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Abstract

Currently, the scientific community is giving significant attention to the field of
human activity recognition (HAR), which has gained remarkable prominence as a
topic of discussion. Since the irruption of smartphones and wearable devices in daily
life, the costs and ease of conducting studies in this field have improved significantly.
Moreover, its applicability in various research areas such as medicine, fitness, or
home automation makes this topic even more attractive for researchers in the field.
However, despite the remarkable advances made in the last decade, it is not possible
to transfer that acquired knowledge to a real-life environment. That is because most
of the related work has been carried out under laboratory conditions. In other words,
with pretty specific indications, placing the measuring devices and performing the
actions in an explicit way that does not represent at all the variability present in
the real world. For those reasons, this Thesis has focused on orienting the research
in this field towards a real-life environment. To that end, a dedicated dataset has
been constructed to carry out the main research, based on the personal smartphone
sensors of 19 different individuals. The main difference between that dataset and
those already existing in the scientific community is that those individuals have been
given as much freedom as possible to use their smartphones during data collection.
Thus, even when performing the same action conceptually, the resulting data may
vary, as each individual may use the smartphone differently, as is the case in everyday
life. Hence, once the data was obtained, an in-depth study was carried out, in search
of the best machine learning and deep learning models to classify the data, according
to the actions studied. The results confirm the possibility of transferring the acquired
knowledge to a real-life environment. In terms of their performance, it is worth
mentioning tree-based models like Random Forest and other deep learning models
such as Convolutional Neural Networks (CNN) or recurrent neural networks based
on the Long Short-Term Memory (LSTM) technique, among the various methods
used.
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Resumen

En la actualidad, la comunidad científica está prestando gran atención al campo
del reconocimiento de las actividades humanas (HAR), el cual ha cobrado notable
protagonismo como tema de debate. Desde la irrupción de los smartphones y los
dispositivos wearables en la vida cotidiana, los costes y la facilidad de realizar
estudios en este campo han experimentado una mejora significativa. Además, su
aplicabilidad en diversos campos de estudio como la medicina, el fitness o la domótica
hacen que esta temática sea aún más atractiva para los investigadores del ámbito. Sin
embargo, a pesar de los grandes avances realizados en la última década, no es posible
transferir este conocimiento adquirido hacia un entorno de la vida real. Esto se debe
a que la grandísima mayoría de los trabajos relacionados fueron llevados a cabo
en condiciones de laboratorio. En otras palabras, con indicaciones muy específicas,
colocando los dispositivos de medición y realizando las acciones de una forma muy
concreta que no representa para nada la variabilidad presente en el mundo real. Por
ello, esta Tesis se ha centrado en orientar la investigación en este campo hacia un
entorno de la vida real. Para ello, se ha construido un conjunto de datos propio
con el que poder llevar a cabo la investigación principal, a partir de los sensores de
los smartphones personales de 19 individuos diferentes. La diferencia principal de
dicho conjunto de datos con respecto a los ya existentes en la comunidad científica
es que se les ha dado a dichas personas la mayor libertad posible para utilizar su
smartphone durante las recolecciones de datos. De este modo, aún realizando la
misma acción conceptualmente, los datos resultantes pueden variar, ya que cada
individuo puede utilizar el smartphone de forma diferente, tal y como ocurre en la
vida diaria. Así, una vez obtenidos los datos, se llevó a cabo un estudio exhaustivo
sobre los mismos, en búsqueda de los mejores modelos de machine learning y deep
learning para clasificar los datos según las acciones estudiadas. Los resultados
confirman la posibilidad de transferir el conocimiento adquirido hacia un entorno
de la vida real. Entre los métodos utilizados, conviene destacar, en relación a
sus rendimientos, a los modelos basados en árboles, como Random Forest, y otros
de deep learning como las redes de neuronas convolucionales (CNN) o las redes
neuronales recurrentes basadas en la técnica de Long Short-Term Memory (LSTM).
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Resumo

Na actualidade, a comunidade científica está a prestar moita atención ao campo
do recoñecemento das actividades humanas (HAR), o cal cobrou considerable
protagonismo como tema de debate. Dende a irrupción dos smartphones e os
dispositivos wearables na vida cotiá, os custos e a facilidade de realizar estudos
neste eido experimentaron unha mellora significativa. Ademais, a súa aplicabilidade
en diversos campos de estudo como a medicina, o fitness ou a domótica fan que
este tema sexa aínda máis atractivo para os investigadores da materia. Porén,
a pesar dos grandes avances acadados na última década, non é posible trasladar
estes coñecementos adquiridos a un entorno da vida real. Isto débese a que a
gran maioría dos traballos relacionados realizáronse en condicións de laboratorio.
Noutras palabras, con indicacións moi específicas, colocando os aparellos de medida
e realizando as accións dun xeito moi concreto que non representa para nada a
variabilidade presente no mundo real. Por iso, esta Tese centrouse en dirixir a
investigación neste campo cara a un entorno da vida real. Para iso, construíuse
un conxunto de datos propio co que realizar a investigación principal, baseado nos
sensores dos smartphones persoais de 19 individuos diferentes. A principal diferenza
deste conxunto de datos con respecto aos xa existentes na comunidade científica é que
estas persoas tiveron a maior liberdade posible para usar o seu smartphone durante
a recollida de datos. Deste xeito, aínda realizando conceptualmente a mesma acción,
os datos resultantes poden variar, xa que cada individuo pode utilizar o smartphone
de forma diferente, tal e como ocorre na vida diaria. Así, unha vez obtidos os
datos, realizouse un estudo exhaustivo sobre eles, na procura dos mellores modelos
de machine learning e deep learning para clasificar os datos segundo as accións
estudadas. Os resultados confirman a posibilidade de transferir os coñecementos
adquiridos a un entorno da vida real. Entre os métodos utilizados, convén destacar,
en relación aos seus rendementos, aos modelos baseados en árbores, como Random
Forest, e outros de deep learning como as redes de neuronas convolucionais (CNN)
ou redes neuronais recorrentes baseadas na técnica de Long Short-Term Memory
(LSTM).
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Preface

This Thesis is divided into six main chapters representing the work’s general
development. Afterwards, the shared bibliography is listed. Finally, a couple
of appendixes are included. The first one shows the publications resulting from the
research, while the latter contains a summary of the work done, in Spanish. That
structure is detailed below:

• Chapter 1. Introduction. It is divided into two parts. The initial section
provides an overview of the human activity recognition field, including the
fundamental motivations driving this Thesis. Then, the second part lists the
main objectives of the Thesis.

• Chapter 2. Core concepts. This chapter provides a thorough overview of the
essential technical concepts that serve as the building blocks for understanding
the whole Thesis.

• Chapter 3. State of the art. This chapter describes the evolution of the
human activity recognition field at the scientific level, with references to some
outstanding works and especially highlighting some benchmark datasets.

• Chapter 4. Methodology and results. It shows a summary of the
contributions made in this Thesis. Regarding each of the published articles,
an in-depth examination of their execution, along with the attained results
and encountered challenges throughout their development, is presented.

• Chapter 5. Conclusions and future work. Two different sections are
dedicated to defining conclusions and exploring potential avenues for future
work.

• Chapter 6. Research results. It highlights the merits achieved during this
Thesis’ development.

• Bibliography. This chapter lists the main bibliographical references on which
the Thesis was based.
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2 Preface

• Appendix A. Articles. It contains the scientific articles resulting from the
work carried out. Those publications are:

– Garcia-Gonzalez, D., Rivero, D., Fernandez-Blanco, E., and Luaces, M.
R. (2020). A public domain dataset for real-life human activity
recognition using smartphone sensors. Sensors, 20(8):2200. DOI:
10.3390/s20082200.

– Garcia-Gonzalez, D., Rivero, D., Fernandez-Blanco, E., and
Luaces, M. R. (2023). New machine learning approaches
for real-life human activity recognition using smartphone
sensor-based data. Knowledge-Based Systems, 262:110260. DOI:
10.1016/j.knosys.2023.110260.

– Garcia-Gonzalez, D., Rivero, D., Fernandez-Blanco, E., and Luaces, M.
R. (2023). Deep learning models for real-life human activity
recognition from smartphone sensor data. Internet of Things, page
100925. DOI: 10.1016/j.iot.2023.100925.

• Appendix B. Resumen extendido en castellano. It provides a
comprehensive summary of all the work conducted, presented in Spanish.



Chapter 1

Introduction

This chapter is dedicated to introducing all the necessary elements to understand the
context of this Thesis. Thus, in the first place, Section 1.1 outlines the current issues
in human activity recognition (HAR) research and the reasons behind undertaking
this Thesis. Then, Section 1.2 presents the main goals that will shape the core of
the work’s development.

1.1 Motivation
The ability to reliably and automatically identify the movements made by a
human being is a challenge that has been the subject of considerable research
over the last decades. The main interest lies in the multiple applications
that systems that detect such actions could have. For example, within the
world of healthcare [Subasi et al., 2018, Demrozi et al., 2020, Liu et al., 2021] and
fitness [Attal et al., 2015, Zainudin et al., 2017], it would be possible to know the
movements made by an individual to be able to make a more appropriate diagnosis. In
addition, it would also be possible to carry out a treatment with an in-depth and more
comfortable control for both parties. Furthermore, advances in this field could also
be applied to home automation [Raeiszadeh and Tahayori, 2018, Du et al., 2019] or
leisure [Ma, 2021], as it would be possible to automate and trigger actions based
on the movements made by the individual. In order to detect those actions, it is
possible to use both video cameras [Ke et al., 2013, Beddiar et al., 2020] and motion
sensors that the individuals may wear [Aggarwal and Xia, 2014, Wang et al., 2019,
Soleimani and Nazerfard, 2021]. Concerning the latter, the most common ones are
the accelerometer and the gyroscope. The former is used to detect vibrations or
slight movements in the individual. As for the gyroscope, its task is to measure
the different oscillations or turns that may occur. In the past, these sensors were
much more expensive and less accessible. However, since the advent of wearable
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devices, and especially smartphones, the human activity recognition field has seen a
significant increase in research. That is mainly because those devices are already
embedded with such sensors. In addition, over a decade ago, those devices have
become enormously popular in the developed world, to the extent that many
people carry an activity bracelet on their wrist and, above all, a smartphone in
their pockets, which they use on a daily basis. That makes the research costs in
this field more affordable, with easier access to sensors with high-grade accuracy.
Thus, researchers find HAR a pretty attractive option in which to do their bit
[Lara and Labrador, 2012, Hassan et al., 2018, Tang et al., 2022].

