing 189 (2024) 104881

ass labels. In our utilization of clustering algorithms, we configure the
mber of clusters (𝑘) to precisely match the distinct workload classes
.e., 24), applying them comprehensively across the data points [37].
Last but not least, we conduct a compatible comparative analysis

 our framework with the established workload characterization pro-
sed by Prats et al. [33], which we refer to as the “base-approach”.
uided by their methodology, we compute the mean, minimum, max-
um, and standard deviation for each task metric. This results in
orkload descriptors of 100 dimensions = 25 (task metrics) ⋅ 4 (statis-
al summaries) in 𝕎, which we analyze following the similar pattern
cognition methodology as our framework.

 Results

In this section, we comprehensively validate the proposed frame-
ork by analyzing the results of the experimental design. Initially, we
plore the impact of the Cusum transformations and higher-order poly-
mial regressions on the original time-series distributions. Next, we
alyze how various application settings affect each workload descrip-
r, taking into account different input data sizes, from a geometric
rspective. Subsequently, we assess the clustering algorithm results
ing both internal and external metrics to determine the grouping of
orkload descriptors into clusters and compare them with the base-
proach. We also explore the advantages of unsupervised feature se-
ction by ranking the most valuable attributes to enhance similarity
ttern recognition performance.

1. Exploring the impact of applying Cusum and higher-order polynomial
gressions

The performance of different polynomial regressions on 𝕎 is pre-
nted in Table 4, which offers valuable insights. In terms of the ap-
ication of transformations, we found two primary observations. The
st point is that without applying the Cusum transformation, the inter-
l Silhouette score performs best in the first order for both algorithms.
owever, its performance worsens with the increase in the order of
lynomial regressions. This behavior is also reflected in the external
etrics. As we described in Section 4.1.3, the 1st order polynomial re-
ession presents the worst MAE in characterizing the time-series of
sk-features, despite suggesting the best density and separation of
usters. Nevertheless, this characterization does not adequately cap-
re the workload patterns, leading to suboptimal performance in the
ternal metrics. The second point is that by applying the Cusum trans-
rmation, we observed a decline in the internal metric but a significant
provement in external metrics, specifically in F-Measure when using
quadratic order polynomial regression with K-Means. Thereby, the
sum transformation provides us with a capable mechanism to better
pture the behavior of the application tasks, favoring similar pattern
cognition of the workloads.
On the other hand, although cubic order polynomial regressions
nerally provide a better fit (lower MAE) for the workload descrip-
rs, they exhibit the worst performance for both clustering algorithms.
chieving a better trade-off between bias and variance is crucial when
lecting the order of the polynomial regression for characterizing
e time-series. Higher-order models tend to reduce bias but can be-
me too sensitive to specific patterns and increase variance, while
wer-order models may oversimplify the data and increase bias. Thus,
adratic polynomial regression offered us a more reliable approxima-
n based on the observed metrics, achieving better ability to gener-
ize well to new workloads. These results highlight the importance of
refully considering the selection of the polynomial order, as higher-
der do not necessarily lead to better clustering performance in our
enario. Nevertheless, the order can be understood as a hyperparame-
r of the workload characterization process (even separately for each
𝑠), which enables fine-grained tuning according to the feature-based

wnstream objectives.

Journal of Parallel and Distributed Computing 189 (2024) 104881M. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Table 4

Cluster analysis results showing the impact of applying Cusum transformations
and high-order polynomial regressions on all points of workload descriptors. The
best metrics for each clustering algorithm are highlighted.
Clustering
algorithm

Transform. Order
PR

Internal External metrics

Density &
Separation

Set
Matching

Information
Theory

Silhouette F-Measure NMI

K-Means None 1º 0.418 0.797 0.877

2º 0.338 0.777 0.862

3º 0.287 0.689 0.800

Cusum 1º 0.368 0.809 0.874

2º 0.321 0.846 0.902

3º 0.257 0.729 0.808

Agglomerative None 1º 0.429 0.807 0.891

2º 0.374 0.762 0.866

3º 0.301 0.701 0.819

Cusum 1º 0.389 0.821 0.892

2º 0.360 0.836 0.902

3º 0.276 0.742 0.829

Fig. 7. Nearest Neighbor Density of the workload descriptors in 𝕎.

qu

Th

+

(S

6.

ph

de

m

si

6.

w

ity

D

as

an

ap

hi

pe

ce

ve

w

tio

in

re

in

in

in

de

co

m

H

no

to

6.

sc

a
di

to

th

ea

th

th

et

of

be

or
As we proceed with our result analysis, we adopt the Cusum and
adratic polynomial degree transformations as the standard approach.
is leads to a 100 = 25 (Task-features) ⋅ 4 (regression coefficients
 error) dimensional vector, which defines a workload descriptor
ec. 4.1.3).

2. Analyzing workload descriptors from a geometric perspective

In this section, we analyze the effect of the curse of dimensionality
enomenon. Then, we explore the geometric variability of workload
scriptors under different approaches. In closing, we conduct a geo-
etric study encompassing the application settings on all input data
zes simultaneously.

2.1. The curse of dimensionality phenomenon
To apply the geometric evaluation approach outlined in Section 5.2,

e commence by evaluating the impact of the curse of dimensional-
. This assessment involves analyzing the explained Nearest Neighbor
ensity (NND). We employ 𝑘 = 15 for NND, a value commonly chosen
 the square root of the set of data (thus,

√
216 ≈ 15). We conduct this

alysis by comparing our workload characterization against the base-
proach in the 100-dimensional space of 𝕎, showed in the Fig. 7. In
gh-dimensional spaces affected by the curse of dimensionality, we ex-
ct a histogram of average Nearest-Neighbor distances to peak at a
rtain constant value, reflecting the uniformity of distances [20]. Con-
rsely, lower densities in the histogram suggest dispersion in the space,
hich is indeed a useful characteristic for the similar pattern recogni-
11

n. tio
As depicted in Fig. 7a, the base-approach shows a pronounced peak,
dicating a high density of points at a constant average distance. This
veals a strong convergence in the vicinity, complicating the cluster-
g of the workload descriptors. Contrastingly, our approach, as shown
 Fig. 7b, exhibits a histogram characterized by significant variations
 average distances and lower densities. This indicates that workload
scriptors are widely dispersed across the 100-dimensional space. In
nsequence, this observation suggests that the curse of dimensionality
ight have a limited impact on our approach, highlighting its resilience.
owever, the base-approach appears to be more susceptible to the phe-
menon. Armed with these insights, we are well-prepared to advance
 the subsequent stages of our analysis.

