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Abstract

Background: The COVID-19 can cause long-term symptoms in the patients after they overcome the disease. Given that this
disease mainly damages the respiratory system, these symptoms are often related with breathing problems that can be
caused by an affected diaphragm. The diaphragmatic function can be assessed with imaging modalities like computerized
tomography or chest X-ray. However, this process must be performed by expert clinicians with manual visual inspection.
Moreover, during the pandemic, the clinicians were asked to prioritize the use of portable devices, preventing the risk of
cross-contamination. Nevertheless, the captures of these devices are of a lower quality.

Objectives: The automatic quantification of the diaphragmatic function can determine the damage of COVID-19 on each
patient and assess their evolution during the recovery period, a task that could also be complemented with the lung
segmentation.

Methods: We propose a novel multi-task fully automatic methodology to simultaneously localize the position of the hemi-
diaphragms and to segment the lung boundaries with a convolutional architecture using portable chest X-ray images of
COVID-19 patients. For that aim, the hemidiaphragms’ landmarks are located adapting the paradigm of heatmap regression.

Results: The methodology is exhaustively validated with four analyses, achieving an 82.31% ± 2.78% of accuracy when
localizing the hemidiaphragms’ landmarks and a Dice score of 0.9688 ± 0.0012 in lung segmentation.

Conclusions: The results demonstrate that the model is able to perform both tasks simultaneously, being a helpful tool for
clinicians despite the lower quality of the portable chest X-ray images.
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Introduction
The COVID-19, caused by the virus severe acute respira-
tory syndrome coronavirus 2, is a multi-organic infectious
disease that, therefore, can affect many parts of the body,
but that mainly affects the lungs and their surroundings.1

COVID-19 is an acute disease that can improve or
worsen very quickly over time, where the patients can
still experience symptoms once they test negative. Those
symptoms can last for several days or weeks, as it
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happens with other pathologies such as the common flu, but
they can also last indefinitely. When this happens, the
patients are diagnosed with persistent post-COVID-19 syn-
drome (PPCS).2 This syndrome can severely affect the life
quality of the patients in some cases. In particular, given
that COVID-19 can affect the surroundings of the lungs,
the diaphragm could be damaged, an important muscle
involved in the breathing process.3 A dysfunctional dia-
phragm (i.e. weak or paralyzed diaphragm) can present
several root causes apart from PPCS, such as stroke,
nervous system diseases (for instance, multiple sclerosis
or amyotrophic lateral sclerosis) or problems that affect
the phrenic nerve.4 Given the great importance of the dia-
phragm in the breathing process, a dysfunction can cause
shortness of breath, sleeping disorders and fatigue, among
other symptoms. The diaphragm dysfunction has been thor-
oughly studied in other common pathologies such as
chronic obstructive pulmonary disease, as a reference.5–7

This dysfunction can be assessed determining the gap
between both sides of the diaphragm, often known as hemi-
diaphragms. This distance can be useful to quantify the
breathing capacity of the patient in a given timepoint and
to understand its evolution through time. This process can
be performed with imaging modalities such as lung ultra-
sound (LU),8 chest X-ray9 or computerized tomography
(CT).10 In particular, chest CT images provide a three-
dimensional captures of the explored area with a great reso-
lution and level of detail. However, this image modality is
more expensive and difficult to perform. Given that the
hardest peaks of the pandemic caused a saturation of the
healthcare services, the preferred solution was chest X-ray
imaging, as it is easier to manage when dealing with a
great amount of patients in a small amount of time. In add-
ition to these difficulties, during the pandemic it was neces-
sary to prioritize the use of portable chest X-ray devices
over fixed machinery.11 This prioritization was motivated
by the fact that portable chest X-ray devices are easier to
decontaminate, a critical element to prevent the risk of
cross-contamination. Moreover, many critical patients
required to remain in bed due to their condition, being
unable to move to the radiology room. In this sense, the
portable devices can be moved to and used where the
patient is placed, an aspect that solves the previously men-
tioned issue. Despite all these advantages, the main issue of
using this kind of devices is the low quality and level of
detail of the captured images. In this context, the develop-
ment of computer-aided diagnosis (CAD) systems can be
studied as an option to help the clinicians quantify the dia-
phragmatic function of a given patient.

Apart from the assessment of the diaphragmatic func-
tion, the segmentation of several structures of interest in
the lungs using imaging modalities as chest X-ray is also
a relevant task. The main aim of these tasks is to automat-
ically obtain the region of interest (ROI) of the image,
removing information that could introduce noise to the

CAD system. This can help to improve the performance
of other tasks such as COVID-19 screening and classifica-
tion in chest X-ray images, scope that has seen a great
amount of contributions since the pandemic began (as ref-
erence,12–19). In this context, some works have been pro-
posed. As reference, the work from Aslan20 proposes a
method to diagnose COVID-19 in this kind of imaging
modality using a DeepLabV3+ architecture for lung seg-
mentation as a part of its pipeline. Other works use the
U-Net architecture to perform the lung segmentation, as is
the case of Rahman et al.21 and Vidal et al.22 In the latter
case, the authors use a U-Net model that was pre-trained
on a dataset of brain MRI images to segment the lungs in
portable chest X-ray images. On the other hand, Alam
et al.23 proposed a modified U-Net architecture that replaces
skip connections with bidirectional convolutional long
short-term memory modules to perform the lung segmenta-
tion task. In particular, related with the diaphragmatic func-
tion, the segmentation of the lungs can be helpful to
determine the boundaries and the position of this structure.
Therefore, to simultaneously perform the localization of the
hemidiaphragms’ landmarks and the lung segmentation can
help the model to do both tasks more accurately. In this
sense, the multi-task learning is a framework commonly
used in the state-of-the-art, that exploits the advantages of
training with two or more simultaneous tasks24. Given the
impact that the COVID-19 has made in the last years,
many works have explored different problems proposing
multi-task paradigms, using chest X-ray images. As refer-
ence, the work of Park et al.25 develops a methodology
composed of a shared backbone based on a transformer
encoder architecture and two different heads to perform
the task of COVID-19 classification and the task of severity
assessment simultaneously. In the case of Malhotra et al.26,
the authors proposed a model called COMiT-Net. This
model has a multi-task structure that simultaneously
detects if an image presents COVID-19 affectation or not
and shows the symptomatic regions with a semantic seg-
mentation. Moreover, the application of multi-task learning
has also been explored with datasets of CT images. As ref-
erence, the work of Polat27 proposes the use of DeepLabV3
+ to segment COVID-19 lesions. The purpose of using
multi-task is to simultaneously segment those lesions with
several levels of detail, ranging from a binary segmentation
(distinguishing between lesion and no-lesion) to a more
detailed semantic segmentation (distinguishing between
different types of lesions such as consolidation or pleural
effusion, etc.).