Nevertheless, there are some issues to be taken into account. Firstly, it is
necessary to keep control of the temporality of the data, which is particularly
difficult when working with large amounts of information such as those produced
by the sensors discussed above. Although remarkable progress has already been
made in this respect [Shoaib et al., 2016, Qi et al., 2019, Xia et al., 2020], there are
still activities where the relationship between the action and its data has not yet
been fully resolved. That is mainly due to the conditions under which those studies
were carried out. In general, in those works, the individual performing the action
does so in a very controlled way, with pretty specific indications on how to carry it
out [Xu et al., 2019]. In addition, the measuring device used is placed in a precise
spot and in a definite way, such as on the wrist [Lawal and Bano, 2019] or waist
[Jeong and Oh, 2021]. While it is true that, in those cases, the vast majority of
the actions studied have been solved with high accuracy, such results would not be
entirely reliable if applied to a real-life environment. In everyday life, such specific
conditions do not usually occur, so the acquired knowledge cannot be directly
transferred to a more realistic environment. For example, the same action would
not necessarily yield the same data in different individuals [Lago et al., 2019]. In
the case of smartphones, their use and the way they are carried differ for each
person. Such variations would notably affect the measurements reported by the
device’s sensors. Even distinct smartphone models could yield slightly different data
[Stisen et al., 2015]. That point would not be as critical using activity wristbands, as
they would always be worn on the wrist. However, their use is much lower than that
of smartphones. Today, the vast majority of people have a smartphone that they
carry with them everywhere they go. Given that, using any other kind of wearable
device, such as activity wristbands, is more of a personal choice. On the other hand,
the performance of the action does not have to be strictly the same for everyone.
While, theoretically, it would be the same, there might be slight variations that
could lead to confusion in classification. For example, when walking, not everyone
bends in or moves their legs equally. In fact, some of these differences could also be
due to the body diversity of each individual, even when using the device in the same
way [Sansano et al., 2020]. Without going any further, using the same example as
above, the length or width of each person’s leg when walking could lead to different
measurements if the device was worn, for example, in a trouser pocket. Moreover, the
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same placement could lead to different results when considering, for example, tight
leggings versus baggy cargo trousers. In fact, the issue of personalising classification
models for large numbers of people has also been studied extensively in recent years
[Lane et al., 2011, Solis Castilla et al., 2020, Ferrari et al., 2020].

For all those reasons, the motivation for this Thesis lies in the current difficulty of
applying, outside a laboratory environment, all the advances achieved so far in this
field. Prior to the beginning of this Thesis, no realistic dataset existed. Therefore,
new ones need to be published. Consequently, a comprehensive study on how to
address them could be undertaken. For that purpose, it would be essential to analyse
the suitability of all artificial intelligence (AI) techniques previously employed in
HAR. The goal would be to identify the most appropriate options and adapt them
accordingly to align with the specific context. In this regard, it is worth noting that
obtaining an optimal algorithm for all situations is not feasible. By focusing on
specific domains, such as the new data orientation, it becomes easier to enhance
the results for that particular case. However, such improvement may come at the
expense of lower performance in other scenarios, as stated by the No Free Lunch
(NFL) theorems [Wolpert and Macready, 1997]. In addition, it would be imperative
to consider that those data could exhibit unique characteristics that have not been
observed yet in previous HAR developments. Thus, it would also be crucial to
investigate the most suitable methodology to process such data and to study the
best way to prepare them to feed the relevant models. As a result, all the progress
achieved in them could be directly applied to real-life environments, according to
the activities studied in them.

1.2 Objectives
Taking into account all that has been discussed in the previous section, the main
objective of this Thesis is to contribute to the advancement of research in the field
of human activity recognition, specifically by promoting its application in real-life
environments. To that end, it is essential to gather new data from more realistic
situations, so that they can be manipulated later by the whole scientific community.
All the knowledge acquired until now in the field could then be applied to this new
approach, adapting it accordingly. Thus, the first objective of this Thesis is to
conduct an extensive literature review encompassing the entire HAR domain. The
goal is to identify crucial aspects that must be considered for contributing relevant
advancements in the field. With that in mind, the next step will be to elaborate a
new dataset, in which the individuals who contribute their measurements can do so
in a much looser way, according to the peculiarities of each one. Then, from that
dataset, it will be necessary to find the best way to approach it, from traditional
machine learning techniques to the most recent architectures based on deep learning.
Given that, a series of research challenges are inferred that will make up the core of
this Thesis. They are summarised in the following four points:
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• Thorougly reviewing the literature of the entire HAR field. In
order to carry out relevant developments in this field, it is imperative
to acquire comprehensive knowledge of previous work conducted by the
scientific community. Although their research was undertaken under different
circumstances from those pursued in this Thesis, their findings can hold
significant value. After all, gaining insights into the most effective approaches
for processing smartphone sensor data, along with recognising common
challenges and their respective solutions, becomes an essential requirement.
Moreover, staying up to date on current trends and developments is crucial to
avoid repeating past mistakes and identifying new research opportunities.

• Establishing the essential guidelines for generating a dataset that
accurately reflects reality. As discussed in Section 1.1, the current
orientation of all studies in HAR precludes their direct application to real-life
environments in general. In order to try to initiate the reorientation of research
towards that problem, a new dataset needs to be gathered that can be exploited
by the entire scientific community. To that end, the personal smartphones
of different individuals will be used, so that each of them can use it as they
do regularly. As for the activities to be studied, the aim is to gather a group
with enough diversity among them but without being as fine-grained as in
the studies currently being carried out. In this way, a starting point can be
established to study the potential of this new orientation, which can then
be focused on more specific actions, as appropriate. Thus, a more realistic
dataset than those produced so far will be achieved, with greater freedom and
variability in the studied data.

• Exploring the effectiveness of prevalent machine learning and deep
learning techniques in HAR for real-world scenarios. Once the data
have been collected, it is necessary to study the evolution of machine learning
and deep learning techniques applied to a HAR theme. Based on that study,
a series of approaches will be selected that, according to the information
obtained in the previous point, have the best potential to yield good results.
At the same time, a comparison will be sought between them, with different
configurations of hyperparameters and features, in order to obtain as much
information as possible. Furthermore, the investigation will also aim to explore
the application of alternative techniques that are less commonly used in HAR
but have the potential to contribute positively to the new direction pursued in
this Thesis.

• Pursuing the optimal strategies to address the unique challenges
posed by HAR data in real-life environments. Gathering data in a free
and flexible way differs notably from collecting data in laboratory conditions.
The contingencies that could arise when constructing a dataset that follows
the guidance proposed in this Thesis could be abundant. Additionally, due to
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the absence of HAR datasets that follow such orientation within the scientific
community, it will be essential to investigate and resolve any potential issues
that could emerge during the data collection process. That calls for the
identification and resolution of these challenges in real time, which may present
entirely novel circumstances not encountered previously. For that purpose, a
comprehensive study will be conducted to determine the optimal methods for
processing the proposed dataset, along with exploring various configurations
and architectures for the selected artificial intelligence models.
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Chapter 2

Core concepts

This chapter provides a comprehensive overview of the essential concepts required
to understand the research conducted for this Thesis. To begin with, Section 2.1
provides an explanation of the operational principles of the classification algorithms
employed. Following that, in Section 2.2, the selected evaluation metrics are presented
for comparing and assessing the obtained outcomes. Then, Section 2.3 highlights a
couple of statistical tests used to compare the similarity between the results. Finally,
Section 2.4 briefly describes the validation and optimisation techniques that have
been extensively used throughout this Thesis.

2.1 Classification algorithms
This section incorporates all the classification algorithms employed to tackle the
challenges mentioned in Chapter 1. Firstly, Section 2.1.1 encompasses some of the
best and most classical machine learning algorithms used in HAR. Secondly, Section
2.1.2 focuses on the cases selected for the cutting-edge field of deep learning, which
currently holds great significance within the scientific community.

2.1.1 Machine learning
In the HAR domain, a wide variety of machine-learning algorithms can be
employed. In this particular case, the following algorithms were chosen: Support
Vector Machine (SVM), Decision Tree (DT), Multilayer Perceptron (MLP),
Naïve Bayes (NB), K-Nearest Neighbour (KNN), Random Forest (RF), and
Extreme Gradient Boosting (XGB). The choice of these algorithms was primarily
based on their extensive usage and favourable outcomes within the HAR field
[Ronao and Cho, 2016, Chen et al., 2017, Ignatov, 2018]. In addition, it should be
noted that XGB stands out as a relatively new addition to this area. However, its

9
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inclusion was deemed appealing due to its increasing popularity in recent years and
exceptional performance in various machine learning competitions [Nielsen, 2016].

2.1.1.1 Support Vector Machines

Support Vector Machines are machine learning models frequently employed in binary
classification scenarios [Cortes and Vapnik, 1995]. These models seek to identify a
hyperplane that maximises the margins between two predefined and labelled classes.
To accommodate non-linear hyperplanes, SVMs use kernels, which are essential
hyperparameters. These kernels transform non-linear spaces into linear spaces by
altering the dimension in which they are represented, enabling the application
of a linear approach. The specific hyperparameters required vary depending on
the kernel employed (e.g., linear, polynomial, or radial basis function). However,
the fundamental hyperparameter common to all kernels is C, which determines
the permissible number of model errors while influencing the margin width of the
resulting hyperplane. In addition, other fundamental hyperparameters significantly
impact the hyperplane definition. For instance, gamma (not applicable to linear
kernels, among others) determines the level of curvature that the hyperplane can
exhibit, allowing for more pronounced or smoother curves depending on the data
samples. Similarly, in polynomial kernels, the degree of the polynomial heavily
influences the curvature of the hyperplane. Notably, when the degree is set to 1, the
result is equivalent to a linear kernel’s (a straight line).

Although SVMs are commonly employed for binary classification tasks, they can
also be used for multiclass problems. Under such circumstances, a frequent approach
is to select a one-vs-one or one-vs-all strategy. In the former, classes are modelled in
pairs, with multiple binary classifications performed until a final outcome is obtained.
Conversely, in the latter approach, individual classifiers are created by confronting
each class against the rest, resulting in a specific classifier for each scenario.

2.1.1.2 Decision Trees

Decision Trees represent knowledge through tree structures that closely resemble
human thought processes. To do that, they generate a series of rules or questions
to predict and classify input data. Given that, several algorithms can be used to
create decision trees, including ID3 [Quinlan, 1986], C4.5 [Quinlan, 2014], or CART
[Breiman et al., 1984]. Nonetheless, the latter has a widely accepted version that is
readily available and requires no modifications for comparison purposes. For that
reason, only the process of creating such a decision tree algorithm is detailed below,
based on the following steps:

1. Initially, the algorithm identifies the attribute that best distinguishes each class
and assigns it as the tree root node. That attribute is often determined using
statistical measures such as information gain, which quantifies the expected
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reduction in uncertainty achieved by dividing the dataset based on a specific
attribute.

2. Next, the algorithm establishes a criterion for partitioning the data, based on
the probability distribution of each class within the tree.

3. Finally, the algorithm creates branches that divide the dataset into subsets,
known as internal nodes. To evaluate the quality of those divisions, the
algorithm utilises the Gini Index, which measures the effectiveness of the
resulting subsets. A lower Gini Index indicates a better division.