2.2. Exploring geometrically the variability of workload descriptors
In order to facilitate the geometric exploration of our workload de-
riptors, we proceeded to calculate the ⌀FPP (diameter) of 𝕎, yielding
value of 27.55. The diameter provides a valuable measure into the
stribution and dispersion of the workload descriptors within 𝕎 (akin
 conceptualizing the shape), thereby enhancing our understanding of
eir spatial arrangement and variability.
To assess the pairwise distances between workload descriptors for
ch input data size and their relationship to the diameter, we employ
e diameter-to-mean ratio criterion. This ratio is computed by dividing
e Euclidean mean distances of the workload descriptors by the diam-
er, as outlined in Eq. (20). In our study, we employ a 0.35 ratio (35%
 the diameter) as a proximity threshold. This ratio strikes a balance
tween covering a diameter segment and avoiding overly conservative
 lenient values, while effectively capturing meaningful distance varia-

ns. A lower ratio indicates a more closer set of workload descriptors,

M

w

[0

ta

ra

tio

hi

pl

w

ev

da

al

su

sp

st

al

tio

un

to

ac

tu

Sp

ab

th

m

di

w

di

T

I

s

o

s

t

of

us

w

ge

di

fo

fil

ap

6.

le

ca

be

in

Te

su

an

su

co

ca

ta

am

gr

an

tio

to

w

pa

ap

6.

se

th

ou

in

se

ce

al

re
. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Table 5

Mean Euclidean distances of workload descriptors, encompassing all
three application settings for each Spark workload, are computed sep-
arately for the three distinct input data sizes (𝑖𝑑𝑠), as well as for all
together. Ratios exceeding the threshold are indicated with an asterisk
(*). The values within parentheses represent the calculated ratios ob-
tained using Eq. (20).
Workload 𝜇ED(𝑊𝑑 , 𝑖𝑑𝑠) (ratio)

Small Medium Large All

Sleep 3.69 (0.13) 6.73 (0.24) 6.30 (0.22) 5.74 (0.20)

Sort 7.63 (0.27) 7.34 (0.26) 5.21 (0.18) 7.42 (0.26)

Terasort 4.95 (0.17) 4.97 (0.18) 7.63 (0.27) 11.5 (0.41)*

WordCount 5.23 (0.18) 4.49 (0.16) 2.27 (0.08) 6.89 (0.25)

Repartition 1.81 (0.06) 4.77 (0.17) 8.78 (0.32) 10.8 (0.39)*

Aggregation 2.89 (0.10) 3.86 (0.14) 3.38 (0.12) 3.32 (0.12)

Join 6.30 (0.22) 8.04 (0.29) 8.12 (0.29) 7.75 (0.28)

Scan 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Page Rank 3.73 (0.13) 6.49 (0.23) 4.89 (0.17) 6.57 (0.23)

Bayes 5.62 (0.20) 8.07 (0.29) 5.01 (0.18) 6.56 (0.23)

Kmeans 7.20 (0.26) 8.63 (0.31) 6.29 (0.22) 9.84 (0.35)

LR 4.24 (0.15) 6.10 (0.22) 6.03 (0.21) 6.96 (0.25)

ALS 9.08 (0.32) 6.10 (0.22) 5.96 (0.21) 9.03 (0.32)

PCA 4.25 (0.15) 5.49 (0.19) 3.06 (0.11) 10.0 (0.36)*

GBT 7.51 (0.27) 7.70 (0.27) 7.21 (0.26) 8.89 (0.32)

RF 8.24 (0.29) 4.48 (0.16) 1.44 (0.05) 9.37 (0.34)

SVD 4.47 (0.16) 6.71 (0.24) 10.0 (0.36)* 8.14 (0.29)

LM 3.27 (0.11) 6.68 (0.24) 2.61 (0.09) 4.43 (0.16)

LDA 6.32 (0.22) 3.69 (0.16) 4.28 (0.15) 5.73 (0.20)

SVM 4.68 (0.16) 3.63 (0.13) 3.99 (0.14) 6.55 (0.23)

GMM 5.87 (0.21) 5.84 (0.21) 10.0 (0.36)* 9.83 (0.35)

Correlation 3.69 (0.13) 6.82 (0.24) 4.97 (0.18) 10.6 (0.38)*

Summarizer 7.44 (0.27) 8.47 (0.30) 8.50 (0.30) 8.62 (0.31)

NWeight 7.21 (0.26) 4.56 (0.16) 3.38 (0.12) 4.99 (0.18)

Mean ratios (0.171) (0.208) (0.191) (0.276)

hile a higher ratio suggests a more spread-out set, within a range of
,1]. Table 5 provides the computed ratios and average Euclidean dis-
nces for reference.

tio =
𝜇ED(𝑊𝑑,𝑖𝑑𝑠)

⌀FPP𝕎
(20)

The findings of our analysis demonstrate that different combina-
ns of settings can lead to significant variations in the descriptors,
ghlighting the substantial impact of setting choices on the Spark ap-
ication [5]. When examining the ratios segmented by input data sizes,
e observed that the majority of ratios fell below the threshold. How-
er, there were a few exceptions, such as SVD and GMM on the big
ta size, which exhibited slightly higher values. When considering the
l input data sizes, we also noticed that certain specific workloads,
ch as Terasort, Repartition, Correlation, and PCA, exhibited relatively
arse characteristics. Despite their sparsity, these specific workloads
ill maintained a reasonable distance ratio, as it was computed across
l input data sizes collectively. Scan workloads deserve special men-
n for showing a minimum distance, which can be attributed to their
changing internal execution behavior. They only execute commands
 Hive data storage, resulting in a stable pattern that remains minimal
ross the different settings.
Our analysis confirms that our workload descriptors effectively cap-
re the variations introduced by the different settings applied to the
ark application. It is worth noting that the consistency of the vari-
ility is evident as the descriptors exhibit proximity with respect to
e analyzed workload types. This observation is further supported by
ean ratios consistently falling below the threshold. Additionally, the
ameter can function as a mechanism for detecting data drift when new
orkload descriptors are introduced. Our motivation is to compare the
12

stance of new workload descriptors to the existing set (or centroids an
Journal of Parallel and Distributed Computing 189 (2024) 104881

able 6

ndividually presenting the results of applying clustering algorithms to each
egmented input data size, as well for all input data sizes together. Scores
utside parentheses belong to our framework, while scores within parenthe-
es denote results from the (base-approach). We highlight the best results
hat align with our goals, as determined by external metrics.
Clustering
algorithm