The characterization of the position and the movement
of the diaphragm is an important task to assess the diaphrag-
matic function. The contributions in this specific scope can
be mainly found in LU or CT images, but there is also some
literature in the field of chest X-ray. As reference, Heidari
et al.28 proposed several preprocessing strategies to
improve the performance of a convolutional neural
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network (CNN) trained to detect COVID-19 in chest X-ray.
As part of these preprocessing strategies, the authors
include a diaphragm removal using a plane threshold.
Overall, it can be obtained that none of the works of the
state-of-the-art have proposed a methodology to localize
the hemidiaphragms’ landmarks with the potential to deter-
mine the gap between both structures of interest or related
biomarkers. Related with this, it is remarkable that the
localization of landmark points is a critical task in many
computer vision problems, such is the case of face landmark
detection.29 This also applies to many biomedical imaging
problems and modalities.30 One straightforward approach
for landmark detection using deep learning is an end-to-end
paradigm that is fed with the input image and returns the
coordinates of the detected points. However, this type of
paradigms lose part of the strengths of the convolutional
network architectures, as the local connectivity or the
weight sharing. To exploit the full capability of this kind
of architectures, many biomedical imaging works have pre-
sented the so-called heatmap regression as part of their
pipeline.31 As reference, Silva et al.32 proposed an auto-
matic pipeline composed of different steps to assess the
severity of petum excavatum in CT images. The main
target of this methodology is to perform several measures
on relevant slices, given different landmarks. In particular,
the authors consider the use of heatmap regression to detect
those landmarks. In Kirnbauer et al.33, the authors develop a
methodology to detect periapical lesions in cone-beam CT
images. For this aim, it is necessary to obtain the coordi-
nates of certain objects, such as the teeth. In this scenario,
the heatmap regression method is used to predict the coor-
dinates. Regarding the scope of retinographic imaging,
several works have proposed the heatmap regression for
tasks such as fovea localization or the localization of the
center of the optic disc. As reference, this is the case of
Meyer et al.34, Hervella et al.35, Al-Bander et al.,36 or
Marin et al37.

To the best of our knowledge, none of the current
state-of-the-art methods address the challenges of localizing
the hemidiaphragms’ landmarks in portable chest X-ray
images of COVID-19 patients. Portable chest X-ray
imaging presents unique challenges compared to fixed
imaging, including lower image quality and the potential
for patient movement during the imaging process.
Additionally, existing methods do not offer a solution for
simultaneously localizing the hemidiaphragms’ landmarks
and segmenting lungs in other pathologies.

To fill this gap in the literature, we propose a novel fully
automatic deep learning methodology that employs a
heatmap regression paradigm to simultaneously localize
the hemidiaphragms’ landmarks and segment the lungs in
chest X-ray images. The generator architecture of our
method is based on a fully convolutional network that con-
sists of an encoder and a decoder. The encoder extracts fea-
tures from the input image, while the decoder generates the

output heatmap for the localization of the hemidiaphragms’
landmarks and the binary mask for lung segmentation. We
introduce an ensemble loss function that combines the dice
loss for lung segmentation and the mean squared error
(MSE) loss for localization of the hemidiaphragms’ land-
marks to facilitate the learning of the generator.

To validate the feasibility and potential of our approach,
we conduct an exhaustive study that includes four different
analyses. Through these analyses, we demonstrate the
effectiveness and potential of our proposed methodology
in addressing the challenges of multi-task localization of
the hemidiaphragms’ landmarks and the precise lung seg-
mentation in portable chest X-ray images of COVID-19
patients.

• Analysis I: Ablation study to find the most appropriate
value of saturation distance for the heatmap regression.
This analysis explores the impact of saturation distance
on the performance of the model, as this parameter is
crucial in heatmap regression. The study involves train-
ing and testing the model with different saturation dis-
tances and comparing the results to determine the
optimal value that produces the best localization of the
hemidiaphragms’ landmarks. In this analysis, we also
include a statistical test to support the given discussions.

• Analysis II: Study of the optimal balance between both
tasks with regard to the training process. In this analysis,
we investigate the best approach to balance the training
process of the two tasks: hemidiaphragms’ landmarks
localization and precise lung segmentation. The study
aims to determine the optimal ratio of weights assigned
to each task during the training process, which results in
the best performance of the overall system.

• Analysis III: Comparison of the performance obtained
by each task separately with the performance achieved
when carrying out both tasks simultaneously. This ana-
lysis is important to demonstrate the added value of
the proposed complete system, as the simultaneous exe-
cution of both tasks enables a more efficient and accurate
localization of the hemidiaphragms’ landmarks and
precise segmentation of the lungs.

• Analysis IV: Qualitative discussion of the outputs
returned by the system. The goal is to determine the
robustness of the model in various scenarios, such as
the presence of abnormalities in the chest X-ray
images, variations in patient positioning, and the impact
of the use of portable chest X-ray images. This analysis
also allows for the identification of potential areas for
improvement and futurework.Moreover, in this analysis,
we have also included the study of the activation maps
provided by the model using the GradCAM algorithm.

The rest of the article is structured as follows. Firstly, the
‘Materials and methods’ section describes the used
dataset (‘CHUAC dataset’ subsection), the overall steps
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of the methodology (“Methodology” subsection) and the
different details of the training process (“Network architec-
ture and training details” subsection). After that, the
“Results and discussion” section details the results obtained
after the experimentation was performed, with their corre-
sponding discussion. Finally, the “Conclusions” section
discusses the main conclusions extracted from the work
development and some possible lines of future works.

Materials and methods
In this section, we detail the aspects of the used dataset in
the “CHUAC Dataset” subsection and the used software
and hardware resources in the “Software and hardware
resources” subsection. Moreover, the description of the
methodology is shown in the “Methodology” subsection
and the details of the training process are described in the
“Network architecture and training details” subsection,
with special focus on those aspects that differentiate each
task and the particular needs for the multi-task paradigm.
Finally, the used evaluation metrics are explained in the
“Evaluation metrics” subsection.

CHUAC dataset

In this work, we have used a dataset of portable chest X-ray
images provided by the Complexo Hospitalario
Universtario de A Coruña (CHUAC), specifically designed
for the purposes of this work. The dataset is exclusively
composed of COVID-19 patients, making a total of 673
images, that were captured during the first peak of the pan-
demic in 2020. The dataset was manually labeled, including
the manual segmentation of both lungs and the position of
the 2 hemidiaphragms’ landmarks, having a total of 1346
labeled lungs. The images were obtained with 2 different
portable machines, whose models are Agfa dr100E and
Optima Rx200. Due to the previously-mentioned risk of
cross-contamination, the captures were performed in iso-
lated medical wings specifically intended to treat
COVID-19 patients. The subjects were captured in supine
position with an anterior-posterior projection. To do so,
the device has a flexible arm with the X-ray tube, that can
be placed over the patient. Then, a recorder plate placed
under the patient is responsible for obtaining the capture.
The resolution of the images ranges from 949 × 827
pixels to 1526 × 1910 pixels. It is remarkable the complex-
ity of the studied scenario, given that the captures must be
carefully filtered from pathological cases that can have
affectation compatible with COVID-19 but caused by
other diseases such as more common types of pneumonia.
Moreover, the critical condition of some patients and the
way the images are captured by the portable devices
imply a great heterogeneity with the position of the sub-
jects, in contrast with the fixed machinery where patients
can be positioned more precisely.

The current study was approved by the corresponding
ethics committee with the code 2020-007. In order to
comply with the ethics requirements, all the patients were
conveniently anonymized before being sent to any external
collaborator. Moreover, all the images were securely stored
in appropriate private servers that restricted the access to
only the members of the project. All the processes were per-
formed following a protocol agreement with the hospital
board. It is important to note that all the cases were visually
inspected by the CHUAC staff, to find evidences of
COVID-19 affectation. This visualization was corroborated
with an RT-PCR test. Some representative examples of the
dataset can be seen in Figure 1.

The used dataset represents a Western countries’ popula-
tion, more precisely, a subset of the Spanish population
located at Galicia. The studied cohort includes a set of
patients with a mean age of 65.99 ± 18.04 years old.
Regarding the sex of the patients, 43.71% are females and
the remaining 56.29% are males. Furthermore, it can be
added that the Galician population has very particular
traits, closely related with the Portuguese population and
even a great north African ancestry, making it notably dif-
ferent to other Spanish regions.38 While creating this
dataset, we have adhered to strict requirements regarding
dataset inclusion. These criteria were carefully designed in
collaboration with the institution that supplied the data, to
ensure that they accurately represent the population that we
pretend to model. Moreover, the mentioned criteria have
taken into account aspects related with biases that could
appear. Particularly, Álvarez-Rodríguez et al.39 suggested
that the variable sex have no significant influence on
COVID-19 involvement, while slight variations could be
evidenced between sexes in certain age groups according
to Statsenko et al.40. Alongside that, both works agree that
the age is a significant variable and must be taken into
account regarding its possible impact on model performance
and the way the results should be discussed. All these ele-
ments were considered in the previously mentioned criteria.