After completing those steps, the algorithm repeats the first and second steps
until it reaches a leaf node in each branch. A leaf node represents a subset of data
that cannot be further divided.

2.1.1.3 Multilayer Perceptron

The Multilayer Perceptron is a widely employed neural model in modern times
and one of the earliest machine learning techniques to appear [Bishop et al., 1995,
Taud and Mas, 2018]. Unlike traditional neural networks, MLP can comprise
multiple layers of neurons. In the simplest case, it consists of three main layers:
the input layer, followed by one hidden layer, and concluding with the output layer.
In this way, data is fed into the network through the input layer, with predictions
generated by the output layer. In addition, hidden layers can be multiple, allowing
the model to capture greater complexity for the specified problem. Given that, each
layer can be represented as follows:

y = f(W × x + b) (2.1)

There, f denotes the activation function, which describes the non-linear input-
output relationships. That enables the model to exhibit greater flexibility in
representing arbitrary associations. Then, W corresponds to the layer weights,
which are adjusted as errors are identified, with the addition of a learning rate that
can either be constant or dynamic. Similarly, x represents the input data vector
from the preceding layer, while b signifies the bias vector, which is an additional set
of weights that facilitates the production of the layer output data. Given that, a
loss function must be defined to train the network. This function yields a high value
when the predicted classes do not align with the ground truth and a low one when
they do. In light of that, the aim during model training is to minimise the given
loss value by adjusting the layer weight values (W ). For that purpose, optimisers
are employed to seek suitable weight values that minimise that loss. To that end,
these algorithms utilise an alpha parameter to mitigate overfitting by penalising
abnormally large weight magnitudes.
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2.1.1.4 Naïve Bayes

The Naïve Bayes classifiers refer to a collection of classification algorithms based
on Bayes’ Theorem [Rish et al., 2001]. This theorem expresses the conditional
probability of an event A given event B, in terms of the conditional probability of
B given A and the marginal probability of A. This definition is formalised through
Bayes’ Rule:

Pr(A|B) = Pr(B|A) Pr(A)
Pr(B|A) Pr(A) + Pr(B|¬A) Pr(¬A) (2.2)

Thus, these classifiers do not represent a single algorithm but rather a family of
algorithms that share a common principle: the assumption that each pair of classified
features is independent of one another. The variations among these algorithms
primarily stem from the assumptions made about the distribution of Pr(B|A). For
instance, continuous feature values may be taken for granted to follow a Gaussian
distribution, a given multinomial distribution, or Bernoulli’s multivariate event
model, where the introduced features are independent binary variables (booleans)
[Murphy et al., 2006]. Anyhow, despite the seemingly simplistic assumptions made
by these methods, they have proven effective in various tasks. Furthermore, they
offer exceptional speed compared to more sophisticated machine learning algorithms,
making them worthwhile for exploration.

2.1.1.5 K-Nearest Neighbours

The K-Nearest Neighbour algorithm is a supervised and instance-based approach,
which needs prelabelled data, as well as not being able to explicitly create a model
[Peterson, 2009, Cunningham and Delany, 2020]. Instead, it stores the training
instances and uses them during the prediction stage. Accordingly, the choice of
the k value plays a crucial role in this algorithm, as it determines the number of
neighbours considered in the neighbourhood for classifying the specified groups.
Given that, the algorithm follows a set of steps for each observation in the data:

1. First, the distances between the selected observation and all other observations
in the dataset are calculated. These distances provide similarity measures
between the elements and are computed using predefined functions such as
the Euclidean or Manhattan distances.

2. The closest k-elements are then selected, and a majority vote is conducted
among them. The dominant class determines the final classification, considering
the weights assigned to each class.

One notable challenge with KNN is the substantial memory and time requirements
as the dataset size increases. Since it evaluates every observation in the data,
computational resources can become significant when the number of features and
data points is large. Nonetheless, KNN is regarded as an algorithm capable of
delivering excellent results while being relatively easy to comprehend and implement.
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2.1.1.6 Random Forest

Models based on the Random Forest algorithm have gained significant popularity
in recent times [Breiman, 2001, Athey et al., 2019]. That is because by creating
multiple decision trees from labelled data, these models can generate highly robust
solutions. That is due to its ability to select the best possible solution in a more
general and flexible manner, as well as mitigating overfitting by utilising multiple
decision trees, which contributes to the strength of these models. Thus, the algorithm
can be summarised into the following steps:

1. Initially, the algorithm randomly selects various subsets from the provided
dataset.

2. Subsequently, decision trees are constructed for each of those subsets by
following the steps described in Section 2.1.1.2. The number of decision trees
built is determined by the number of estimators hyperparameter.

3. Once the trees are created, predictions are obtained from each of them. At
this point, a voting process is conducted based on the resulting values, where
the dominant class determines the final outcome.

4. Finally, the class with the highest number of votes is selected as the final
prediction.

When making predictions using the created model, this algorithm tends to be
slower when measured against others. That is primarily due to the need to average
the outcomes of each tree in the final model. Despite that, it continues to be
extensively used in present times due to its ability to generate highly robust models
with exceptional performance. In addition, it is faster to train than many other
contemporary artificial intelligence algorithms.

2.1.1.7 Extreme Gradient Boosting

Extreme Gradient Boosting is not an independent algorithm but rather a refined
implementation of the Gradient Boosting one [Chen and Guestrin, 2016]. However,
it is worth considering, as it has achieved notable success in various competitions and
consistently demonstrated excellent results in the relevant literature [Nielsen, 2016].
Regarding its implementation, it offers enhanced efficiency and flexibility by
parallelising the tree-boosting process.

Concerning the Gradient Boosting Machine (GBM) algorithm, it aims to construct
a model by iteratively creating multiple “weak” prediction models, typically decision
trees. That process involves the sequential creation of those trees in a stage-wise
manner, following the same procedure outlined in Section 2.1.1.2. Also, like Random
Forest, the number of estimators hyperparameter determines the number of trees to
be generated. The objective is to progressively enhance the final model’s performance.
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That is achieved by defining a loss function that evaluates the performance of the
most recent tree, with the assumption that the classification of all observations in
the built trees will continually improve. Consequently, the resulting model is more
robust, easier to fine-tune, and yields excellent outcomes. Nonetheless, it is essential
to exercise caution during training, as GBM can be sensitive to overfitting and noise.

2.1.2 Deep learning
In the domain of human activity recognition, a wide range of artificial intelligence
algorithms are employed. Among these, algorithms focused on the deep learning
branch often yield the best results. Unlike traditional machine learning, these
algorithms can automatically extract patterns from data without requiring manual
feature engineering. This fact has led to an increasing number of researchers opting
for this approach due to its ease of application and favourable outcomes. In any case,
in the HAR field, two deep learning models, namely Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM), stand out among the rest. Hence,
both techniques were employed in developing the proposed models for this Thesis.

2.1.2.1 Convolutional Neural Networks

Convolutional Neural Networks [Fukushima and Miyake, 1982, LeCun et al., 1999]
are highly prevalent models nowadays. Since the gradient modification introduced in
[Krizhevsky et al., 2017], they have become state-of-the-art in information extraction
across various domains. These networks consist of multiple layers comprising neurons
or filters that receive distinct pieces of information as input. Each filter is supplied
with data from a sliding window or kernel applied over the initial signal or image.
Unlike traditional neural networks, the weights of those filters remain the same
[Fernandez-Blanco et al., 2020a]. As a result, the output (X(l)) is obtained by
convolving the input features (X(l−1)) with a set of learnable filters (W (l)), followed
by the addition of biases (b(l)). Then, an activation function (g(l)) is applied. In the
context of HAR research, and specifically in this Thesis, the most commonly used
activation function is the Rectified Linear Unit (ReLU), which outputs 0 for negative
values, while preserving the positive values. Thus, that process can be represented
by the following equation (note that the symbol “∗” denotes convolution):

X(l) = g(l)(X(l−1) ∗ W (l) + b(l)) (2.3)

That scheme can be repeated iteratively, with each layer extracting additional
features from the information accumulated in preceding layers.

After extracting the features from the input matrix and propagating them through
each layer, they are fed into a fully connected perceptron, also known as a Dense
layer. For the final prediction and the probability vector pt = [pt1 , pt2 , ..., ptk

] ∈
Rk, the softmax function is normally employed. This function transforms the input
values into a probability distribution, with values ranging from 0 to 1. Specifically,
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Figure 2.1: Comparison of a traditional convolution and its equivalent
Depth-wise Separable convolution.
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the input values are obtained from the output of the previously mentioned perceptron
(z), giving rise to the following operation:

pti
= ezi∑k

j=1 ezj

(2.4)

The results are subsequently returned, by selecting the label with the highest
probability following the softmax operation.

Anyhow, when using a large number of samples, there is a variant of this technique
worth mentioning: the Depth-wise Separable Convolutional Neural Networks (DS-
CNN) [Chollet, 2017]. This modification is recognised for significantly reducing
the parameter requirements by applying the kernel separately to each available
input signal’s channel, rather than utilising it on all of them simultaneously
[Fernandez-Blanco et al., 2020b]. That convolution operates similarly to the
traditional approach but with fewer features for each channel. After that, the
information obtained from each channel is combined through another convolution,
projecting the resulting data onto a new feature map. However, the distinction
lies in the fact that this convolution is performed as a point-wise convolution (i.e.,
1x1 convolution). As depicted in Figure 2.1, that results in fewer operations by
integrating the data from different channels. Consequently, computations are carried
out using less data, achieving an equivalent outcome as traditional CNNs.

2.1.2.2 Long Short-Term Memory

In contrast to their predecessor, Recurrent Neural Networks (RNN), LSTM networks
[Hochreiter and Schmidhuber, 1997] possess the capability to retain or discard data
selectively. To that end, they use a series of modifications applied to the data
using specialised components known as cell states. For ease of understanding, an
illustration of an LSTM unit is provided in Figure 2.2. As can be seen, a typical
LSTM network comprises memory blocks called cells, which facilitate the transfer
of two distinct states: the cell state (c) and the hidden state (h). In this way, a
structure incorporating three different gates is implemented, allowing those blocks
to retain data, as outlined below:

1. Forget Gate (represented by the red gate in Figure 2.2). It removes irrelevant
information that is no longer useful for learning. To do that, the input data
of the current time (xt) and the hidden state of the previous cell (ht−1) are
multiplied by their respective weight matrices (W ). Also, a bias term (b) is
added to improve data fitting. The resulting regulatory filter, or sigmoidal
function (σ), is defined as:

ft = σ (Wxf × xt + Whf × ht−1 + bf ) (2.5)

That would result in a value between 0 and 1. When multiplied by the cell
state, it decides whether that information should be continued or not.
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Figure 2.2: Example of a LSTM unit, as shown in [Guan and Plötz, 2017]
(weight matrices and bias not displayed).