Input
data
size

Internal External metrics

Density &
Separation

Set
Matching

Information
Theory

Silhouette F-Measure NMI

K-Means small 0.398 (0.537) 0.916 (0.725) 0.955 (0.834)

medium 0.370 (0.423) 0.916 (0.755) 0.955 (0.845)

large 0.542 (0.611) 0.965 (0.870) 0.983 (0.928)

all 0.321 (0.437) 0.846 (0.558) 0.902 (0.677)

Agglomerative small 0.422 (0.550) 0.937 (0.728) 0.967 (0.839)

medium 0.383 (0.454) 0.951 (0.777) 0.975 (0.868)

large 0.542 (0.615) 0.965 (0.872) 0.983 (0.930)

all 0.360 (0.446) 0.836 (0.578) 0.902 (0.695)

 the clusters) against the diameter (or ratio). This approach enables
 to identify any significant deviation or shift in the data distribution,
hich could indicate data drift.
The demonstrated capabilities of our framework in constructing
neric and robust workload descriptors can be extended to other
stributed computing systems like Apache Flink [3], which similarly
cuses on tasks as core units of computation. Thus, it could allow pro-
ing of their metrics to create workload descriptors using the proposed
proach.

3. Similar pattern recognition

Defining the characteristics that determine similarity can be a chal-
nging task as it can be based on multiple criteria, which must be
refully selected and evaluated. For example in terms of internal Spark
havior, workloads that involve similar computation and data process-
g patterns can be considered similar. Thus, the workloads such as Sort,
rasort, and Wordcount involve similar computation characteristics
ch as sorting and counting, while workloads such as K-Means, GBT,
d SVM involve machine learning computations. Similarly, workloads
ch as Pagerank, LDA, and SVD involve graph processing and matrix
mputations.

On the other hand, in terms of DAG operations, the workloads can be
tegorized based on the type and amount of data shuffle, stages, and
sks involved. For example, Sort, Terasort, and Join involve a large
ount of data shuffle, while sleep and scan have no shuffle. Tree ag-
egation is mainly used in decision tree-based algorithms, such as GBT
d Random Forest. Summarizer involves mostly narrow transforma-
ns and a small amount of shuffle. Exchange is used in Repartition
 move the data across the nodes in the cluster. In the next section,
e assess the performance of our framework in recognizing workload
tterns using their descriptors, as well as comparing it with the base-
proach.

3.1. Exploring the impact of input data sizes by clustering algorithms
Upon analyzing the clustering metric results in Table 6, we ob-
rve that the base-approach exhibits better performance in terms of
e internal metric Silhouette. However, our framework consistently
tperforms it in terms of external metrics, which prioritize robustness
 recognizing the same type of workloads across different application
ttings and input data sizes. This demonstrates that our approach ex-
ls at capturing meaningful patterns within the workload descriptors,
igning with our primary objective.
Exploring the results of our framework, we observe accurate pattern
cognition, especially when considering individual input data sizes

d Agglomerative clustering. Notably, identical outcomes are observed

Journal of Parallel and Distributed Computing 189 (2024) 104881M. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Table 7

Results of unsupervised feature selection based on ranking applied to all points. Scores out-
side parentheses belong to our framework, while scores within parentheses denote results
from the (base-approach). We highlight the results that best align with our goals.
Clustering UFS #Features Silhouette F-Measure NMI

K-Means Baselines 100 0.321 (0.437) 0.846 (0.558) 0.902 (0.677)

SPEC 97 (80) 0.332 (0.393) 0.863 (0.627) 0.907 (0.726)

NDFS 78 (17) 0.372 (0.544) 0.909 (0.626) 0.945 (0.740)

Agglomerative Baselines 100 0.360 (0.446) 0.836 (0.578) 0.902 (0.695)

SPEC 75 (83) 0.309 (0.454) 0.860 (0.593) 0.912 (0.708)

52 (

fo

m

pu

lin

em

in

th

ad

It
al

re

en

m

6.

se

su

pa

ac

al

th

m

pa

be

ev

m

co

ta

in

pe

un

la

si

se

pr

ge

lin

w

gr

cl

ve

tw

th

si

Co

th

cl

te

to

T

C

u

i

cl

pe

ge

Sp

sh

SV

io

su

th

go

us

th

th

Th

ac

po

ap

in

in

te

7.
NDFS 47 (16) 0.4

r specific external metrics, specifically with K-Means for small and
edium input data sizes, as well as with both algorithms for large in-
t data sizes. This consistency in outcomes can be attributed to the
ear structures present in the workload descriptors. These structures
erge from transformations during the characterization phase, provid-
g valuable assistance to the clustering algorithms.
Conversely, when encompassing all input data sizes (including the
ree different settings for each workload), K-Means displays a minor
vantage in external metrics, particularly highlighting the F-Measure.
is worth noting that the decrease in overall performance on both
gorithms is a logical behavior as the workload descriptors are strongly
lated to their settings and input data sizes. This is desirable, as it
ables the discovery of new clusters, which can help in identifying
ore consistent workload similar patterns.