To end this section, it is remarkable that, despite using a
dataset of portable chest X-ray images (and, therefore, with
a lower quality, level of detail and usually with a notable
presence of artifacts) we have developed this methodology
given that previous state-of-the-art works have demon-
strated a great capability handling this kind of input
despite the mentioned issues.41,42

Software and hardware resources

The implementation of the methodology herein presented
was done using Python 3 (Version 3.8.10). Firstly, for
this implementation, it was necessary to use several librar-
ies that are described in Table 1. The main framework
chosen for this work was the library torch alongside torch-
vision, that enables to train and validate computer vision
systems using deep learning models. Both libraries were
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configured with CUDA support, allowing to speed up the
training and inference processes with hardware acceleration.
Moreover, it was also necessary to add some functionalities
from other computer vision and imaging libraries: opencv
and scikit-image. In the same line, other functionalities
were required from scikit-learn, a machine learning library,
to obtain the evaluation metrics. Furthermore, the library
pandas was used to work with CSV files and numpy
enabled to work with arrays in Python. Secondly, we also
specify the characteristics of the used hardware in Table 2.
In particular, the experimentation of this work was performed
using an NVIDIA Tesla A100 with 2 GPUs of 80 GB each
and the driver Version 460.106.00.

Methodology

In this work, we propose the novel multi-task paradigm that
is depicted in Figure 2. This paradigm simultaneously

performs task I of heatmap regression (from which the land-
marks of the hemidiaphragms are later localized) and task II
of precise lung segmentation. For this methodology, it is
necessary to adapt the network architecture and propose a
loss function for each task. All these aspects are deeply
detailed in this section.

Heatmap regression (localization of the landmarks of
the hemidiaphragms). Given the coordinates of an arbitrary
landmark, the heatmap is computed as follows. Initially, it
is necessary to compute the distance between the coordi-
nates of each pixel in the image with the coordinates of
the target landmark. To compute the distance, several
metrics such as Minkowski43, Mahalanonbis44 or cosine
similarity distance45 can be used. In particular, for the meth-
odology herein proposed, we have adapted the paradigm
proposed by Hervella et al.35, as we considered that it
was the most closely related to our proposal. This paradigm
contemplates the use of the Euclidean distance, a

Figure 1. Examples of the CHUAC dataset. First column: original images. Second column: ground truth of the lung regions. Third column:
ground truth of the location of the hemidiaphragms’ points.
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commonly employed approach in regression problems, as it
is a recognized method in the state-of-the-art both for
medical imaging and other domains46–48. Consequently,
the heatmap will be obtained computing the Euclidean dis-
tance between each point of the image and the target. The
Euclidean distance is calculated as expressed in equation
(1):

d(xi, yi) =
������������������������
(xi − xT )2 + (yi − yT )2

√
(1)

where the pair (xi, yi) denotes the coordinates of an arbitrary
point of the image and the pair (xT , yT ) denotes the coordi-
nates of the target landmark.

Nevertheless, the issue of using the expression of the
Euclidean distance is that it can give an excessive

importance to the distant pixels, an aspect that could lead
the model to have a worse performance. To avoid this
effect, an exponential decay is applied. In this way, the
closest pixels will be given a great importance, while this
value will saturate for the most distant pixels. Then, the
heatmap will be calculated following the formula stated in
equation (2):

h(x, y) = tanh (d(x, y)
π

β
) (2)

where h(x, y) refers to the pixel value of the heatmap H at
position (x, y), tanh to the hyperbolic tangent function,
and β is the saturation distance. Figure 3 shows how the sat-
uration distance changes the output of the heatmap regres-
sion for an arbitrary point, obtaining that this parameter
basically defines the radius of the produced heatmap.

Finally, the model will be trained comparing the ground
truth with the predicted output using the expression of the
MSE loss. This predicted output is an image with the
same resolution as the input, given the architectural
design that is being used, where the intensity value of
each pixel represents its probability of being the actual
target point.

Therefore, denoting the loss of the obtained heatmap
regression to localize the hemidiaphragms’ landmarks as
Lhem, the expression is stated in equation (3):

Lhem = 1
N

∑
(Ĥi − Hi)

2 (3)

where Ĥi is an arbitrary heatmap predicted by the model, Hi

its corresponding ground truth, and N is the total number of
samples.

Table 1. Software libraries and versions used to implement the methodology presented in this work.

Name Version Description

grad-cam 1.4.8 Library to visualize the activation maps of the models.

matplotlib 3.6.1 Library used for the graphical visualization of the data.

numpy 1.23.4 Numpy enables the use of arrays in Python.

opencv 4.6.0.66 OpenCV is used to perform computer vision tasks.

pandas 1.5.1 Library that enables the data analysis.

torch 1.12.1+cu116 Library to work with deep learning models.

torchvision 0.13.1+cu116 This library adds additional features to torch library.

scikit-image 0.19.3 This library includes functions to work with images.

scikit-learn 1.1.2 Scikit-Learn enables the work with machine learning models.

scipy 1.9.1 Scipy was used to perform statistical tests

Table 2. Hardware resources that were used to execute the
implementation of the methodology.

Name Description

OS Ubuntu 20.04.5 LTS (Focal Fossa)

Kernel 5.4.0-131-generic

Architecture x86-64

CPU AMD EPYC 7763 64-Core Processor

RAM 503.9 GiB

Hard Disk 1007 GB
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Lung segmentation. The segmentation loss, denoted as
Lsegm was calculated using the expression of the Dice
loss, that is, expressed in equation (4):

Lsegm = 1− 2
|Ŝ ∩ S|
|Ŝ| + |S| (4)

where Ŝ refers to the segmentation predicted by the model
and S is the segmentation ground truth.

For the multi-task learning, it is necessary to define a
joint expression that merges the losses of the two proposed
tasks. The main aim of this expression is to balance the
importance that is given to each task. This balance
becomes more important due to the fact that the loss of
each task can range in a different magnitude. For that
reason, two weight values must be defined, λhem and λsegm
for the heatmap regression loss and the segmentation loss,
respectively. Then, the formula of the joint loss is expressed
as stated in equation (5):

L joint = λhem ∗ Lhem + λsegm ∗ Lsegm (5)

Network architecture and training details

Regarding the used network architecture, we adapt the
original U-Net structure49 given its suitability for
medical imaging tasks. This architecture is detailed in
Figure 4. The U-Net has an encoder–decoder structure.
The encoder part has four downsampling blocks
(blocks 1–4 in the diagram), while the decoder is com-
posed of four upsampling blocks (blocks 6–9 in the
diagram). The aim of block 5 is to join both parts.
Each downsampling block has two convolutional layers
(with a kernel of size 3 × 3 followed by a ReLU activa-
tion function) and a max pooling layer (with a kernel
of 2 × 2 and a stride with size 2). Regarding the
decoder part of the network, each upsampling block is
composed of three layers, with two convolutional
layers (having the same characteristics as in the case of
the encoder part) and one transposed convolution layer
(with a kernel of 2 × 2 and a stride of size 2). For the pur-
poses of this work, it is necessary to adapt the U-Net
architecture to a multi-task paradigm. Therefore, we

Figure 2. Description of the different tasks performed in the methodology, being heatmap regression task I (that is then used for the
detection of the points of the hemidiaphragms) and precise lung segmentation task II.