2. Input Gate (the green one in Figure 2.2). It is responsible for adding relevant
information to the model and filtering out any that may be redundant. To
that end, another sigmoidal function is constructed, multiplied by a hyperbolic
tangent one (tanh) that outputs the data between -1 and 1. In this way, the
tanh function decides which data can be added later to the model, using a
sum operation with the information of the forget gate. These functions are
represented as follows:

it = σ (Wxi × xt + Whi × ht−1 + bi) (2.6)

c′
t = tanh (Whc × ht−1 + Wxc × xt + bc) (2.7)

3. Output Gate (the blue one in Figure 2.2). This gate decides which outcome
to keep, regarding that not all information flowing through the cell state may
be adequate. In a similar way as before, sigmoidal and hyperbolic tangent
functions are multiplied to filter those data. These functions are shown below:

ot = σ (Wxo × xt + Who × ht−1 + bo) (2.8)

c′′
t = tanh(ct) (2.9)

Thus, new cell and hidden states are obtained. Then, they are transferred to the
next unit, repeating the above process. Those states are calculated as follows:

ct = ft × ct−1 + it × c′
t (2.10)
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ht = ot × c′′
t (2.11)

As for the prediction and the probability vector pt = [pt1 , pt2 , ..., ptk
] ∈ Rk, these

are calculated from the resulting hidden state (ht). That forms a softmax function
(s), already commented in Section 2.1.2.1, which results in the following equation:

pt = s(Whk × ht + bk) (2.12)

Finally, the class label kt is assigned to the one with the highest value in the vector
of probabilities.

Alongside traditional LSTMs, their bidirectional variant (Bi-LSTM) is also
extensively used recently in the literature, with excellent results. This modification
was initially introduced for preceding RNNs [Schuster and Paliwal, 1997], but it can
be applied similarly in various networks. The distinctive feature of this variant is that
it enables networks to store information in both directions, typically by incorporating
future context (given that LSTMs conventionally store data unidirectionally from
the past). To implement this modification, two distinct LSTM models are trained:
one processes the input data (x) in the backwards direction, while the other operates
forwards, as illustrated in the example Bi-LSTM network shown in Figure 2.3.
During the training of each model, at each time step, a merging stage (f ) is executed
to combine the obtained outputs. That stage can be performed in many ways, but
the most widely used approach is concatenation. Consequently, the outcomes (y) of
the first model are concatenated with those of the second model, thereby enabling
the latter to incorporate information from both directions in subsequent time steps.

Figure 2.3: Example of a Bi-LSTM network.



2.2. Evaluation metrics 19

2.2 Evaluation metrics
One of the most fundamental and easily interpretable metrics is the confusion matrix.
A confusion matrix is a table that allows for the visualisation of a classification
model’s performance using a set of test data. To highlight that, Table 2.1 provides
a simple example. There, note that TN, FN, TP and FP correspond to the number
of true negatives, false negatives, true positives and false positives, respectively.
In light of that, various commonly used terms can be derived from the confusion
matrix to evaluate its performance, including precision, recall, accuracy, and F1-score
[Hossin and Sulaiman, 2015].

Model output
False True

Ground
truth

False TN FP
True FN TP

Table 2.1: Binary confusion matrix example.

Precision and recall are metrics used to measure the quality and quantity of the
classifications made, respectively. Precision measures the number of true positives
divided by the total number of positive results. Recall, on the other hand, measures
the number of true positives divided by the total number of actual positive results
that should have been returned. The formulas for these metrics are as follows:

Precision = TP

TP + FP
(2.13)

Recall = TP

TP + FN
(2.14)

Similarly, accuracy and F1-score metrics are employed to evaluate the performance
of a model in test. Accuracy represents the measure of correctly identified cases,
while the F1-score is calculated based on the harmonic mean of precision and recall.
Given that, their formulas would be as follows:

Accuracy = TP + TN

TP + FP + TN + FN
(2.15)

F1 = 2 × Precision × Recall

Precision + Recall
(2.16)

Nonetheless, for multiclass problems like the one addressed in this Thesis, those
metrics’ computation changes. As a model example, Table 2.2 demonstrates how
those values would be calculated, contrasting with the binary case illustrated in the
previous example. Consequently, the overall precision and recall of the entire model
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Model output
Class 1 Class 2 Class 3

Ground
truth

Class 1 TP FP
Class 2 FN TN
Class 3

Table 2.2: TP, TN, FP and FN calculations for the “Class 1” class of a
multiclass confusion matrix example.

are determined through various types of averaging, among which the following stand
out: micro and macro [Grandini et al., 2020]. The micro approach considers the
total of true positives, false negatives, and false positives to compute the metric,
making it suitable for problems involving mutually exclusive classes. Conversely,
the macro approach calculates the average metric for each label, regardless of the
proportion of each one in the dataset. Concerning accuracy, it is typically computed
in the same manner as in the macro case.

Furthermore, the F1-score offers various weighting options to evaluate multiclass
classification problems. In addition to the previously discussed approaches, there is
also a variant of the macro strategy called macro-weighted. That approach considers
the proportions of the data by averaging the precisions and recalls of each class
involved.

Although accuracy is the widely used measure overall, the F1-score is also
closely related to the accurate classification of groups, while being less influenced
by potential imbalances between classes in the datasets [Bekkar et al., 2013]. Given
that, in situations where imbalances occur, accuracy may provide an inaccurate
representation of the final results and the F1-score should be calculated too.

2.3 Statistical significance methods
While the evaluation metrics discussed above give a measure of the quality of the
results, the fact that one of those values is slightly higher than another does not
necessarily mean that there is an actual difference between them. In order to be
able to assess that fact, statistical significance techniques are used, which allow for
comparing two or more results and concluding whether the models that produced
them are statistically similar. In other words, they help researchers assess whether
the observed differences or relationships between variables are statistically meaningful
or merely the result of random variation.

Although there are numerous methods for such an evaluation, in this Thesis only
two have been used: Student’s t-test [Student, 1908] and Tukey test [Tukey, 1949].
The first technique compares the means of two groups to determine if they are
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significantly different from each other. In addition, it assumes that the data follow a
normal distribution and that the variances of the two groups are equal. Given that,
the formula for the two-sample independent t-test is as follows:

t = X̄1 − X̄2√
s2

1
n1

+ s2
2

n2

(2.17)

There, each X̄ corresponds to the sample means of each specific group. Similarly,
s and n are the sample standard deviation and sample sizes of the two groups,
respectively. The resulting t-value is then compared to the critical one resulting
from the t-distribution with degrees of freedom (df ) that is calculated using the
following given formula:

df = n1 + n2 − 2 (2.18)

That critical value is usually determined using a fixed significance level of 0.05 or
0.1. If the calculated t-value is superior to that value, it means that the difference
between the means is considered statistically significant.

As for the Tukey test, also known as Tukey’s Honestly Significant Difference
(HSD) test, it is used to compare multiple means in a pairwise fashion. That
means that, although the groups are all assessed at the same time, underneath they
are actually being done pair by pair, until every possible duo has been checked.
Furthermore, the Tukey test is typically applied after finding a significant result in an
analysis of variance (ANOVA) test, from the mean squared error (MSE) calculation.
To compute that MSE, the predicted value (ŷi) is subtracted from the observed
one (yi), squaring the resulting difference for each observation. Afterwards, all the
squared differences are summed up and divided by the sample size (n). Its formula
is displayed below:

MSE =
∑n

i=1(yi − ŷi)2

n
(2.19)

Given that, the formula for Tukey’s HSD test is also shown below:

HSD = q ×
√

MSE

n
(2.20)

Note that q refers to the critical value from the studentised range distribution,
which depends on the number of groups being compared and the total number of
observations. In this way, the HSD value is compared to the differences between
means for each pairwise comparison. If the difference between two means is greater
than the HSD value, then those means are considered statistically significantly
different.
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2.4 Validation and optimisation techniques
One of the most commonly used techniques in machine learning for model validation
is cross-validation [Kohavi et al., 1995]. Before training the model, the data is
divided into training and test sets a certain number of times to ensure that the
models are pushed against different data. This elementary division is also known as
hold-out. The training set is used to train the model, while the test set is utilised to
evaluate its performance on previously unseen data. One popular method for that
division is k-fold cross-validation, where the original dataset is partitioned into k
equally sized subsets. One of these subsets is selected as the validation set for testing
the model, while the remaining subsets are used for training. Then, the process
is repeated k times, with each portion serving as the test set once. The results
obtained from the model are then averaged, and performance evaluation metrics
are calculated. Anyhow, there is a variant of this technique called stratified k-fold
cross-validation worth mentioning. This variant aims to ensure that the proportion
of each class in the created subsets is nearly identical, thus mitigating the possible
impact of dataset imbalance on model performance.

Nevertheless, employing such an approach can give rise to one of the most
prevalent challenges in machine learning research. This challenge is commonly
known as the overfitting problem [Vanneschi et al., 2010, Cogswell et al., 2015].
Overfitting occurs when a model excessively memorises the training dataset rather
than extracting meaningful patterns. This problem is particularly pronounced in deep
learning due to the large number of trainable parameters, significantly improving the
network’s memorisation capability. For this reason, various regularisation techniques
are typically employed to mitigate this issue. For instance, a frequently used method
is to implement an early-stopping mechanism in those models [Prechelt, 1998]. This
mechanism aims to halt the training process before the model begins to overfit,
ensuring that the best weights obtained by the model so far are preserved. While
it cannot guarantee avoidance of stopping at a local minimum, that procedure can
enhance the generalisation capability of the models. Furthermore, in addition to the
previous technique, each proposed model can integrate a Dropout layer too. This
layer randomly omits part of the outputs, compelling the model to rely on alternate
connections. With that approach, the model’s generalisation capacity could also
experience a significant enhancement.

As for model optimisation, one of the most widely employed techniques in the
field is grid search [Liashchynskyi and Liashchynskyi, 2019]. Grid search involves
an exhaustive search for a given algorithm’s best combination of hyperparameters.
In this way, each possible combination of the specified hyperparameters is tested,
resulting in a time-consuming but effective process to determine the optimal model
performance. Finally, the best combination is determined by assessing various
evaluation metrics, with accuracy or F1-score being the most commonly utilised
criteria for selection.
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The initial research in the human activity recognition field dates back to the late
1990s [Gavrila, 1999, Aggarwal and Cai, 1999]. In those works, researchers sought
to be able to classify the different poses or facial expressions that an individual
was performing. In this way, they used cameras to extract various images of the
individuals executing those “actions”. That information was then processed and fed
into a traditional machine learning model to produce a final result. In any case, it
was still only a modest amount of work and very limited technologically.