3.2. Exploring the impact of clustering by applying unsupervised feature
lection

Our study is enriched by applying UFS to 𝕎, which selects a concise
bset of informative features. This allows for a comprehensive com-
rison of outcomes with the baselines, representing the best scores
hieved thus far for both our framework and the base-approach across
l features. UFS aims to enhance the accuracy and interpretability of
e clustering algorithms. The results are summarized in Table 7.
While both UFS techniques performed better than the baselines, our
ain findings indicate that NDFS significantly outperformed SPEC. In
rticular, with NDFS, Agglomerative clustering produced denser and
tter separated clusters compared to the baselines in terms of internal
aluation metrics. Analyzing the base-approach, an general improve-
ent is achieved by applying Agglomerative clustering. However, it
nsistently exhibits poor accuracy on external metrics, indicating limi-
tions in its ability to extract meaningful using only 16 features. Turn-
g attention to our framework, it demonstrates significantly improved
rformance in external metrics compared to the base-approach. This
derscores our approach emphasis on robustness in recognizing simi-
r workload patterns across various application settings and input data
zes. Notably, K-Means displayed superior F-Measure and NMI values,
rving as the benchmark quality indicators for this study.
The additional insights presented in Table 8 offer a more com-
ehensive depiction of the clustering intricacies across all workloads
nerated by our framework. According to the experimental setup out-
ed in Section 5.1, an optimal clustering is achieved with an unique
orkload of (9). It ensures that all samples of the same workload are
ouped together in a single cluster, without being merged with other
usters or workloads.
When examining the comparisons of clustering outcomes, we un-
il a blend of both consistent and divergent assignments between the
o algorithms. Approximately 42% of clusters perfectly converge in
eir assignments, particularly, clusters 1 to 10 highlight optimal as-
gnments, emphasizing a mutual recognition of distinct workloads.
nversely, the remaining 58% of clusters exhibit some variations in
eir interpretations. Nevertheless, despite these variations, the broader
ustering patterns maintain a remarkable alignment. Turning our at-
ntion to K-Means, it is noted that optimal clustering is evident in up
13

 58% of the clusters. Furthermore, by considering the inclusion of w
0.560) 0.868 (0.653) 0.930 (0.765)

able 8

omparison of clustering outcomes for workloads (counter samples) with
nsupervised feature selection using NDFS. Workload names are presented
n lowercase for improved readability.
Cluster K-Means (#78-Dimension) Agglomerative (#47-Dimension)

1 pagerank(9) pagerank(9)

2 aggregation(9) aggregation(9)

3 als(9) als(9)

4 lda(9) lda(9)

5 join(9) join(9)

6 nweight(9) nweight(9)

7 linear(9) linear(9)

8 gbt(9) gbt(9)

9 bayes(9) bayes(9)

10 kmeans(9) kmeans(9)

11 sleep(9) sleep(9), scan(9)

12 scan(9) wordcount(3)

13 gmm(9) gmm(6)

14 wordcount(9) wordcount(6)

15 svm(8) svm(9)

16 rf(8) rf(8)

17 correlation(7) correlation(9), pca(6)

18 pca(6) gmm(3)

19 pca(3) pca(3), rf(1)

20 correlation(2) sort(6)

21 svd(9), summarizer(9) svd(9), summarizer(9)

22 lr(9), smv(1) lr(9)

23 terasort(3) terasor(3), repartion(3)

24 sort(9), terasort(6), repartion(6) sort(3), terasort(6), repartition(6)

usters 15, 16, 17, and 22 as near-optimal assignments, the overall
rcentage could rise to 75%.
Interestingly, the Sort and Repartition workloads were clustered to-
ther, even though they did not appear to share similarities in terms of
ark’s internal behavior. However, these workloads exhibited similar
uffling operations, which explained their clustering. In contrast, the
D and Summarizer workloads, which differed in task shuffling behav-
r, were clustered together based on the DAG representation of tasks,
ch as executor CPU and executor deserialize. These results highlight
at our framework is capable of identifying new patterns (hidden) that
 beyond the well-known characteristics.
In conclusion, K-Means achieved the best external clustering metrics
ing NDFS on a subset of 78 features, implying that the majority of
e full set of 100 features hold significance. This finding suggests that
e workload descriptors encompass valuable, non-spurious features.
e utilization of UFS techniques has proven effective in improving
curacy and enhancing the interpretability, while also mitigating the
tential curse of dimensionality phenomenon. However, selecting the
propriate latent space dimension (subset of features) and cluster-
g algorithm become important hyperparameters of the framework,
volving trade-offs between dimensionality reduction, information re-
ntion, and computational cost.

 Assessing practical applicability of the framework

In this section, we examine the real-world applicability of our frame-

ork, including a detailed analysis of algorithmic complexity. For com-

Journal of Parallel and Distributed Computing 189 (2024) 104881M. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

Table 9

Algorithmic complexities of the framework. Workload characterization phase1 . Sim-
ilar pattern recognition phase2 . Validation results3 .
Algorithm Time Complexity Space Complexity

Cumulative Sum Transformation1 𝑂(𝑛) 𝑂(1)
Higher-Order Polynomial Regression1 𝑂(𝑛 ⋅𝑚𝑑) 𝑂(𝑚𝑑)
K-Means Clustering2 𝑂(𝑡 ⋅ 𝑛 ⋅ 𝑘 ⋅𝑚) 𝑂(𝑛 ⋅ 𝑘)
Agglomerative Clustering2 𝑂(𝑛2 ⋅𝑚) 𝑂(𝑛 ⋅𝑚)
Nonnegative Discriminative Feature Selection2 𝑂(𝑛 ⋅𝑚 ⋅ 𝑡) 𝑂(𝑛 ⋅𝑚)
Furthest Point Pair2,3 𝑂(𝑛2) 𝑂(1)

Fig. 8. Architecture foundations for implementing our framework.

pl

tu

7.

fr

W

co

ga ri

w

pa

fr

al

cu

Ad

en

ci

al

w

m

go

sc

al

co

7.

th
eteness, we also present our foundational implementation architec-
re.

1. Analyzing computational algorithmic complexity

We carefully analyze the complexity of the algorithms within our
amework, revealing the resources they require in real-world usage.
e provide a condensed summary of their complexities in Table 9. Time
mplexity relates to number of samples (𝑛), while space complexity
uges memory use during execution.
Detailed insights for each algorithm are outlined below:

• Cumulative Sum Transformation: This algorithm exhibits linear
time complexity in relation to 𝑛 due to its uncomplicated aggre-
gation nature, resulting in minimal memory usage.

• Higher-Order Polynomial Regression: The time complexity is in-
fluenced by the degree (𝑑) of the polynomial, the dimension of
features (𝑚), and 𝑛. Note that the computational complexity esca-
lates rapidly with higher 𝑑 and an increased 𝑚, due to the greater
number of computations and terms involved in fitting a higher-
degree polynomial. Correspondingly, the space complexity depends
on both 𝑑 and 𝑚, reflecting the necessity to store intermediate ma-
trix computations.

• K-Means Clustering: The time complexity is determined by various
parameters, including the number of iterations (𝑡), centroids (𝑘), 𝑛,
and 𝑚. The space complexity scales with the number of centroids
(𝑘) and 𝑛.