Figure 3. Examples of how the saturation distance β correlates with
the heatmap regression output. (a) β = 100 px and (b) β = 200 px.
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add two different heads at the output of the network, one
for the heatmap regression and another for the precise
lung segmentation.

The pipeline of the training process for each task was
inspired in previous similar works50–52. In particular, it
was performed during 200 epochs, with a learning rate of
α = 10−5 optimizing with the ADAM algorithm53. The
dataset was split using a random holdout with the 60% of
the samples for training (setting up a mini-batch size of
1), 20% of the samples for validation, and 20% of the
samples for test. As data augmentation, we perform bright-
ness and contrast changes with a probability of 50%, setting
up a factor that is randomly selected from range [0.5, 1.5].
Moreover, we also apply a random rotation between −30◦

and 3◦ with a probability of 50% and a horizontal flip with a
probability of 25%. These transformations are all applied on
both input and target images, except in the case of the
brightness and contrast changes, given that applying this
type of transformation on output images is irrelevant for
the learning process of the model. Finally, it is important
to remark that the training process is repeated five times
with a different random splitting each time, to understand
the global behavior of the model, so the results can be
reported with the mean and the standard deviation values.
This enables to demonstrate the stability and robustness
of the proposal in the different splits.

Finally, in order to provide explainability in our study,
we have also included a qualitative evaluation of the

model with the activation maps of the model. More pre-
cisely, we have considered the gradient-weighted
class activation mapping algorithm (Grad-CAM or
GradCAM)54. Furthermore, it is important to note that, in
this study, we report the activation map obtained at the
output of the fourth encoder blocks.

Evaluation metrics

To analyze the capabilities of the trained models, we use the
metrics that are usually considered in the state-of-the-art.
Given that the nature of the two performed tasks is different,
the considered evaluation metrics will be particular for each
case. With regard to task I, the localization of the landmarks
of the hemidiaphragms is evaluated using a similar
approach as the one proposed by Marin et al.37.
Particularly, the accuracy will be measured as the number
of points that fall below a threshold divided by the total
number of points. To make a more exhaustive analysis,
this threshold will be progressive.

In the case of lung segmentation, we considered the
same metrics as by Vidal et al.22: area under the ROC
curve (AUC-ROC), accuracy, precision, recall (heavily
used metrics in previous biomedical studies55,56), Dice
coefficient, and Jaccard index. Denoting TP as the true posi-
tives, TN as the true negatives, FP as the false positives, FN
as the false negatives, Ŝ as the segmentation ground truth,
and S as the output of the segmentation model, the

Figure 4. Diagram of the U-Net architecture, adapted for the multi-task paradigm proposed in this work. This architecture is composed of
10 different parts, with four downsampling blocks (encoder), four upsampling blocks (decoder), a block that joins the encoder with the
decoder and a final 10th block with a head for each performed task.
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Table 3. Results of the analysis I, showing the performance of the localization of the hemidiaphragms’ landmarks given the saturation
distance β of the heatmap regression, considering different thresholds (R = 100). The highest performing configuration for each threshold is
highlighted in bold.

Accuracy (%)

β (px) Lung R R/2 R/5 R/10

1 Right 68.51 ± 13.14 64.18 ± 13.31 55.37 ± 12.89 39.70 ± 9.64

Left 59.25 ± 10.80 52.39 ± 10.46 42.39 ± 9.27 29.10 ± 6.62

Both 63.88 ± 11.97 58.28 ± 11.89 48.88 ± 11.08 34.40 ± 8.13

10 Right 99.25 ± 0.82 98.96 ± 0.60 94.18 ± 2.08 81.34 ± 3.27

Left 96.12 ± 1.66 92.24 ± 2.14 86.87 ± 1.80 68.06 ± 0.56

Both 97.69 ± 1.24 95.60 ± 1.37 90.52 ± 1.94 74.70 ± 1.92

25 Right 99.40 ± 0.56 98.96 ± 0.60 94.63 ± 0.87 84.33 ± 2.36

Left 97.91 ± 0.99 95.67 ± 2.47 90.30 ± 2.79 74.48 ± 2.47

Both 98.66 ± 0.78 97.31 ± 1.53 92.46 ± 1.83 79.40 ± 2.41

50 Right 99.85 ± 0.30 99.70 ± 0.37 95.67 ± 0.87 85.52 ± 2.14

Left 98.81 ± 1.01 97.76 ± 1.25 92.09 ± 1.01 76.87 ± 1.57

Both 99.33 ± 0.66 98.73 ± 0.81 93.88 ± 0.94 81.19 ± 1.85

75 Right 100.00 ± 0.00 99.85 ± 0.30 95.82 ± 1.30 84.48 ± 1.45

Left 99.40 ± 0.56 98.36 ± 0.56 94.48 ± 1.01 78.21 ± 3.28

Both 99.70 ± 0.28 99.10 ± 0.43 95.15 ± 1.16 81.34 ± 2.37

100 Right 100.00 ± 0.00 99.85 ± 0.30 96.57 ± 1.21 85.97 ± 2.23

Left 99.25 ± 0.47 98.81 ± 0.37 94.63 ± 3.11 78.96 ± 3.38

Both 99.63 ± 0.24 99.33 ± 0.34 95.60 ± 2.16 82.46 ± 2.81

125 Right 100.00 ± 0.00 100.00 ± 0.00 96.57 ± 1.54 87.61 ± 1.92

Left 99.70 ± 0.37 99.10 ± 0.56 94.78 ± 2.06 80.00 ± 3.64

Both 99.85 ± 0.19 99.55 ± 0.28 95.67 ± 1.80 83.81 ± 2.78

150 Right 99.85 ± 0.30 99.70 ± 0.37 96.72 ± 1.01 85.97 ± 1.45

Left 99.55 ± 0.37 99.10 ± 0.73 95.37 ± 1.45 80.15 ± 3.19

Both 99.70 ± 0.34 99.40 ± 0.55 96.04 ± 1.23 83.06 ± 3.19

175 Right 100.00 ± 0.00 99.85 ± 0.30 97.01 ± 0.67 86.42 ± 1.45

(continued)
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previously-mentioned metrics are defined as follows:

Accuracy = TP+ TN

TP+ TN + FP+ FN
(6)

Dice = 2 ×
∑

(S × Ŝ)∑
S+∑

Ŝ
(7)

Jaccard =
∑

(S × Ŝ)

(
∑

S+∑
Ŝ)−∑

(S × Ŝ)
(8)

Precision = TP

TP+ FP
(9)

Recall = TP

TP+ FN
(10)

The AUC-ROC is an exhaustive measure that assess the
evaluation of the global performance of a model using dif-
ferent operation points57.

Results and discussion
In this section, we present the obtained results of the differ-
ent designed experimentation. In particular, we performed
four different analyses. The first analysis aims to find the
most satisfactory saturation distance value (β) for the
heatmap regression process, being detailed in the
“Analysis I” subsection, including a statistical test to find
significant differences among the results. The purpose of
the second analysis is to find the most appropriate balance
between the task of heatmap regression and the task of
precise lung segmentation regarding the multi-task para-
digm, being described in the “Analysis II” subsection. In
the case of the third analysis, the target is to compare the
performance obtained on each task when conducted indi-
vidually and when they are complemented with the other
one, being deeply explained in the “Analysis III” subsec-
tion. Finally, the aim of the fourth analysis, explained in
the “Analysis IV” subsection, is to show and discuss

some of the most representative results under a qualitative
point of view, including an analysis of the activation
maps provided by the network. To end, the “Comparison
with the state-of-the-art” subsection provides a discussion
comparing the results herein reported with other closely
related state-of-the-art works while the “Limitations of the
study” subsection explains the main limitations that we
have found in our work.