With the arrival of the 2000s, the subject began to become more popular, and it
did not take long for works to appear in which the studied actions already presented
some kind of physical movement [Mantyjarvi et al., 2001, Bao and Intille, 2004].
The aim was no longer just the correct classification of the previously mentioned
poses, but also to recognise whether the person was running, talking, or any other
similar activity. For that, it became necessary to use movement sensors, specifically
accelerometers, placing them on different body parts, depending on the action to
be studied. As with the images from before, the data acquired from those sensors
underwent processing to introduce them into a traditional machine learning model
with which to obtain the final classification.

However, it was not until around 2010 that this field started to become very
prominent. At that point, wearable devices and, above all, smartphones, were
already a well-established reality in the developed world. Thus, during that time,
different datasets were presented that would later be taken as a basis by the entire
scientific community. The most noteworthy sensor-based ones are discussed in
Section 3.1. Then, in Section 3.2, the evolution in HAR is described from that
juncture, encompassing works that used those datasets or contributed their own.

23
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3.1 Popular datasets
Within the sensor-based HAR field, several datasets have served as
benchmarks for validating experiments and expanding knowledge in the
field [Ramanujam et al., 2021]. The data included in those datasets come from
various wearable devices, such as activity wristbands, heart rate monitors and, more
recently, smartphones. Among the latter, the most widely exploited dataset by
the scientific community is the UCI HAR one [Anguita et al., 2013a]. It explores
activities such as walking, sitting or going upstairs, based on data from the
accelerometer and gyroscope of a specific smartphone. To carry it out, 30 people
took part in the study, placing the smartphone on the left side of their waist.
Regarding the activities, each one was performed for a few seconds in order to
collect at least one specific feature from them. In addition, the output data were
sampled at a frequency of 50 Hz, and the entire procedure took place within a
laboratory setting.

Alongside the UCI HAR dataset, the WISDM one [Kwapisz et al., 2011] is also
extensively used on a global scale. The activities included therein are highly similar
to those from the previously mentioned dataset. Additionally, both datasets included
activities that were studied for a comparable duration of several seconds. The main
difference lies in the placement of the smartphone, which, in this case, was positioned
in one of the front trouser pockets of each of the 29 individuals who took part in
the study. Moreover, only accelerometer data were used, with a fixed frequency of
20 Hz. Once again, the whole process was conducted under controlled laboratory
conditions.

Following the same premise, the HHAR dataset [Stisen et al., 2015] gathered
data from eight smartphones and four smartwatches. The smartphones encompassed
four distinct models, while the smartwatches consisted of two different types. Each
participant had the smartphones placed tightly in a pouch attached to their waist,
while two smartwatches were worn on each of their wrists. In total, only nine
individuals participated in the study. The activities performed were basic examples
such as walking, cycling, or running, but they were recorded over an extended
period of time of five minutes. Although the data collection did not take place
in a laboratory environment, participants were instructed to follow specific routes
within designated timeframes. Regarding the sampling rate, efforts were made to
use the maximum value supported by Android. However, the actual sampling rates
displayed some variability.

Also worth mentioning is the UniMiB SHAR dataset [Micucci et al., 2017]. Its
data collection process involved a particular smartphone placed in the front trouser
pocket of each of the 30 participants. In this case, only accelerometer data were used,
with a fixed sampling frequency of 50 Hz. Concerning the activities to be studied,
these included walking, standing up, running and jumping, among others. The
entire process followed a specific flow controlled by the researchers who conducted
the study, in laboratory conditions.
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Additionally, a set of commonly used datasets did not rely on smartphones
specifically. Instead, these used a variety of sensors distributed across the body of
the individual in question. Among them, the PAMAP2 one [Reiss and Stricker, 2012]
deserves the initial mention. One of the most compelling points of this dataset is
the activities it includes. Apart from the activities already examined in previous
datasets, this one explores actions such as ironing clothes, playing football, and
cleaning the house. In order to gather the data, three inertial measurement units
(IMUs), alongside a heart rate monitor, were utilised. Those units consisted of an
accelerometer, gyroscope, and magnetometer. In addition, they were positioned
on different body parts, namely the dominant wrist, ankle, and chest. Also, the
sampling frequencies for each unit were set at 100 Hz. However, it is worth noting
that only nine individuals participated in the study, which was done at a laboratory.
Nevertheless, no specific information was provided regarding the duration of data
collection for each activity.

Following the same logic, the Opportunity dataset [Chavarriaga et al., 2013] was
gathered in an environment that simulated the kitchen of a house, with its usual
accessories: table, fridge and coffee machine, among others. For that purpose, only
four individuals were fitted with multiple measuring devices across their entire
body, focusing mainly on the shoulder and wrist areas. Those devices included
accelerometer, gyroscope and magnetometer sensors, as well as other types of ambient
and room location sensors. As for the activities to be carried out, in addition to
those already mentioned in the first datasets in this section, it also includes other
more specific ones such as opening or closing the dishwasher or cleaning the table. To
that end, a dedicated workflow was established to execute the activities sequentially.
Moreover, no specific sampling rate was configured for the sensors during the process.

Finally, there is a health-oriented dataset called mHealth [Banos et al., 2014,
Banos et al., 2015] which was collected from wearable devices equipped with sensors
such as accelerometers, gyroscopes, magnetometers, and heart rate monitors. The
sampling frequency for those devices was set at 50 Hz. A total of 10 individuals took
part in the study, engaging in activities such as running, raising a knee, jumping, and
going downstairs, among others. The devices were positioned on the participants’
chest, right wrist, and left ankle. Each activity was performed either for one minute
or for the time it took to perform 20 repetitions, depending on the nature of the
action. In addition, while the participants had the freedom to initiate the data
collection, those specific conditions were maintained.

As can be seen, although the datasets described hold significant differences
between them, they all present a common problem. Specifically, the data gathering
conditions remain fixed, with the measuring devices positioned on specific body parts
and activities performed in a predefined manner and for a set duration. To highlight
that issue, as well as their differences, a summary of essential information from each
discussed dataset is presented in Table 3.1. Note that the abbreviations used in that
table correspond to accelerometer (acc.), gyroscope (gyro.), magnetometer (magn.),
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ambient sensor (amb.), and electrocardiogram (ECG). For that reason, during the
development of this Thesis, a separate dataset was built in which the participants
could execute the specified activities in a much more realistic way. In that dataset,
data were collected from participants’ personal smartphones, enabling them to carry
out and measure the actions for as long as they desired, with their own smartphone
positioned in their preferred habitual manner. In this way, a new dataset gathered
in a free environment with no specific conditions was obtained, as intended in the
objectives of the Thesis.

3.2 Latest approaches and current challenges
All the datasets that emerged after the advent of wearable devices and the
establishment of smartphones globally led to a considerable increase in HAR
development. From that point on, the variability, evolution and optimisation of
artificial intelligence models using that type of data has been constantly increasing.
In fact, during the 2010s, numerous papers were published comparing different
machine learning algorithms, with different configurations and processing the
data in different ways. Those first works were mainly based on the application
of Support Vector Machines, as they were offering the best results in practice
[Anguita et al., 2013b, Reyes-Ortiz et al., 2014]. However, other algorithms such as
K-Nearest Neighbours, Multilayer Perceptrons, those based on decision trees such
as Random Forest or even those based on Bayes’ Theorem, among others, were also
commonly applied. Some works, such as [Wu et al., 2015] and [Chen et al., 2017],
compared some of those algorithms, with different parameters and features, with
SVM being the one that yielded the best performance. Furthermore, the last
mentioned study also investigated the impact of smartphone orientations on the
collected data. In that regard, the findings revealed that variations could notably
influence the final results. Similarly, efforts were made to identify the most effective
features for training those models, as demonstrated in studies like [Seto et al., 2015]
and [Sousa et al., 2017]. The results from those works indicated that frequency-
based parameters appeared to be the most appropriate for HAR, yielding the highest
accuracy rates among the trained classifiers.

Years later, approximately between 2015 and 2020, the irruption of deep learning
did not go unnoticed, and many researchers began to apply it in their studies in
HAR [Yang et al., 2015]. The fact of not having to do manual feature extraction
and being able to implement the models more straightforwardly made this aspect
very attractive to test in the field. As before, comparisons were also made between
those new algorithms and the most commonly used ones to date. For example,
in [Ronao and Cho, 2016] and [Ignatov, 2018], they proved the superiority of deep
learning algorithms over those used so far, including SVM, where Convolutional
Neural Networks were the best by far. In fact, the latter is one of the most widely
used options by the scientific community nowadays, given their speed and ease of
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use [Sikder et al., 2019]. Regardless, considering the severe temporal character of
this kind of data, it is also pretty common to use models based on the Long Short-
Term Memory technique, as well as its bidirectional variant [Hernández et al., 2019,
Li and Wang, 2022], with very similar results. That is due to the very nature
of this technique, which can store information from the past or even the future,
depending on the variant applied. However, one drawback of these methods is
that they need a significant amount of data and time to achieve adequate training,
which sets them apart from CNNs. Anyhow, there were works that opted to
directly compare those two techniques, with a slight inclination towards using
CNN over LSTM [Badshah, 2019, Wan et al., 2020, Teng et al., 2020]. However,
although both methods are well-suited for capturing many activities of daily living
(ADL), there appears to be a slight preference for CNN over LSTM due to its faster
processing speed and more manageable implementation.

In contrast, not all research in this field has exclusively focused on using
accelerometer and gyroscope sensors. Studies such as [Figueiredo et al., 2019] and
[Voicu et al., 2019] proved the potential of incorporating other sensors, such as the
magnetometer or GPS, yielding excellent results in their respective investigations.
Specifically, those sensors have shown efficacy in capturing data related to different
long-themed activities, such as walking or running, as proved in those studies.

Nevertheless, despite all the progress mentioned earlier, there is still a common
issue shared by all those works. The data were collected under highly controlled
conditions, with specific instructions in place. Therefore, it is unrealistic to anticipate
similar favourable outcomes when applying their proposed models in real-life settings.
Although some studies like [Ustev et al., 2013] and [Janko et al., 2018] have tried to
address that problem, they are not actually practical for everyday use. Those works
achieved good results by adjusting the phone’s coordinates to match the Earth’s.
In addition, they even used different models of smartphones without a significant
decrease in accuracy. However, when they changed the smartphone’s orientation,
the performance did suffer. Moreover, those studies did not tackle the challenge of
putting the smartphone in different places, rather than just a trouser pocket.

For those reasons, the work carried out during this Thesis span
focused on orienting research in this field towards more realistic
environments [Garcia-Gonzalez et al., 2020a, Garcia-Gonzalez et al., 2023b,
Garcia-Gonzalez et al., 2023a]. With that specific purpose, a dedicated dataset
was gathered to follow those guidelines [Garcia-Gonzalez et al., 2020b]. In this
way, the data included therein were exploited in subsequent work, searching the
most convenient approaches to address such orientation. In fact, some very recent
research, such as [Hnoohom et al., 2020] and [Hu et al., 2023], have already taken
into account that new dynamic in their studies. Thus, it is feasible to think that the
current trend in HAR will focus on this new orientation. Hence, all the knowledge
acquired since the 1990s could be implemented into the real world in the coming
years, optimising it as new technologies and needs arise in daily life.
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Methodology and results

Based on the objectives mentioned in Section 1.2, it has been possible to advance in
the field of human activity recognition, orienting all the findings towards a real-life
environment, as this need was previously highlighted. Therefore, the contributions
focused on creating a more realistic database and searching for the best models
to classify such data, from the most traditional to the most current, following the
objectives set at the beginning of the Thesis.