• Agglomerative Clustering: Its quadratic time complexity concern-
ing 𝑛 and 𝑚 emphasizes its sensitivity to 𝑛. This characteristic
renders it especially well-suited for a reasonable scale of 𝑛.

• Nonnegative Discriminative Feature Selection: The time complex-
ity is closely linked to 𝑛, 𝑚, and the maximum number of iterations
14

𝑡. The space complexity aligns with 𝑛 and 𝑚. Despite this, the com- ex
putational demands of the algorithm remain manageable across
varying dimensions of 𝑛.

• Furthest Point Pair: The time complexity is 𝑂(𝑛2) brute force algo-
rithm. It requires 𝑂(1) space to store the largest distance found so
far and the two points that are farthest apart. Another approach is
the divide-and-conquer algorithm, which has a time complexity of
𝑂(𝑛 log𝑛).

It is crucial to emphasize that real-world performance of these algo-
thms is influenced by factors beyond theoretical complexities. Hard-
are capabilities, efficient algorithm implementation, and adept use of
rallelization strategies significantly impact practical outcomes. Our
amework excels in this context with strong potential for logical par-
lelization during workload characterization. This is evident in con-
rrent computation of related algorithms for each Spark workload.
ditionally, parallelizing individual Task-feature characterization can
hance the time-intensive polynomial regressions. Furthermore, spe-
alized languages (e.g., PySpark) can boost algorithm performance,
igning seamlessly with parallelization opportunities in modern real-
orld systems.
Finally, when compared to the base approach, our framework is
ore computationally demanding due to the inclusion of additional al-
rithms. Despite this, our framework remains practical in real-world
enarios, thanks to moderate computational requirements for most
gorithms. The use of lower-order polynomials, especially in time-
nsuming regressions, contributes to this practical feasibility.

2. Architecture foundations

We present the base architecture of our framework, which includes
ree well-defined components (services) as depicted in Fig. 8.
Our primary focus lies in understanding the nuances of information

change among these services:

M

8.

ac

gu

ta

in

by

w

th

w

m

in

ch

po

Sp

re

ni

its

ra

st

M

th

ys

ar

di

Sp

ex

lo

A

Fu

by

tu

an

20

si

Xu

ri

G

CR

ve

dr

V

–

D

in

th

D

Sp

A

w

in

R

[

[

[

[

[

[

[

[

[

[1

[1

[1

[1

[1
. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

• Spark-Hadoop Service: Every executed application generates a
event log file identified by a unique identifier, which is stored in
HDFS.

• Workload Characterization Service: Converts Spark event log files
into nested complex JSON documents, encompassing workload
identification and metadata. This metadata includes application
settings, workload descriptor vectors, and various intermediate
transformations, such as original time-series tasks, statistical ag-
gregations, cumulative sums, and polynomial regressions. This in-
formation enriches workload interpretability and bolsters experi-
mentation, all stored within a document-oriented database.

• Similar Pattern Recognition Service: Identifies clustering execu-
tions for tracing purposes. Clustering workload outcomes, such
as centroids, ratios, diameters, and cluster labels, are stored in a
document-oriented database as metadata for further analysis

 Conclusion

This paper presents a novel framework for Spark workload char-
terization and pattern recognition capabilities. Our framework distin-
ishes itself by relying solely on quantitative metrics at the application
sk-level for workload characterization. The approach employs non-
trusive techniques to individually characterize workloads, achieved
 diversely transforming task metrics. The first phase of the frame-
ork culminates in the creation of robust vector descriptors, capturing
e essence of executed Spark workloads, tailored for representation
ithin a latent space. Within this space, we incorporate consistent
easurements from a geometric perspective, adding a layer of mean-
gful interpretation. As part of capabilities for expansion, our workload
aracterization process effectively handles new workloads and incor-
rates new task metrics, including those introduced by new Apache
ark versions. In the second phase, our framework is extended to
cognize patterns by integrating unsupervised machine learning tech-
ques for clustering and feature selection. The experiments showcase
 effectiveness in identifying similar workloads, achieving high accu-
cy as indicated by F-Measure (90.9%) and NMI (94.5%). These results
rongly outperform the base-approach comparison, which scored an F-
easure of 57.8% and an NMI of 69.5%. For completeness, we explore
e real-world applicability of our framework, including a detailed anal-
is of algorithmic complexity and the foundational implementation
chitecture.

In light of all the above, this research can hold relevance for other
stributed computing systems, as well as offer insights for optimizing
ark-based solutions. Our future research endeavors will be focused on
panding the framework to encompass auto-tuning for big data work-
ads.

bbreviations

ALS Alternating Least Square

GBT Gradient Boosted Trees

GMM Gaussian Mixture Modeling

LDA Linear Discriminant Analysis

LM Linear Model (linear regression)

LR Logistic Regression

RF Random Forest

SQL Structured Query Language

SVD Singular Value Decomposition

SVM Support Vector Machine

nding

This work was supported by CITIC, as Research Center accredited
 Galician University System, which is funded by “Consellería de Cul-
ra, Educación e Universidade from Xunta de Galicia”, supported in
15

 80% through ERDF Funds, ERDF Operational Programme Galicia
Journal of Parallel and Distributed Computing 189 (2024) 104881

14-2020, and the remaining 20% by “Secretaría Xeral de Univer-
dades” (Grant ED431G 2019/01). It was also partially funded by
nta de Galicia/FEDER-UE under Grant ED431C 2022/44; Ministe-
o de Ciencia e Innovación MCIN/AEI/10.13039/501100011033 under
rant PID2019-109238 GB-C22.

ediT authorship contribution statement

Mariano Garralda-Barrio: Conceptualization, Data curation, In-
stigation, Methodology, Software, Validation, Writing – original
aft. Carlos Eiras-Franco: Supervision, Writing – review & editing.
erónica Bolón-Canedo: Project administration, Supervision, Writing
review & editing.

eclaration of competing interest

The authors declare that they have no known competing financial
terests or personal relationships that could have appeared to influence
e work reported in this paper.

ata availability

Executed workload logs used in this study are available to download:
arkEventLogs.

cknowledgments

The authors would like to express their gratitude to Delivery Net-
orks by Minsait (Indra company), for providing the infrastructure used
 this study.

eferences

1] Apache Spark - Unified Engine for large-scale data analytics, https://spark .apache .
org/, 2018.

2] Monitoring and instrumentation spark, https://spark .apache .org /docs /2 .4 .8 /
monitoring .html, 2018.