Analysis I: Ablation study to find the most
satisfactory saturation distance value (β)

In this analysis, we study the impact of the saturation dis-
tance (β) on the performance of the heatmap regression
task. This parameter has been thoroughly studied, with 10
different values: β = 1 px, β = 10 px, β = 25 px, β = 50
px, β = 75 px, β = 100 px, β = 125 px, β = 150 px, β =
175 px, and β = 200 px. Moreover, it is necessary to
define the thresholds to compute the accuracy as discussed
in the “Evaluation metrics” subsection, that in this work
have been set to R, R/2, R/5, and R/10, where R corresponds
with 100 px (which is approximately half of the mean width
of the lungs). The results obtained for this analysis are
detailed in Table 3, showing the individual performances
of each lung and a combination between both lungs.
Moreover, this table also shows the performance given
the four considered thresholds. Globally, as expected, the
performance of the model is lower when considering a
more restrictive threshold to compute the accuracy. These
accuracy values are notably low for β = 1 px, with a com-
bined mean accuracy of 34.40% ± 8.13 for threshold R/10,
48.88% ± 11.08% for threshold R/5, 58.28% ± 11.89% for
threshold R/2 and 63.88% ± 11.97% for threshold R. As a
general conclusion from this first β of the ablation study, the
model is unable to detect the points accurately in more than
half of the cases given the two most restrictive thresholds
and unable to detect at least the 70% of the points with
the two less restrictive thresholds. These poor results are

Table 3. Continued.

Accuracy (%)

β (px) Lung R R/2 R/5 R/10

Left 99.55 ± 0.37 99.10 ± 0.56 94.63 ± 2.56 79.70 ± 2.23

Both 99.78 ± 0.19 99.48 ± 0.43 95.83 ± 1.62 83.06 ± 1.84

200 Right 100.00 ± 0.00 99.85 ± 0.30 96.87 ± 0.73 86.12 ± 1.92

Left 99.85 ± 0.30 99.10 ± 0.73 95.97 ± 1.92 78.66 ± 4.18

Both 99.93 ± 0.15 99.48 ± 0.52 96.42 ± 1.33 82.39 ± 3.05
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caused by the small extension of the generated heatmap,
that is exclusively restricted to the target landmarks them-
selves, making it difficult to exploit all the strengths of a
fully convolutional approach. Additionally, it is interesting
to note that the accuracy is notably lower in the case of the
left lung, an aspect that compromises the combined mean
accuracy value. This is directly related with the specific
characteristics of the human anatomy, as the heart is
placed towards the left side of the body, making the delimi-
tation of the left lung more difficult.

From β = 1 px onward, there is a considerable improve-
ment of the combined accuracy, with a 74.70% ± 1.92%
and a 90.52% ± 1.94% in the case of β = 10 px given
the most restrictive thresholds. Moreover, for the two less
restrictive thresholds, the combined mean accuracy
improves in more than 30%, with a 95.60% ± 1.37% and
a 97.69% ± 1.24%, respectively. This improvement can
also be seen in both lungs individually. In comparison
with β = 1 px, the accuracy of the left lung is also lower
than the accuracy of the right lung. Given the saturation dis-
tance β = 25 px, the localization of the points is more
accurate, with a combined mean accuracy improvement of
4.70% for the most restrictive threshold. For R/5, there is
also an improvement of 1.94%, 1.71% for R/2 and 0.97%
for R.

The model keeps improving for β = 50 px, with an
accuracy raise of 1.79% for the most restrictive threshold,
1.42% for R/5, 1.42% for R/2 and 0.67% for R in compari-
son with β = 25 px. From this value of β onward, some
improvement can still be seen in some thresholds, but
others starts to stall. In particular, for β = 75 px, the most
restrictive threshold shows a combined mean accuracy of
81.34% ± 2.37% (an improvement of 0.15% in comparison
with β = 50 px) and of 95.15% ± 1.16% given the thresh-
old R/5 (an improvement of 1.27% in comparison with β =
50 px). In addition, the threshold R/2 shows a 99.10% ±
0.43% while the threshold R shows a 99.70% ± 0.28%.
This means an improvement of 0.37% in comparison with
their respective threshold when β = 50 px. From β = 75
px, the changes are residual in almost all cases, showing
that this value of β is appropriate to detect the points accur-
ately given the three less restrictive thresholds, achieving a
combined mean accuracy greater than 95.15% in all cases.
However, considering the threshold R/10, some important
changes can still be seen, having a combined mean accur-
acy of 82.46% ± 2.81% for β = 100 px, 83.81% ±
2.78% for β = 125 px, 83.06% ± 3.19% for β = 150 px,
83.06% ± 1.84% for β = 175 px, and 82.39% ± 3.05%
for β = 200 px. Considering this threshold, the highest per-
formance is achieved with β = 125 px. From this value of β
onwards, the performance shows a trend of stabilization.
Thus, it can be concluded that β = 125 px is enough to
capture the whole width of each hemidiaphragm and, there-
fore, bigger values of β provide no improvements.
Considering all these discussed points, and given that the

most significant metrics in this problem are the most
restrictive, it is concluded that the most appropriate value
of β is 125 px.

Overall, the results presented in this analysis demon-
strate that the saturation distance β has a great impact on
the performance of the heatmap regression. In particular,
the smallest values of β have a much lower performance,
specially in the case of β = 1 px. This occurs because,
when β is too low, the model is unable to capture the par-
ticular characteristics of the closer regions where the hemi-
diaphragms are located. As this increases the uncertainty,
the model fails to precisely find the landmarks. Moreover,
another remarkable conclusion that can be extracted from
the results is that the performance of the detection at the
left lung tends to be lower than at the right lung. This is
probably due to the location of the heart, which is tilted
towards the left part of the body, making the lung detection
more difficult and, therefore, the left lung detection as well.
Other outstanding aspect of the obtained results is that we
have obtained a high performance despite using a dataset
of images provided by portable devices, with a low
quality and level of detail.

Apart from the presented results, this analysis also
includes a statistical test. To that end, we have used the
method of Wilcoxon signed-rank. This kind of statistical
test determines if two series of data follow the same distri-
bution (where p-value is >0.05 and, therefore, the null
hypothesis is accepted) or if it exists a statistically signifi-
cant difference (where p-value is smaller or equal to 0.05
and, therefore, the null hypothesis is rejected). To evaluate
the ablation study presented in this analysis, the experi-
ments have been grouped by their value of β, creating a
set of arbitrary pairs (βi, β j), thus allowing to perform a
one versus one comparison for each of those pairs. These
results can be seen in Table 4, making three independent
comparisons: considering only the distance errors for the
left lung, only the distance errors for the right lung and com-
bining the distance errors of both lungs together. It can be
obtained that the three smallest values of β (1 px, 10 px,
and 25 px) obtain a significantly higher mean distance
error when being compared with the rest of approaches
(and, therefore, a worse performance). The remaining β
values obtain a statistically similar performance among
them. Interestingly, when in an arbitrary comparison is
met that βi > β j, the performance of βi is always higher
than β j or no statistically different. Moreover, except in
some particular cases, the statistical evidence shows an
agreement for the three comparisons (left lung, right lung,
and both lungs). Globally, the statistical evidence supports
some of the discussions that were obtained from Table 4. In
particular, the smallest β values have a lower performance
in comparison with the rest of the cases (especially when
considering β = 1 px), while the performance starts to be
notably stable around 50 px, when the statistical compari-
sons show no significant differences in general.
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Analysis II: Analysis of the balance between tasks in
the multi-task paradigm