In summary, this chapter highlights the main achievements of this Thesis, divided
into three sections closely aligned with each of the papers attached in Appendix A,
respectively.

4.1 Real-life data gathering
This section is heavily based on the contents of the article presented in Appendix A.1.

As previously mentioned, there are multiple problems in the existing datasets in
the current literature, making the transfer of the research carried out so far in human
activity recognition to real life very difficult. Therefore, the first contribution of this
Thesis focused on gathering a new dataset that would promote the orientation of
research in this field towards everyday environments. In order to make the possible
findings more far-reaching, smartphones were used as the collection mechanism, due
to their global use compared to any other type of wearable device.

In terms of sensors, four different ones were used: accelerometer, gyroscope,
magnetometer and GPS. The accelerometer is essential to detect any slightest
movement on the device. Moreover, it is the most frequently seen in any HAR-based
study. As for the gyroscope, it has been shown in numerous studies to help improve
classifications of actions performed, so it should be a positive in this new orientation
as well. Regarding the magnetometer and GPS, although they are less common
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in this field, their own natures could be beneficial for the actions to be studied.
Both help to know the current point where a person is, so any displacement in this
direction could help to perceive the orientation and the speed at which these changes
are taking place. That fact, although irrelevant for static movements such as raising
the hand or sitting down, should be positive for identifying differences in activities
with displacement such as walking, running or cycling.

Furthermore, that data collection should come from individuals with different
peculiarities, from the physical diversity of each one to the use and model of the
personal smartphones of each one. For that reason, a straightforward Android
application was implemented from which the different users could start and end their
collection sessions, as well as send all this information to a dedicated data collection
server. Each session consisted of performing a specific action for the duration of
the individual’s session, from the moment the action was initiated until it ended,
both by pressing the corresponding button. In the end, 19 people participated in
the study, ranging in age from approximately 25 to 50 years old. However, there is
little gender diversity, with only two women out of the 19 participants. Nevertheless,
the physical peculiarities, alongside the individual’s varied habits and preferences
regarding the use and positioning of their smartphone, exhibit significant diversity.
Therefore, variability, although improvable, is also present.

With regard to the actions studied, the following four were established:

• Inactive: any activity that involves not having a smartphone on you.

• Active: any action that involves movement, but without going to a particular
place. Examples include teeth brushing, dancing at a concert or playing video
games.

• Walking: any displacement of the individual between two points without using
a motor vehicle of any kind. For example, the activity of jogging would be
classified as “walking”.

• Driving: any journey made in a motorised vehicle without the need to be its
driver. For example, travelling by bus would be classified as “driving”.

As can be seen, those activities are typically performed over long periods of time
(several minutes or even hours). This is noteworthy because, normally, the other
datasets focus on much shorter times (i.e. between 2 and 10 seconds), with more
specific actions such as sitting or raising the hand. Studying that type of more diffuse
and long-themed activities provides an opportunity to observe, in a preliminary way,
if this new orientation is feasible in HAR. Then, depending on the progress made
and the definite context, new and more specific activities could be studied based on
previous knowledge.

However, data gathering of that nature is very different from those previously
carried out in the field. As such, some unforeseen events arose that rendered the
data processing and needed to be addressed:
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• Lack of sensors. Not all smartphones that took part in the dataset had all four
sensors available. While the accelerometer and GPS are already mandatory on
at least all current Android systems, that was not the case for the gyroscope and
magnetometer at the time of the study. Out of the 19 people who participated
in the data collection, five people had that problem, with at least one of
those sensors missing. More specifically, the contribution of those individuals
corresponds to about 20% of all measurements taken for the dataset. Therefore,
instead of seeing that as a problem, it was decided to make different datasets
according to the available sensors among all participants. That resulted in
three different datasets, depending on which sensors produced the data and
the individuals who had them available on their smartphones: accelerometer +
gyroscope + magnetometer + GPS (main), accelerometer + magnetometer +
GPS and accelerometer + GPS. Although the number of total participants
decreases in the main dataset, that distinction enables further exploration
of the impact of those missing sensors on the final ranking with the new
orientation.

• Differences in the sampling rate. Even by trying to set the frequency of each
sensor to the maximum allowed by Android, there are cases of sessions that
differ from that value. Consequently, in some cases, the time difference between
each observation is not the same. That results in the need for a superior effort
when processing the data. However, that problem was considered to be
potentially frequent in real life and should, therefore, also be studied. In any
case, it should also be noted that there is already a baseline difference between
all the sensors with respect to GPS. This sensor produces data approximately
every 10 seconds, which is very different from the frequency of several samples
per second present in the remaining used sensors. Even so, in many cases that
frequency was greatly extended, even to the point of having sessions without
GPS data that would later have to be ignored. Again, that implies a higher
research effort.

• Imbalanced data distribution. Given the nature of the actions to be studied,
most data belong to the “inactive” activity, as it is much easier to collect
samples in that way than in any of the other options. As a general idea, using
the main dataset with all sensors and ignoring any session with too much noise
or that lasted less than 20 seconds, the data distribution would be as shown
in Figure 4.1. Therefore, although imbalance is present and must be taken
into account while training the artificial intelligence models, there are plentiful
samples in each activity to obtain satisfactory results.

Finally, to prove the potential of the collected datasets, a series of preliminary
experiments were carried out on them. For that purpose, Support Vector Machines
were used as the machine learning algorithm, as it is a straightforward technique
to apply and one of the best-performing in the HAR field. In order to be able to
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Figure 4.1: Approximate distribution of the usable data collected among
the studied activities.

introduce the data into the model, a window size of 20 seconds was established,
with overlaps of 19 seconds in each sliding window. In this way, a large number of
samples are obtained (around half a million), while maintaining coherence with the
long-themed activities to be studied. As for the features to be calculated in each
of those windows, simple options such as the mean and standard deviation were
chosen, among others. In addition, in order to ensure the existence of GPS data
in those windows, it was necessary to replicate them on a second-by-second basis,
according to the latest observations found.

All in all, different combinations of hyperparameters were tested until ob-
taining the results shown in Table 4.1, corresponding to the best one found
[Garcia-Gonzalez et al., 2020a]. That combination consisted of the Radial Basis
Function (RBF) kernel, specifically when γ was set to 0.01, along with C = 10.
There, the average precision obtained with the best combination found is indicated,
applying it to each collected dataset, together with its standard deviation. As can
be seen, the results are not ideal and clearly indicate that there is significant room
for potential improvement. Furthermore, the dataset that does not include the
gyroscope seems to yield the best results, which contradicts the positive influence
that this sensor appeared to have in other HAR studies. Nonetheless, they prove
both the potential of the data and the orientation towards real-life environments, as
initially intended.

Acc. + GPS Acc. + Magn. + GPS Acc. + Gyro. + Magn. + GPS
67.53% ±6.33 74.39% ±10.75 69.28% ±15.10

Table 4.1: First mean accuracies achieved for each set of data.
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However, for the earlier stated reasons, an in-depth study of machine learning
algorithms and their most suitable configurations for the dataset in question was
conducted, which is detailed in Section 4.2. Additionally, due to the simple data
preparation in this contribution, further investigation was carried out in this regard,
exploring new sets of features and window sizes. Moreover, the actual influence of
the gyroscope in the experiments was also studied, considering the results presented
here.

4.2 Machine learning exploration
This section is heavily based on the contents of the article presented in Appendix A.2.

The preliminary results previously obtained were highly improvable and gave very
little information on how to approach the new dataset. Therefore, it was decided
to carry out an in-depth exploration of what could be the best machine learning
approaches for the new orientation proposed in this Thesis. In order to make the
study as detailed as possible, the following objectives were taken into account:

• Using multiple algorithms. In order to carry out a highly detailed study, it
was necessary to apply a large number of different algorithms to observe
their behaviour with the new dataset. Thus, it was decided to opt for
algorithms widely used in HAR such as Support Vector Machines, Decision
Trees, Multilayer Perceptron, Naïve Bayes, K-Nearest Neighbours and Random
Forest. As a novelty, it was also chosen to include Extreme Gradient Boosting
because of its recent great popularity in other fields and its excellent results,
despite not being seen so much in HAR.

• Applying different data preparations. Due to the long-themed nature of the
activities collected in the new dataset, it is possible that longer time windows
may help to classify them better. Therefore, it was also necessary to test
the previously arranged algorithms with different window sizes to look for
significant differences. Those sizes ranged from 20 to 90 seconds, increasing
in increments of 10. In the same vein, it was also decided to try a new set of
features, outside of the simple statistics used previously, to see if there was any
improvement in that aspect too. Given that, values such as total positive time,
number of local minima and total distance travelled, among many others, were
calculated. They are summarised in Table 4.2 [Garcia-Gonzalez et al., 2023b].

• Studying the actual influence of the gyroscope on the results. In preliminary
experimentation with the new dataset, the best accuracy obtained was for the
dataset without the gyroscope. Numerous HAR studies have shown that the
gyroscope has a positive influence on the classification of actions. Therefore,
given that the prior study did not have many variables to validate that result,
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Features
Primary set Proposed additions

General General Not for GPS Only for GPS
Mean
Variance
Median absolute deviation
Maximum
Minimum
Interquartile range

Energy
Number of observations
Maximum time gap
Minimum time gap

Signal magnitude area
Number of zero crosses
Number of local maxima
Number of local minima
Total positive time
Total negative time

Total distance travelled

Table 4.2: New feature set proposed for the machine learning exploration.

it was decided to repeat all the tests performed on the main dataset in the
one without the gyroscope. In this way, it could be confirmed whether or not
this sensor was positive for the new orientation proposed in this Thesis.

Anyhow, tree-based algorithms were the best overall performers for all the cases
studied. Among them, Random Forest stands out as the one that obtained the
best accuracy peaks. Table 4.3 shows the average confusion matrix for the best
configuration found for the main dataset. In that scenario, the outcomes correspond
to the Random Forest algorithm, employing a window size of 80 seconds (with
overlaps of 79 seconds) and the new feature set. Although the classification accuracy
improved notably from the preliminary study, some problems exist in correctly
differentiating the “active” activity. That is mainly due to the inherently fuzzy
nature of that action, where moments of both activity and inactivity are combined.
A characteristic example of an action that would be classified as “active” is giving a
lecture. In that case, during the lesson explanation, the professor may be walking
around the classroom to facilitate student understanding. At the same time, they may
be sitting and waiting for the students to perform some related exercise. Therefore,
it is reasonable to expect some confusion when classifying that type of activity,
especially with the “inactive” and the “walking” activities.