3] Apache Flink, https://flink .apache .org/, 2018.
4] Docker images for apache spark executed on hadoop yarn, https://github .com /

mgarralda /hadoop -spark -cluster, 2021.
5] N. Ahmed, A.L. Barczak, T. Susnjak, M.A. Rashid, A comprehensive performance

analysis of apache hadoop and apache spark for large scale data sets using hibench,
J. Big Data 7 (1) (2020) 1–18, https://doi .org /10 .1186 /s40537 -020 -00388 -5.

6] E. Amigó, J. Gonzalo, J. Artiles, F. Verdejo, A comparison of extrinsic clustering
evaluation metrics based on formal constraints, Inf. Retr. 12 (4) (2009) 461–486,
https://doi .org /10 .1007 /s10791 -008 -9066 -8.

7] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, Tech. Rep.,
Stanford, 2006.

8] A.J. Awan, M. Brorsson, V. Vlassov, E. Ayguade, Micro-architectural characteriza-
tion of apache spark on batch and stream processing workloads, in: 2016 IEEE
International Conferences on Big Data and Cloud Computing (BDCloud), Social Com-
puting and Networking (SocialCom), Sustainable Computing and Communications
(SustainCom) (BDCloud-SocialCom-SustainCom), 2016, pp. 59–66.

9] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, Feature selection for
high-dimensional data, Prog. Artif. Intell. 5 (2016) 65–75, https://doi .org /10 .1007 /
978 -3 -319 -21858 -8.

0] M. Brun, C. Sima, J. Hua, J. Lowey, B. Carroll, E. Suh, E.R. Dougherty, Model-
based evaluation of clustering validation measures, Pattern Recognit. 40 (3) (2007)
807–824, https://doi .org /10 .1016 /j .patcog .2006 .06 .026.

1] G. Cheng, S. Ying, B. Wang, Tuning configuration of apache spark on public clouds
by combining multi-objective optimization and performance prediction model, J.
Syst. Softw. 180 (2021) 111028, https://doi .org /10 .1016 /j .jss .2021 .111028.

2] G. Cheng, S. Ying, B. Wang, Y. Li, Efficient performance prediction for apache spark,
J. Parallel Distrib. Comput. 149 (2021) 40–51, https://doi .org /10 .1016 /j .jpdc .2020 .
10 .010.

3] T. Chiba, T. Onodera, Workload characterization and optimization of tpc-h queries
on apache spark, in: 2016 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), IEEE, 2016, pp. 112–121.

4] S. Chidambaram, S. Saraswati, R. Ramachandra, J.B. Huttanagoudar, N. Hema,
R. Roopalakshmi, Jvm characterization framework for workload generated as per
machine learning benchmark and spark framework, in: 2016 IEEE International
Conference on Recent Trends in Electronics, Information & Communication Tech-

nology (RTEICT), IEEE, 2016, pp. 1598–1602.

https://github.com/mgarralda/hadoop-spark-cluster/tree/main/spark-event-logs
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/docs/2.4.8/monitoring.html
https://spark.apache.org/docs/2.4.8/monitoring.html
https://flink.apache.org/
https://github.com/mgarralda/hadoop-spark-cluster
https://github.com/mgarralda/hadoop-spark-cluster
https://doi.org/10.1186/s40537-020-00388-5
https://doi.org/10.1007/s10791-008-9066-8
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib82217C9100417BE6AC4F38086E416BCAs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib82217C9100417BE6AC4F38086E416BCAs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib246BB8BEB08DEC3DC77140DBB82C7DA5s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib246BB8BEB08DEC3DC77140DBB82C7DA5s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib246BB8BEB08DEC3DC77140DBB82C7DA5s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib246BB8BEB08DEC3DC77140DBB82C7DA5s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib246BB8BEB08DEC3DC77140DBB82C7DA5s1
https://doi.org/10.1007/978-3-319-21858-8
https://doi.org/10.1007/978-3-319-21858-8
https://doi.org/10.1016/j.patcog.2006.06.026
https://doi.org/10.1016/j.jss.2021.111028
https://doi.org/10.1016/j.jpdc.2020.10.010
https://doi.org/10.1016/j.jpdc.2020.10.010
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib3D67D8C9F229B102AF5FEBB09ED12E28s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib3D67D8C9F229B102AF5FEBB09ED12E28s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib3D67D8C9F229B102AF5FEBB09ED12E28s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib7A3EF4A3A01F5C5AFA9D9644ADA0FCBEs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib7A3EF4A3A01F5C5AFA9D9644ADA0FCBEs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib7A3EF4A3A01F5C5AFA9D9644ADA0FCBEs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib7A3EF4A3A01F5C5AFA9D9644ADA0FCBEs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib7A3EF4A3A01F5C5AFA9D9644ADA0FCBEs1

M

[1

[1

[1

[1

[1

[2

[2

[2

[2

[2

[2

[2

[2

[2

[2

[3

[3

[3

[3
Journal of Parallel and Distributed Computing 189 (2024) 104881. Garralda-Barrio, C. Eiras-Franco and V. Bolón-Canedo

5] C. Eiras-Franco, V. Bolón-Canedo, S. Ramos, J. González-Domínguez, A. Alonso-
Betanzos, J. Tourino, Multithreaded and spark parallelization of feature selection
filters, J. Comput. Sci. 17 (2016) 609–619, https://doi .org /10 .1016 /j .jocs .2016 .07 .
002.

6] M. Genkin, F. Dehne, Autonomic workload change classification and prediction for
big data workloads, in: 2019 IEEE International Conference on Big Data (Big Data),
2019, pp. 2835–2844.

7] M. Genkin, F. Dehne, P. Navarro, S. Zhou, Machine-learning based spark and hadoop
workload classification using container performance patterns, in: C. Zheng, J. Zhan
(Eds.), Benchmarking, Measuring, and Optimizing, Springer International Publish-
ing, Cham, ISBN 978-3-030-32813-9, 2019, pp. 118–130.

8] T. Gunawardena, K. Jayasena, Real-time uber data analysis of popular uber locations
in kubernetes environment, in: 2020 5th International Conference on Information
Technology Research (ICITR), 2020, pp. 1–6.