Given that the performed tasks are closely related but differ-
ent, it is critical to balance the contribution that each one
brings to the loss. Setting up the weights of the losses is
also important as each one could range in a different mag-
nitude. For that reason, we have designed an exhaustive
analysis to determine the most balanced configuration.
Totally, we have performed eight different experiments,
each one with a particular balance of the loss components.
In particular, each experiment progressively gives more
weight to lung segmentation while giving less importance
to the heatmap regression. Denoting Λi as the pair of loss
weights (λhem, λsegm) of an arbitrary experiment i, the config-
uration of the eight experiments is as follows: Λ1 = (0.100,
0.900), Λ2 = (0.300, 0.700), Λ3 = (0.500, 0.500), Λ4 =
(0.700, 0.300), Λ5 = (0.900, 0.100), Λ6 = (0.950, 0.050),
Λ7 = (0.975, 0.025), and Λ8 = (0.990, 0.010). To evaluate
these experiments, we have used the same criteria as in the
previous analysis. This means that a landmark localization
will be considered as correct if the distance between the pre-
diction and the ground truth falls below a threshold.
Therefore, following the same approach as in the analysis
I, the chosen thresholds will be R, R/2, R/5, and R/10,
where R = 100 px. In the case of the precise lung

segmentation, we have performed an evaluation of the
global performance obtained on each configuration using
the Dice score.

Firstly, Table 5 shows the results of the localization of the
hemidiaphragms’ landmarks given the different configura-
tions of loss weights. There, it can be seen that, given
the two less restrictive thresholds (R and R/2), the mean
combined accuracy is at least 99.03% for all the cases.
It is interesting to remark this aspect in the case of
Λ1 = (0.100, 0.900), where the heatmap regression task is
given the lowest weight. Given the threshold R/10, the per-
formance barely surpasses 60% of combined mean accuracy
and, given the threshold R/5, this accuracy is the only one of
the whole ablation study to fall below 90% (this even occurs
for both lungs). However, the performance for R and R/2
matches the values obtained by the rest of the configurations.
This is significant of the contribution that the precise lung
segmentation task brings in the multi-task paradigm, as it
helps to find the extension of the hemidiaphragms.

With regard to the most restrictive thresholds (R/10 and
R/5) the differences in accuracy are more noticeable. The
combined mean accuracy improves from 60.82% to
76.72% with λhem = 0.300 in the case of R/10. Moreover,
given the threshold R/5, this performance improvement
means a combined mean accuracy raise from 88.43% to
94.48%. From this configuration onward, the two less

Table 4. Results obtained from performing the Wilcoxon signed-rank test comparing the distance errors among the different β values
evaluated in the ablation study.

1 px 10 px 25 px 50 px 75 px 100 px 125 px 150 px 175 px 200 px

1 px = (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑

10 px · = (≈, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑

25 px · · = (⇑, ⇑) ⇑ (≈, ⇑) ⇑ (⇑, ⇑) ⇑ (⇑, ⇑) ⇑ (≈, ⇑) ⇑ (≈, ⇑) ⇑ (⇑, ⇑) ⇑

50 px · · · = (≈, ≈) ≈ (≈, ≈) ≈ (≈, ≈) ≈ (≈, ⇑) ≈ (≈, ≈) ≈ (≈, ≈) ≈

75 px · · · · = (≈, ≈) ≈ (≈, ≈) ≈ (≈, ≈) ≈ (≈, ≈) ≈ (≈, ≈) ≈

100 px · · · · · = (≈, ≈) ≈ (≈, ≈) ≈ (≈, ≈) ≈ (≈, ≈) ≈

125 px · · · · · · = (≈, ⇑) ≈ (≈, ≈) ≈ (≈, ≈) ≈

150 px · · · · · · · = (≈, ≈) ≈ (≈, ≈) ≈

175 px · · · · · · · · = (≈, ≈) ≈

200 px · · · · · · · · · =

For each point in the matrix, the symbol = indicates the comparisons, where β values are equal (on the main diagonal), while ≈ presents a comparison with
no statistically significant difference and ⇑ is used to represent the situations where there is a statistically significant difference, pointing the β value that
obtains the best performance (i.e. the one with a smaller distance error). The significant difference is determined by the test with a p-value smaller than 0.05.
Except the main diagonal, the rest of cells show the results of the test only considering the distance errors for the first lung, only considering the errors for the
second lung and considering the distance errors of both lungs together.
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restrictive thresholds show a stabilized performance when
λhem is increased. Moreover, from λhem = 0.500 to
λhem = 0.700, the threshold R/5 shows an accuracy raise

from 94.93% to 96.04%, with a trend of convergence
after that. The greatest change in terms of performance is
noticeable with the most restrictive threshold R/10. In

Table 5. Results of the analysis II regarding the localization of the hemidiaphragms’ landmarks in the multi-task paradigm, showing the
performance of this task given different combinations of loss weights. The highest performing configuration for each threshold is highlighted
in bold.

Λ (loss weights) Accuracy (%)

λhem λsegm Lung R R/2 R/5 R/10

0.990 0.010 Right 100.00 ± 0.00 100.00 ± 0.00 96.72 ± 1.38 85.52 ± 3.70

Left 99.55 ± 0.60 98.96 ± 0.37 94.78 ± 2.21 77.46 ± 3.48

Both 99.78 ± 0.30 99.48 ± 0.19 95.75 ± 1.80 81.49 ± 3.59

0.975 0.025 Right 100.00 ± 0.00 99.85 ± 0.30 96.72 ± 0.76 87.01 ± 3.08

Left 99.70 ± 0.37 99.40 ± 0.56 95.07 ± 2.14 80.00 ± 3.35

Both 99.85 ± 0.19 99.63 ± 0.43 95.90 ± 1.45 83.51 ± 3.22

0.950 0.050 Right 100.00 ± 0.00 100.00 ± 0.00 97.91 ± 1.10 86.87 ± 0.76

Left 99.55 ± 0.37 99.40 ± 0.30 95.37 ± 1.28 77.76 ± 3.73

Both 99.78 ± 0.19 99.70 ± 0.15 96.64 ± 1.19 82.31 ± 2.25

0.900 0.100 Right 100.00 ± 0.00 99.70 ± 0.37 96.72 ± 0.60 86.57 ± 2.50

Left 99.85 ± 0.30 99.10 ± 0.30 95.67 ± 2.02 78.81 ± 4.54

Both 99.93 ± 0.15 99.40 ± 0.34 96.19 ± 1.31 82.69 ± 3.52

0.700 0.300 Right 100.00 ± 0.00 99.85 ± 0.30 96.57 ± 1.12 83.13 ± 4.83

Left 99.55 ± 0.37 98.96 ± 0.37 95.52 ± 1.42 76.72 ± 3.18

Both 99.78 ± 0.19 99.40 ± 0.34 96.04 ± 1.27 79.93 ± 4.01

0.500 0.500 Right 100.00 ± 0.00 100.00 ± 0.00 95.82 ± 1.92 82.69 ± 1.66

Left 99.85 ± 0.30 99.10 ± 0.30 94.03 ± 2.63 73.28 ± 3.70

Both 99.93 ± 0.15 99.55 ± 0.15 94.93 ± 2.28 77.99 ± 2.68

0.300 0.700 Right 100.00 ± 0.00 100.00 ± 0.00 95.22 ± 1.01 80.75 ± 4.41

Left 99.70 ± 0.37 98.96 ± 0.76 93.73 ± 1.92 72.69 ± 4.29

Both 99.85 ± 0.19 99.48 ± 0.38 94.48 ± 1.47 76.72 ± 4.35

0.100 0.900 Right 100.00 ± 0.00 100.00 ± 0.00 89.70 ± 2.64 63.88 ± 5.91

Left 99.55 ± 0.37 98.06 ± 0.60 87.16 ± 2.89 57.76 ± 2.61

Both 99.78 ± 0.19 99.03 ± 0.30 88.43 ± 2.77 60.82 ± 4.26
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particular, there is a consistent improvement from λhem =
0.100 to λhem = 0.900, with a 60.82% ± 4.26% in the
first case and an 82.69% in the latter case. From there, the
accuracy converges, despite obtaining the highest perform-
ance at λhem = 0.975, with a value of 83.51% ± 3.22%. In
this analysis, we choose λhem = 0.950 and λsegm = 0.050 as
the optimal configuration. This selection was done given
that this is the only configuration that achieves the highest
accuracy given two different thresholds (R/2 and R/5)
while keeping a competitive performance in the other
2. Globally, it can be concluded that giving a much
higher weight to the heatmap regression than to the lung
segmentation is important for the model to effectively local-
ize the landmarks of the hemidiaphragms.