On the other hand, it is also worth noting that the proposed new set of features
did not seem to bring any significant improvement compared to the results of the
statistically-based one. However, substantial improvements were observed with
bigger window sizes. When that value reached around 60 seconds or more, the
results were significantly superior to those obtained with smaller window sizes, such
as 20 or 30 seconds.

Finally, it could be concluded that the gyroscope did benefit the final results, as
demonstrated in other HAR studies.

Nevertheless, given the difficulties encountered in optimally discerning all the
activities studied, as well as the inconclusive results observed between the different
calculated features, it was decided to look for a distinct approach. To address that,
the deep learning algorithms that yielded the most promising results in HAR, namely
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Ground truth
Inactive Active Walking Driving Precision

Inactive 19,965 230 261 13 97.54%
Active 888 12,980 1,005 373 85.14%

Walking 24 325 6,043 94 93.17%
Driving 50 44 29 5,157 97.67%

Recall 95.40% 95.59% 82.35% 91.49% 92.97%

Table 4.3: Average confusion matrix for the best combination found in the
machine learning exploration.

CNN and LSTM, were employed. Consequently, a comprehensive examination of
their architecture was conducted to maximise their inherent capabilities. The study
involved combining and comparing those algorithms in order to enhance the machine
learning models developed in this contribution. Further details regarding that
research can be found in Section 4.3.

4.3 Deep learning exploration
This section is heavily based on the contents of the article presented in Appendix A.3.

The application of deep learning in human activity recognition has been steadily
increasing in recent years. For that reason, it would not be appropriate to limit
exploration to techniques based on pure machine learning. Thus, although the
results achieved in the latest experiments were truly satisfactory, deep learning was
considered to have the potential to enhance them. The most recent work in this
field shows that using models based on Convolutional Neural Networks or Long
Short-Term Memory recurrent neural networks generally offer better results than
other techniques. Therefore, the main objective of this point was to improve the
classification of previously collected data by searching for the best architecture based
on deep learning. In addition, during the search, it would be possible to compare
those two techniques, both individually and combined, as well as using other variants
of the same techniques.

However, the different sampling frequencies present in the dataset (explained
in Section 4.1) made the process quite challenging. In previous experiments,
by calculating several features on the selected sliding windows, those frequency
differences were not as meaningful for classification. Regardless, in the case of deep
learning, that feature calculation is done by the model itself, assuming that all
observations are equidistant in time. Although applying some rather interpolation
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is presumably the most common approach in such problems, it would eventually
result in data that would not correspond to reality, invalidating it as a solution.
Therefore, given the non-existence of a similar problem in HAR, an experimental
solution was chosen. After thorough data analysis, it was found that those frequency
changes corresponded in almost every case to two specific values: 20 ms or 200
ms. In other words, the sensors were providing data at intervals of either 20 ms
or 200 ms, without taking into account the GPS, which has a wildly different
frequency in itself (approximately one value every 10 seconds). Thus, only the
closest observations at each 200 ms interval from the session’s start were kept in
the dataset. Hence, although there is data loss at moments of greater frequency,
the actual data corresponding to that time instant are maintained. The number of
samples is more than enough to perform a satisfactory classification, so that loss
was not considered a big problem.

As for the models finally used, on the CNN side, it was opted to use its separable
variant, DS-CNN (Depth-Wise Separable Convolutional Neural Networks), as they
are faster than the original ones and produce equivalent results. On the LSTM side,
its original form was used, in addition to its bidirectional variant, Bi-LSTM, also
widely used in the scientific community, to compare their performances. In this
way, five different models were formed. On the one hand, the individual models:
DS-CNN, LSTM and Bi-LSTM. On the other hand, their hybrid variants: (DS-
CNN)-LSTM and (DS-CNN)-(Bi-LSTM). The latter should yield better results than
their original forms, as they can take advantage of the natures of each of the two
algorithms and exploit them together. In any case, a comprehensive comparison of
the best-performing deep learning techniques in HAR would be achieved, as initially
intended. Thus, their viability could also be studied for the new direction proposed
in this Thesis.

Eventually, the depicted model architecture shown in Figure 4.2
[Garcia-Gonzalez et al., 2023a] represents the final design. In order to avoid
dealing with the problems present in each sensor’s nature, it was decided to deal
with the data from each of them independently. Then, after applying one of the
models indicated in the previous paragraph, the outputs of each branch would be
concatenated, resulting in a single final outcome with the data classification. The
best configuration found corresponds to the hybrid model of (DS-CNN)-LSTM,
with an accuracy of 94.80%, as shown in Table 4.4. These results correspond to
the main dataset. Also, it should be noted that the number of samples there is
lower compared to the previous work due to the utilisation of a smaller overlap in
those experiments. In previous experiments, the overlap was set to the value of the
specified window size minus one. However, in order to simplify data management in
memory, the current experiments established an overlap equivalent to the window
size minus ten. Anyhow, as can be seen, the confusion with the “active” class,
present in previous scans, was largely resolved. Therefore, the initial objectives were
achieved, improving the classification of the previously collected data.
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Figure 4.2: General architecture of the whole model used to carry out the
deep learning experiments.

Ground truth
Inactive Active Walking Driving Precision

Inactive 1,993.4 42.2 3.8 3.4 97.58%
Active 40.6 1,226.8 51.2 20.3 91.63%

Walking 2.9 45.8 613.7 4.9 91.97%
Driving 11.7 7.5 4.5 515.3 95.60%

Recall 97.31% 92.78% 91.16% 94.74% 94.80%

Table 4.4: Average confusion matrix for the best combination found in the
deep learning exploration.

Even so, it should be noted that the results presented here correspond to a
window size of 90 seconds, the maximum value addressed during the development
of this Thesis. Therefore, it is not ruled out that extending the window size may
benefit the data classification. However, in doing so, the possibility of classifying
actions performed in shorter periods of time is lost, which reduces the variability
and the number of samples to be studied. The differences in results between, for
example, a 90-second window size and a 60-second window size were statistically
similar. Hence, it is perhaps most reasonable to stick with a window size around
that one-minute duration.

Still, although the problems in the classification of the “active” activity observed
in Section 4.2 were solved to a large extent, there remain certain areas where further
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improvements could be executed. Nonetheless, considering the inherently fuzzy
nature of that particular activity, it might be appropriate to delve deeper into more
precise actions, applying all the knowledge acquired during this Thesis development.

Algorithm Window size (s) Accuracy
SVM 80 86.56% ±11.30%

DT 20 89.99% ±6.13%

MLP 40 86.85% ±6.12%

NB 80 83.27% ±7.78%

KNN 80 89.02% ±8.00%

RF 80 92.97% ±6.23%

XGB 70 92.23% ±7.30%

DS-CNN 90 90.70% ±7.29%

LSTM 90 93.52% ±5.59%

Bi-LSTM 90 93.09% ±5.10%

(DS-CNN)-LSTM 90 94.80% ± 4.09%

(DS-CNN)-(Bi-LSTM) 90 94.16% ±5.06%

Table 4.5: Comparison of the best results obtained on the main proposed
dataset, with the methods used during the Thesis and for the window size
that yielded the best performance.

In summary, Table 4.5 provides an overview of the top-performing outcomes
achieved by each algorithm implemented on the main dataset proposed in this Thesis,
according to their best window size. The deep learning algorithms proved to be the
most effective in yielding favorable results, while also acknowledging the noteworthy
performance of the tree-based algorithms. Among them, the cases involving LSTM
were the most successful, proving to be the most suitable option for the given dataset
among all the options studied. Nonetheless, it is noteworthy to observe how the best
results, in the machine learning cases, remain within the range of 80 seconds, with a
slight decrease in accuracy percentage for window sizes of 90 seconds. Conceivably,
if the same specific window size was used in the deep learning experiments, a similar
trend could be observed. However, even though the best results were obtained with
an 80-second window size for the machine learning cases, the accuracy achieved with
the other window sizes does not differ significantly from the best one. To prove
that point, Figure 4.3 shows a Tukey test performed on the best case found for RF.
Similarly, another Tukey test was conducted for the deep learning cases to observe
the same behaviour. In that case, it was performed for all used models, as well as the
different window sizes applied (30, 60, and 90 seconds). As seen in Figure 4.4, there
are no significant differences between 90 and 60 seconds, but there are differences
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Figure 4.3: Results of the Tukey test performed for all window sizes used
with Random Forest, for its best case found.

Figure 4.4: Tukey test results for each group of accuracy values referring to
each selected window size, for all the deep learning models.
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with the 30-second case. That finding, combined with the observations from the
machine learning exploration, suggests that using more tightly adjusted window
sizes (around one minute) may be sufficient to achieve satisfactory classification
results.



Chapter 5

Conclusions and future work

This Thesis has addressed many challenges associated with the quest to orient
research in the human activity recognition field towards real-life environments. The
conclusions of all the work carried out are summarised below, as well as a number
of future lines of research that could be positive in that area.

5.1 Conclusions
The main objective of this Thesis was to orient current research in the human activity
recognition field towards real-life environments. Given the lack of data focused in
that direction, it was essential to collect a new dataset in order to start that process.
In addition, it was also crucial to deal with data from the sensors embedded in
today’s smartphones, given their prominent use in the current developed world.
Therefore, the first contribution of this Thesis focused on that point. The resulting
dataset contains information from 19 different individuals, each with distinct physical
peculiarities and ways of using their particular smartphone and who performed a
range of activities almost freely. In terms of sensors, the accelerometer, gyroscope,
magnetometer and GPS were used. In this way, the information collected was diverse
enough and realistic to be able to transfer future findings to real-world problems.

However, as it was a very different data collection from any other conducted
in this field so far, several unforeseen issues arose. First, not all individuals who
participated in the study had all the necessary sensors available on their smartphones.
Consequently, in some cases, data from a few individuals are not available. Secondly,
the sampling frequency was not always the same for each sensor. Even if the
maximum value allowed by Android was set in that respect, there are some cases
where the sampling rate changes, which means that more effort has to be put
into data processing. Finally, the resulting dataset exhibits a noticeable degree of
imbalance towards one of the four activities studied. Although the number of samples
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in the rest of the actions is more than enough to carry out a correct classification, it
is something that must be considered in the developments to be made on those data.

All in all, the scientific community currently has at its disposal a dataset collected
in a real-life environment. Even considering the problems described in the previous
paragraph, those challenges might become commonplace in other future datasets that
follow a similar orientation. Therefore, even if they require more research effort, they
could still result in valuable findings for advancing HAR in that direction. In this
way, researchers can draw on such information and make their own developments,
optimising them and successfully focusing on more realistic scenarios.