9] M.S. Halawa, R.P. Díaz Redondo, A. Fernández Vilas, Unsupervised kpis-based
clustering of jobs in hpc data centers, Sensors 20 (15) (2020) 4111, https://
doi .org /10 .3390 /s20154111.

0] A. Hinneburg, C.C. Aggarwal, D.A. Keim, What is the nearest neighbor in high
dimensional spaces?, in: Proc. of the 26th Internat. Conference on Very Large
Databases, Cairo, Egypt, 2000, 2000, pp. 506–515, http://nbn -resolving .de /urn :
nbn :de :bsz :352 -opus -70224.

1] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, The hibench benchmark suite: char-
acterization of the mapreduce-based data analysis, in: 2010 IEEE 26th International
Conference on Data Engineering Workshops (ICDEW 2010), vol. 2, 2010, pp. 41–51.

2] M. Janecek, N. Ezzati-Jivan, S.V. Azhari, Container workload characterization
through host system tracing, in: 2021 IEEE International Conference on Cloud Engi-
neering (IC2E), IEEE, 2021, pp. 9–19.

3] Z. Jia, J. Zhan, L. Wang, R. Han, S.A. McKee, Q. Yang, C. Luo, J. Li, Characteriz-
ing and subsetting big data workloads, in: 2014 IEEE International Symposium on
Workload Characterization (IISWC), 2014, pp. 191–201.

4] L. John, P. Vasudevan, J. Sabarinathan, Workload characterization: motivation,
goals and methodology, in: Workload Characterization: Methodology and Case Stud-
ies. Based on the First Workshop on Workload Characterization, 1998, pp. 3–14.

5] S. Jokar Jandaghi, A. Bhattacharyya, C. Amza, Phase annotated learning for apache
spark: workload recognition and characterization, in: 2018 IEEE International Con-
ference on Cloud Computing Technology and Science (CloudCom), 2018, pp. 9–16.

6] E. Keogh, A. Mueen, Curse of dimensionality, in: Encyclopedia of Machine Learning
and Data Mining, 2017, pp. 314–315.

7] M. Lattuada, E. Gianniti, M. Hosseini, D. Ardagna, A. Maros, F. Murai, A. Couta da
Silva, J.M. Almeida, et al., Gray-box models for performance assessment of spark ap-
plications, in: Proceedings of the 9th International Conference on Cloud Computing
and Services Science, SciTePress, 2019, pp. 609–618.

8] Z. Li, Y. Yang, J. Liu, X. Zhou, H. Lu, Unsupervised feature selection using non-
negative spectral analysis, in: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 26, 2012, pp. 1026–1032.

9] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, Understanding of internal clustering valida-
tion measures, in: 2010 IEEE International Conference on Data Mining, IEEE, 2010,
pp. 911–916.

0] S. Mustafa, I. Elghandour, M.A. Ismail, A machine learning approach for predicting
execution time of spark jobs, Alex. Eng. J. 57 (4) (2018) 3767–3778, https://doi .
org /10 .1016 /j .aej .2018 .03 .006.

1] N. Nguyen, M.M.H. Khan, Y. Albayram, K. Wang, Understanding the influence of
configuration settings: an execution model-driven framework for apache spark plat-
form, in: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD),
2017, pp. 802–807.

2] J.-O. Palacio-Niño, F. Berzal, Evaluation metrics for unsupervised learning algo-
rithms, arXiv preprint, arXiv :1905 .05667, 2019, https://doi .org /10 .48550 /arXiv .
1905 .05667.

3] D.B. Prats, F.A. Portella, C.H.A. Costa, J.L. Berral, You only run once: spark auto-
tuning from a single run, IEEE Trans. Netw. Serv. Manag. 17 (4) (2020) 2039–2051,
https://doi .org /10 .1109 /TNSM .2020 .3034824.

[34] P. Regier, H. Briceño, J.N. Boyer, Analyzing and comparing complex environmental
time series using a cumulative sums approach, MethodsX 6 (2019) 779–787, https://
doi .org /10 .1016 /j .mex .2019 .03 .014.

[35] E. Rendón, I. Abundez, A. Arizmendi, E.M. Quiroz, Internal versus external cluster
validation indexes, Int. J. Comput. Commun. Control 5 (1) (2011) 27–34, http://
universitypress .org .uk /journals /cc /20 -463 .pdf.

[36] S. Shah, Y. Amannejad, D. Krishnamurthy, M. Wang, Quick execution time predic-
tions for spark applications, in: 2019 15th International Conference on Network and
Service Management (CNSM), 2019, pp. 1–9.

[37] S. Solorio-Fernández, J.F. Martínez-Trinidad, J.A. Carrasco-Ochoa, A new unsuper-
vised spectral feature selection method for mixed data: a filter approach, Pattern
Recognit. 72 (2017) 314–326, https://doi .org /10 .1016 /j .patcog .2017 .07 .020.

[38] S. Solorio-Fernández, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, A review of un-
supervised feature selection methods, Artif. Intell. Rev. 53 (2) (2020) 907–948,
https://doi .org /10 .1007 /s10462 -019 -09682 -y.

[39] W. Xiong, Z. Yu, Z. Bei, J. Zhao, F. Zhang, Y. Zou, X. Bai, Y. Li, C. Xu, A characteri-
zation of big data benchmarks, in: 2013 IEEE International Conference on Big Data,
2013, pp. 118–125.

[40] Z. Yu, W. Xiong, L. Eeckhout, Z. Bei, A. Mendelson, C. Xu, Mia: Metric importance
analysis for big data workload characterization, IEEE Trans. Parallel Distrib. Syst.
29 (6) (2018) 1371–1384, https://doi .org /10 .1109 /TPDS .2017 .2758781.

[41] Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning,
in: Proceedings of the 24th International Conference on Machine Learning, 2007,
pp. 1151–1157.

Mariano Garralda-Barrio holds a Technical Engineering de-
gree in Computer Systems from UNED in Spain. He obtained an
official M.S. degree in Informatics Engineering with a special-
ization in big data analytics from the University of Lleida. He
completed an official M.S. degree in Artificial Intelligence Re-
search with a focus on learning and data science from UIMP
in Spain, in collaboration with AEPIA. Currently, he is pursu-
ing a Ph.D. degree in computational science at the University of
A Coruña. He works as a Senior Practice Manager in big data and
AI engineering at Indra company.