With regard to the task of precise lung segmentation, the
global results of this ablation study in terms of Dice score
can be seen in Table 6. Overall, it can be seen that all con-
figurations are appropriate for the lung segmentation task,
given that the lowest value of Dice is 0.9665 ± 0.0006,
achieved when λsegm = 0.010. However, a slight trend of
improvement can be seen when λsegm increases, that keeps
considerably stable from λsegm = 0.100 to λsegm = 0.900.
In fact, the most appropriate configuration (i.e. the one
that achieves the highest performance overall) is λsegm =
0.700 with a Dice score of 0.9695 ± 0.0010. Therefore,
under a global point of view, the performance of the lung
segmentation is slightly higher when the weight given to
this task is also higher but, nevertheless, the performance
of this task is satisfactory, independently of the configur-
ation. This can be influenced by the fact that each loss com-
ponent ranges in a different magnitude. In particular, the

loss of this task has a considerably higher magnitude in
comparison with the heatmap regression. In this way, the
drop in performance is only noticeable when the weight
λsegm is notably close to 0. Taking into account the great
importance of the hemidiaphragms’ landmarks localization
in this work, the configuration Λ = (0.950, 0.050) is
chosen as the highest performing for the multi-task para-
digm, considering that it obtained the greatest combined
mean accuracy values for two different thresholds while
keeping a competitive performance in the other
2. Globally, similarly as in the previous approach, the
obtained performance is promising despite the low quality
and level of detail provided by the portable chest X-ray
captures.

Analysis III: Comparison between the performance of
the tasks separately and simultaneously

For this third analysis, we compare the performance of the
tasks (hemidiaphragms’ landmarks localization and precise
lung segmentation) when they are performed individually
and when they are complemented reciprocally. To do so,
we consider the best performing configuration for the
heatmap regression task, Λ = (0.950, 0.050). The evalu-
ation of the hemidiaphragms’ landmarks detection will be
performed with the same metrics as in the previous analysis
(with the thresholds R, R/2, R/5, and R/10, where R = 100
px) and, in the case of the precise lung segmentation, the
comparison will be performed with more detailed metrics
(using Jaccard, AUC, accuracy, precision, and recall
appart from Dice score). Figure 5 shows the evolution of
all the elements that compose the training and validation
losses (the loss of the heatmap regression, the loss of the
lung segmentation, and the resultant joint loss). The
overall conclusion is that all the components achieve con-
vergence in terms of validation loss. The heatmap regres-
sion loss achieves convergence around the epoch 75
while the segmentation loss starts to stabilize at approxi-
mately the epoch 100. Therefore, the joint loss also con-
verges at around the epoch 100, from where the
validation loss keeps stable.

On the other hand, the evolution of the losses for the
heatmap regression when it is performed individually can
be seen in Figure 6. This evolution shows an improvement
of the training and validation losses until around epoch 75,
where the validation starts to stabilize. Moreover, the com-
parison of the performance obtained when the task is carried
out individually and when it is complemented with the
precise lung segmentation is shown in Table 7. There, it
can be seen that the accuracy values are closely similar.
In particular, when the tasks complement each other, the
performance is slightly worse in terms of combined mean
accuracy given the thresholds R and R/10. However, there
is a slight performance improvement considering the
thresholds R/2 and R/5.

Table 6. Results of the analysis II regarding the task of precise lung
segmentation given the loss weights of each task in the multi-task
paradigm. The results of the highest performing configuration are
highlighted in bold.

Λ (loss weights)
Dice

λhem λsegm

0.990 0.010 0.9665 ± 0.0006

0.975 0.025 0.9683 ± 0.0008

0.950 0.050 0.9688 ± 0.0012

0.900 0.100 0.9693 ± 0.0008

0.700 0.300 0.9692 ± 0.0011

0.500 0.500 0.9694 ± 0.0011

0.300 0.700 0.9695 ± 0.0010

0.100 0.900 0.9694 ± 0.0013
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Figure 5. Training and validation losses evolution for the multi-task paradigm. The losses are shown with a logarithmic scale to improve
their visualization. (a) Evolution of the joint loss, (b) evolution of the loss for the heatmap regression task, and (c) evolution of the loss for
the segmentation task.
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With regard to the precise lung segmentation, firstly,
the evolution of the training and validation losses can be
seen in Figure 7. There, it can be seen that the validation
loss keeps improving until it reaches the stability around
epoch 50. On the other hand, the comparison of the per-
formance when the task is conducted individually and
when it is complemented with the heatmap regression
is shown in Table 8. From there, it can be extracted

that the multi-task paradigm obtains a competitive
performance, with close values in all metrics and a
slight improvement in terms of AUC, with a raise from
97.66% ± 0.18% to 98.21% ± 0.18%. Overall, the
system is able to accurately perform both tasks despite
the particular characteristics of the portable chest
X-ray images, in the same line as in the previous
analyses.

Figure 6. Evolution of the loss during the learning process for the heatmap regression given a saturation distance of β = 125 px with the
training and the validation subsets, describing a stabilization of the validation loss around the epoch 75. This evolution is shown with a
logarithmic scale to improve its visualization.

Table 7. Comparison of the results obtained when the localization of the hemidiaphragms’ landmarks is performed individually and when it
is complemented with the precise lung segmentation given the most appropriate configuration of the balance between tasks. The highest
performances for each threshold are highlighted in bold.

Accuracy (%)

Lung R R/2 R/5 R/10

Individually performed

Right 100.00 ± 0.00 100.00 ± 0.00 96.57 ± 1.54 87.61 ± 1.92

Left 99.70 ± 0.37 99.10 ± 0.56 94.78 ± 2.06 80.00 ± 3.64

Both 99.85 ± 0.19 99.55 ± 0.28 95.67 ± 1.80 83.81 ± 2.78

Complemented with lung segmentation

Right 100.00 ± 0.00 100.00 ± 0.00 97.91 ± 1.10 86.87 ± 0.76

Left 99.55 ± 0.37 99.40 ± 0.30 95.37 ± 1.28 77.76 ± 3.73

Both 99.78 ± 0.19 99.70 ± 0.15 96.64 ± 1.19 82.31 ± 2.25
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Analysis IV: Qualitative analysis of the obtained
results

In this last analysis, we study the obtained results under a
qualitative point of view. For this specific analysis, we
have selected the best model that was chosen in the analysis
III given its suitability for the localization of the hemidiaph-
ragms’ landmarks: Λ = (0.950, 0.050). Some examples of
the model output can be seen in Figure 8. This figure
depicts the input image and their corresponding outputs:
the mask obtained for precise lung segmentation and the
heatmap that was regressed from the original input. The
binary image corresponding to the lung segmentation
shows well-defined boundaries and shapes that correspond
with a lung-like structure. Moreover, in the case of the
heatmap regression, it can be seen that the output of the
model depicts two rounded shapes darker at their center

and lighter at their boundaries, placed in the proper pos-
ition, that is, around the hemidiaphragms that must be loca-
lized. Finally, these examples also show the result of
executing the method to solve both tasks simultaneously.
In those results, the ROIs of the lungs are appropriately
defined and the coordinates of the predicted point are pre-
cisely close to their corresponding ground truth. From
this, it can be concluded that the proposed methodology
is able to simultaneously perform both tasks with a high
accuracy. In this last analysis, we can extract the same
idea as in the previous cases: the system performs the
tasks accurately despite the limited level of detail and
quality of the portable chest X-ray captures.

Regarding the evaluation of the obtained activation
maps, some representative examples can be seen in
Figure 9. There, it is shown that the model gives a greater
activation to those regions of the image located around

Table 8. Comparison of the results obtained in the task of precise lung segmentation when it is performed individually and when it is
complemented with the heatmap regression, using the most suitable configuration of the balance between tasks. The best performing
results are highlighted in bold.

Dice (%) Jaccard (%) AUC (%) Accuracy (%) Precision (%) Recall (%)

Individually performed

96.98 ± 0.06 94.21 ± 0.10 97.66 ± 0.18 98.35 ± 0.03 97.11 ± 0.24 96.94 ± 0.25

Complemented with heatmap regression

96.88 ± 0.12 94.00 ± 0.22 98.21 ± 0.18 98.29 ± 0.08 97.07 ± 0.40 96.76 ± 0.32

Figure 7. Evolution of the training and validation losses for the task of precise lung segmentation. The values are shown in logarithmic
scale to improve their visualization.
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the lower part of the lungs, with a noticeable (but much
lower) level of activation in the contours of the lungs.
This defines the main priorities of the model, that gives
more importance to locate the points of the hemidiaphragms
rather than the contour of the lungs (very relevant for the
lung segmentation).

Comparison with the state-of-the-art

Regarding the comparison with other works, it is important
to clarify some important challenges that must be faced.
Our contribution provides a unique, fully automatic multi-
task approach that simultaneously identifies the location
of the hemidiaphragms and achieves a precise lung

segmentation. However, despite performing both tasks,
the primary innovation of our work resides in the detection
of the hemidiaphragms’ landmarks, while the lung segmen-
tation serves as an auxiliary task. Given the pioneering
nature of our work, a direct comparison with existing
methods presents some important challenges. This is pri-
marily due to the lack of datasets that incorporate manual
ground truth labels that fit to the specific tasks that are per-
formed in this work. Nevertheless, a comparison with other
previous lung segmentation methods can be performed. In
particular, our work achieves a dice score of 0.9688 (com-
plementing the task of lung segmentation with the heatmap
regression), while the work of Vidal et al.22, that uses port-
able chest X-ray images from a similar dataset as the one

Figure 8. Examples of the multi-task paradigm proposed in this work. Each column represents a particular example. First row: input
images that are fed to the model. Second row: precise lung segmentation results. Third row: results of the heatmap regression. Fourth
row: simultaneous segmentation and the results of the localization of the hemidiaphragms’ landmarks. The blue point denotes the ground
truth and the red point denotes the point predicted by the model.
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considered in this work, reports a dice score of 0.9447
using. Moreover, other works with different public datasets
of images obtained with fixed chest X-ray devices achieve a
dice score of 0.942121 and around 0.950023. As it can be
seen, the comparison indicates that our results are consistent
with the metrics reported by established research, and even
slightly higher than other similar approaches. Once again, it
is necessary to point out that this comparison has been in
different conditions, with different datasets and experimen-
tal schemes and, despite trying to make the fairest compari-
son possible, it must be taken cautiously. On the other side,
regarding the localization of the hemidiaphragms’ land-
marks, the unique premise of our research means that
there are no directly comparable studies in the existing
literature.

Limitations of the study

In this study, there are several areas where we can point out
some limitations. Firstly, the used dataset is representative
of a very particular demographic group. This makes it
necessary to perform small adaptions to the methodology
in case that another different dataset to study has very dif-
ferent characteristics from those presented in our study.
Secondly, regarding the clinical relevance, despite that
this automatic computational methodology was developed
together with the clinical professionals to whom it is
directed, there are still some points that must be analyzed.
This is necessary to ensure that the manual, tedious,

time-consuming and error-prone process that the clinicians
are currently followed is properly adopted in the daily prac-
tice. In the presented work, aspects like the user-friendliness
and other elements that could suppose a barrier for adop-
tion, are left undiscussed. Moreover, the potential final clin-
ical applications like the diaphragmatic function
quantification or the extraction of clinically relevant bio-
markers from lungs are left unexplored in this work.
Finally, despite the exploration of different error metrics
for the hemidiaphragm points’ localization is interesting,
this work has only evaluated the performance obtained
with the Euclidean distance, the one that was found to be
the naive approach.

Conclusions
In this work, we have proposed a novel fully automatic
methodology to simultaneously predict the location of rep-
resentative hemidiaphragms’ landmarks and precisely
segment the lungs in portable chest X-ray images from
COVID-19 patients following a multi-task paradigm. The
prediction of the hemidiaphragms’ landmarks location
was performed supported by the so-called heatmap regres-
sion, a method to predict the likelihood for an arbitrary
pixel of the image to be the actual target point. The
precise lung segmentation was developed following an
end-to-end fashion. For the aims of this work, the U-Net
architecture was adapted including two output heads, one
corresponding to heatmap regression and another

Figure 9. Representative activation maps of input chest X-ray images using GradCAM, where the redder tones represent the activations
with a higher intensity and the darker blue tones represent the activations with a smaller intensity.
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corresponding to precise lung segmentation. To study the
suitability of this method, four different analyses were per-
formed. The first analysis aimed to study the most appropri-
ate saturation distance value for the heatmap regression
(that directly corresponds with the heatmap extension).
The second analysis was conducted to study the most
appropriate balance between the two tasks regarding the
multi-task paradigm. In the case of the third analysis, we
present a comparison between the results obtained in each
task individually (i.e. heatmap regression and lung segmen-
tation independently, without the additional contribution of
the other task) and the scenario when the tasks complement
each other. Finally, in the fourth analysis, we studied the
outputs obtained by the model under a qualitative point of
view. The results obtained in this work demonstrate the
feasibility to localize the landmarks of the hemidiaphragms
and the regions of interest of the lungs in chest X-ray
images, that can improve the performance of other tasks,
such as automatic screening. It is remarkable that this
high performance has been obtained despite feeding the
system with portable chest X-ray images, that provide a
lower quality and level of detail in contrast with fixed
machinery and that present a great variability with regard
to the position of the patients, given that they can be
placed less precisely. To the best of our knowledge, this
is the first work that simultaneously performs both the local-
ization of the hemidiaphragms’ landmarks and the precise
lung segmentation using a CNN architecture.

The proposed methodology has a great potential in the
clinical context, as it could help to perform relevant ana-
lyses in the field of COVID-19 and other pulmonary path-
ologies, given the importance of evaluating the diaphragm
and other relevant parts of the lung anatomy such as the par-
enchymal tissue in some pulmonary diseases to measure the
extent of disease damage. Thanks to the methodology, the
clinicians could rapidly and accurately be assisted when
dealing with great patient populations. In particular, the
methodology could be used, among other tasks, to quantify
the diaphragmatic function and to extract relevant biomar-
kers indicative of pathological scenarios. In the same line,
the results herein presented, despite being mainly intended
to post-COVID-19 studies could also be taken as reference
to perform similar studies with other pathologies or even
different medical imaging modalities and devices. Other
possible area of future work exploration is the evaluation
of the performance using alternative distance error metrics
different from the Euclidean distance, such as the
Minkowski, Mahalanobis, or cosine similarity distance.
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