Carlos Eiras-Franco received his Ph.D. from Universidade
da Coruña in 2020 where he is currently an Assistant Pro-
fessor. His research spans anomaly detection systems, predic-
tive maintenance and explainable artificial intelligence, among
other machine learning problems, with a focus on scalability.
He completed research stays at the University College of Lon-
don (United Kingdom), Universidade do Minho (Portugal), and
Technische Universität Berlin (Germany) and has taken part as
a researcher in more than 30 R&D projects, both publicly and
privately funded. In the course of his academic career, he has

written numerous research papers in high impact scientific journals and he has partici-
pated in several international conferences.

Verónica Bolón-Canedo received her B.S. (2009), M.S.
(2010) and Ph.D. (2014) degrees in Computer Science from the
Universidade da Coruña (Spain). After a postdoctoral fellowship
in the University of Manchester, UK (2015), she is currently an
Associate Professor in the Department of Computer Science of
the Universidade da Coruña. Her main current research areas are
machine learning and feature selection. She is co- author of more
than 100 papers on these topics in international conferences and
journals.
16

https://doi.org/10.1016/j.jocs.2016.07.002
https://doi.org/10.1016/j.jocs.2016.07.002
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibFA31BBF1135D26F883D5B7EE873574A7s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibFA31BBF1135D26F883D5B7EE873574A7s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibFA31BBF1135D26F883D5B7EE873574A7s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibAA7034AE70A357F546A7923798AD17C1s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibAA7034AE70A357F546A7923798AD17C1s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibAA7034AE70A357F546A7923798AD17C1s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibAA7034AE70A357F546A7923798AD17C1s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib5A2A6E497C83958A5203485F04E767A3s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib5A2A6E497C83958A5203485F04E767A3s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib5A2A6E497C83958A5203485F04E767A3s1
https://doi.org/10.3390/s20154111
https://doi.org/10.3390/s20154111
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70224
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70224
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib39E7AD250148FA769452E19BD721B194s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib39E7AD250148FA769452E19BD721B194s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib39E7AD250148FA769452E19BD721B194s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib30056A85B501C571F404C6241977206Ds1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib30056A85B501C571F404C6241977206Ds1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib30056A85B501C571F404C6241977206Ds1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF595405BE50DDB23E8F00B86EEE96A37s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF595405BE50DDB23E8F00B86EEE96A37s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF595405BE50DDB23E8F00B86EEE96A37s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib124823710A9F533C22C673E45D83C29Bs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib124823710A9F533C22C673E45D83C29Bs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib124823710A9F533C22C673E45D83C29Bs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF55DDBBB7C11952CBD8189E3C64E4762s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF55DDBBB7C11952CBD8189E3C64E4762s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF55DDBBB7C11952CBD8189E3C64E4762s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF719322433B09AF3466C8E575A9ED66As1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF719322433B09AF3466C8E575A9ED66As1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib649BDC6F3BA771D2F1C10D2137409D12s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib649BDC6F3BA771D2F1C10D2137409D12s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib649BDC6F3BA771D2F1C10D2137409D12s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib649BDC6F3BA771D2F1C10D2137409D12s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibABB616F593C82DB25EB1D23DFA244297s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibABB616F593C82DB25EB1D23DFA244297s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibABB616F593C82DB25EB1D23DFA244297s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib1484B3F3FA88DF33BE27D5721AD61068s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib1484B3F3FA88DF33BE27D5721AD61068s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib1484B3F3FA88DF33BE27D5721AD61068s1
https://doi.org/10.1016/j.aej.2018.03.006
https://doi.org/10.1016/j.aej.2018.03.006
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibCADD3BF0F458663C2D7F14AD38E2435Bs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibCADD3BF0F458663C2D7F14AD38E2435Bs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibCADD3BF0F458663C2D7F14AD38E2435Bs1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibCADD3BF0F458663C2D7F14AD38E2435Bs1
https://doi.org/10.48550/arXiv.1905.05667
https://doi.org/10.48550/arXiv.1905.05667
https://doi.org/10.1109/TNSM.2020.3034824
https://doi.org/10.1016/j.mex.2019.03.014
https://doi.org/10.1016/j.mex.2019.03.014
http://universitypress.org.uk/journals/cc/20-463.pdf
http://universitypress.org.uk/journals/cc/20-463.pdf
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib5F493918153326419FE8EADF530E2480s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib5F493918153326419FE8EADF530E2480s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bib5F493918153326419FE8EADF530E2480s1
https://doi.org/10.1016/j.patcog.2017.07.020
https://doi.org/10.1007/s10462-019-09682-y
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibEACE5321AAE20E1F3C136396253987A8s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibEACE5321AAE20E1F3C136396253987A8s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibEACE5321AAE20E1F3C136396253987A8s1
https://doi.org/10.1109/TPDS.2017.2758781
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF250AB47F207F641072EC46CF5E9FC67s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF250AB47F207F641072EC46CF5E9FC67s1
http://refhub.elsevier.com/S0743-7315(24)00045-5/bibF250AB47F207F641072EC46CF5E9FC67s1

	A novel framework for generic Spark workload characterization and similar pattern recognition using machine learning
	1 Introduction
	1.1 Motivation
	1.2 Our contribution

	2 Background
	3 Related work
	4 Methodology framework
	4.1 Workload characterization phase
	4.1.1 Data collecting and profiling
	4.1.2 Cumulative sum transformation
	4.1.3 Higher-order polynomial regression

	4.2 Similar pattern recognition phase
	4.2.1 Clustering algorithms
	4.2.2 Feature selection

	5 Experimental design
	5.1 Experimental setup
	5.2 Workload descriptors evaluation metric
	5.3 Clustering evaluation metrics
	5.3.1 Internal metrics
	5.3.2 External metrics

	6 Results
	6.1 Exploring the impact of applying Cusum and higher-order polynomial regressions
	6.2 Analyzing workload descriptors from a geometric perspective
	6.2.1 The curse of dimensionality phenomenon
	6.2.2 Exploring geometrically the variability of workload descriptors

	6.3 Similar pattern recognition
	6.3.1 Exploring the impact of input data sizes by clustering algorithms
	6.3.2 Exploring the impact of clustering by applying unsupervised feature selection

	7 Assessing practical applicability of the framework
	7.1 Analyzing computational algorithmic complexity
	7.2 Architecture foundations

	8 Conclusion
	Abbreviations
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