Following that guideline, a comprehensive comparison of multiple artificial intel-
ligence algorithms was carried out, with numerous combinations of hyperparameters
and features, as well as different window sizes. In terms of hyperparameters, much
information was obtained on which cases favoured classification more, according to
the algorithm, although with some arbitrariness depending on the parameter studied.
Regarding the features, experimentation was carried out on two sets: the classical
ones, which rely on statistics (including mean and standard deviation), and another
group that relates more to the distinct aspects of the collected signals. Unfortunately,
the results were not entirely conclusive, so it is unclear which would be the most
appropriate case for the proposed dataset. Finally, it was found that larger window
sizes (around one minute) had a positive influence on the final classification.

Nonetheless, all the experiments carried out on said dataset validated the
possibility of accomplishing the orientation proposed in this Thesis. The classification
of the activities studied is higher than 90% in most cases, reaching 94.80% in the best
case found. In this sense, the best-performing algorithms were those based on deep
learning, highlighting the hybrid model resulting from joining Convolutional Neural
Networks and recurrent neural networks based on the Long Short-Term Memory
technique. Also noteworthy was the performance of tree-based models, especially
Random Forest, which obtained results very close to those of the deep learning
algorithms. In any case, in virtually all instances, peak accuracy was achieved with
the largest window sizes used in this Thesis (between 60 and 90 seconds). With
smaller window sizes, the implemented AI systems were not as adept at discerning
the distinct features of the long-duration activities studied here. In addition, it
is worth highlighting the fact that algorithms based on LSTM yielded the best
results. Those networks are renowned for their effective handling of time series
data, which, in conjunction with the observed behaviour under different window
sizes, demonstrates the significance of appropriately addressing data temporality
when classifying such actions. That, in turn, constitutes one of the most common
challenges within the HAR field. Still, there is potential for further improvement in
the results. After all, the developments carried out in this Thesis, although diverse,
are only a part of the large variability that could arise over the years.

Finally, it should also be noted that, during the years of development of this
Thesis, more papers have arisen that have made use of the proposed dataset
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[Hnoohom et al., 2020, Hu et al., 2023], also with good results. At the same time,
other datasets with the same orientation sought here are also starting to emerge
[Quan et al., 2022]. Taking into account all the research carried out during this
Thesis, together with the last points made here, there is no doubt that the project
has been a success. With the possible advances that will occur in the coming years,
there is a strong possibility that the accumulated knowledge in HAR could be,
eventually, directly applied to real-world scenarios.

5.2 Future work
Even if all the work carried out during the development of this Thesis was finally
successful, it is true that some unforeseen problems had to be solved. No matter how
efficient and convincing the solution is, there will always be room for improvement.
Therefore, the following are some ideas that could be further developed and improved
in future lines of research:

• Different approaches for data processing. Given the problem of the
inconsistency of the sampling frequency of each sensor in the dataset provided,
the solutions in this sense can be very diverse. During the development of this
Thesis, an experimental solution was carried out to correct that problem and
to be able to continue with the implementation of the models. Although the
result is considered satisfactory, it is likely that with different methods the
outcomes will be more positive than with the one proposed there. On the other
hand, although multiple window sizes were studied during the development of
this Thesis, they were still ad hoc to the proposed solutions. For those reasons,
a more in-depth exploration of those issues could result in a better performance
of the final models that perform the classification of the previously processed
data.

• New feature sets. All the features calculated in the work carried out during
the development of this Thesis were focused on the time domain, given the
problems related to the data discussed above. In the event of a successful
resolution to that issue, it is possible that other features from the frequency
domain could be effective at improving the final results. In fact, numerous
studies in HAR have applied such features in their work, with good results
[Seto et al., 2015, Sousa et al., 2017]. Therefore, it is feasible to think that
they will work in a similar way with the new orientation proposed in this
Thesis.

• Other algorithms and configurations. Nowadays, there are many different
artificial intelligence algorithms available. Moreover, the hyperparameter
combinations influencing their performance are often quite broad. Also,
depending on the final model’s architecture and the hybrid models that result
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from combining them, the outcomes can be significantly different. Although
it is considered that, in this Thesis, a good selection of all those matters has
been made, it is still limited, with much room for improvement. It is possible
that other configurations could result in a more accurate classification of the
data. In fact, the application of models based on the Transformer architecture
[Vaswani et al., 2017] could be beneficial, considering their recent remarkable
results in numerous areas related to artificial intelligence. Therefore, this point
is presented as a further line of future research that could be positive for the
project.

• New data. As mentioned above, the activities studied in the collected dataset
are considerably generic. Thus, once their potential has been demonstrated
and the feasibility of the new orientation proposed here has been seen, it may
be time to refine and study new activities. In this way, the idea would be to
develop new datasets in which more specific actions are studied. Such activities
could be similar to those considered in previous work in HAR, such as raising a
hand, standing up or going upstairs. The difference would lie in how the data
are collected, which should be as freely and flexibly as possible to bring it as
close as attainable to the real world. In such a manner, the final applicability
of the systems that could result from such work would be much more practical
and direct.

• Testing the developed models on different real-life datasets. Just as previously
highlighted, using novel data could yield additional valuable insights. As
new datasets collected from real-world scenarios become available, the models
developed during the course of this Thesis could be examined in contexts
distinct from those studied here. In this way, further progress could be made
in this line of inquiry, potentially reaffirming the findings of this research and
streamlining the transfer of all the outcomes achieved.



Chapter 6

Research results

All the work done during the Thesis period was validated by publishing different
articles in international journals. Specifically, each one links to one of the
contributions described in Chapter 4. Those articles are listed in the following,
respectively with those contributions:

• Garcia-Gonzalez, D., Rivero, D., Fernandez-Blanco, E., and Luaces, M.
R. (2020). A public domain dataset for real-life human activity
recognition using smartphone sensors. Sensors, 20(8):2200. DOI:
10.3390/s20082200.
IF (JCR): 3.9 (Q2).

• Garcia-Gonzalez, D., Rivero, D., Fernandez-Blanco, E., and Luaces, M. R.
(2023). New machine learning approaches for real-life human activity
recognition using smartphone sensor-based data. Knowledge-Based
Systems, 262:110260. DOI: 10.1016/j.knosys.2023.110260.
IF (JCR): 8.8 (Q1).

• Garcia-Gonzalez, D., Rivero, D., Fernandez-Blanco, E., and Luaces, M. R.
(2023). Deep learning models for real-life human activity recognition
from smartphone sensor data. Internet of Things, page 100925. DOI:
10.1016/j.iot.2023.100925.
IF (JCR): 5.9 (Q1).

Among them, it is worth highlighting the first one, where the proposed dataset is
published. At the time of writing this Thesis, that work had more than 90 academic
citations, proving the interest and its relevance in the HAR scientific community.

Similarly, the dataset gathered for this Thesis was also presented at the XoveTIC
2023 conference. At the time of writing this document, it had not yet been published,
so its DOI and other specific information were unknown. In any case, the official
document should look similar to the following:
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• Garcia-Gonzalez, D., Rivero, D., Fernandez-Blanco, E., and Luaces, M. R.
(2023). Introducing a human activity recognition dataset gathered
on real-life conditions. Proceedings of VI XoveTIC Conference.

Apart from that, work has also been carried out which has not yet been published.
During the research stay at the Aristotle University of Thessaloniki in Greece, it has
been possible to initiate a project related to mobility data from Madrid’s Community,
in collaboration with Apostolos N. Papadopoulos. The data come mainly from the
public transport users of that community. These include urban and interurban buses,
suburban trains, metro and tram. From those data, it is possible to develop a system
capable of predicting the density of people in a specific area of Madrid. That is
particularly attractive for defining new transport lines or introducing reinforcements
when certain events occur. Moreover, by employing different clustering techniques,
it is possible to delimit the territory into a specific number of areas with which
to relate the previously arranged data. Then, based on that information, various
artificial intelligence techniques can be applied to obtain the final approximate future
value. Currently, it has been possible to develop such a system to make predictions
based on previously defined areas with the aforementioned algorithms. Although it
is still under development, the results are getting closer and closer to reality and it
is hoped to obtain some outstanding merit in the near future.

Furthermore, it is worth noting that this work was initiated as part of the
GEMA (GEstión de la MovilidAd) research project, which aimed to address four
research challenges: intelligent planning of routes, agendas, and schedules; automatic
semantic labelling of trajectories; efficient representation, storage, and exploitation of
trajectories; and automated development of Mobile Workforce Management software.
Additionally, four Galician SMEs participated in this project, in collaboration with
CITIC: Gestora de Subproductos de Galicia S.L., Enxenio S.L., AO Mayores Servicios
Sociales S.L., and Taprega Prevención de Riesgos S.L. Therefore, the outcomes of
this Thesis may be transferred to those industries.
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Each of them corresponds directly to one of the sections offered in Chapter 4:
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R. (2020). A public domain dataset for real-life human activity
recognition using smartphone sensors. Sensors, 20(8):2200. DOI:
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• Summarised in Section 4.2 and presented in Appendix A.2:
Garcia-Gonzalez, D., Rivero, D., Fernandez-Blanco, E., and Luaces, M. R.
(2023). New machine learning approaches for real-life human activity
recognition using smartphone sensor-based data. Knowledge-Based
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• Summarised in Section 4.3 and presented in Appendix A.3:
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Abstract: In recent years, human activity recognition has become a hot topic inside the scientific
community. The reason to be under the spotlight is its direct application in multiple domains,
like healthcare or fitness. Additionally, the current worldwide use of smartphones makes it particularly
easy to get this kind of data from people in a non-intrusive and cheaper way, without the need for
other wearables. In this paper, we introduce our orientation-independent, placement-independent
and subject-independent human activity recognition dataset. The information in this dataset is
the measurements from the accelerometer, gyroscope, magnetometer, and GPS of the smartphone.
Additionally, each measure is associated with one of the four possible registered activities: inactive,
active, walking and driving. This work also proposes asupport vector machine (SVM) model to
perform some preliminary experiments on the dataset. Considering that this dataset was taken from
smartphones in their actual use, unlike other datasets, the development of a good model on such data
is an open problem and a challenge for researchers. By doing so, we would be able to close the gap
between the model and a real-life application.

Keywords: HAR; human activity recognition; sensors; smartphones; dataset; SVM

1. Introduction

Giving birth to the knowledge area called human activity recognition (HAR), the accurate
identification of different human activities has become a hot research topic. This area tries to identify
the action performed by a subject based on the data records from a set of sensors. The recording of
these sensors is carried out while the subject performs a series of well-defined movements, such as
nodding, raising the hand, walking, running or driving. In this sense, wearable devices, such as
activity bracelets or smartphones, have become of great use as sources of this sort of data. This kind of
devices, especially the latter ones, provide a broad set of sensors in a convenient size which can be used
relatively easy with high-grade performance and accuracy. The researchers use the information about
people’s behaviors gathered by these sensors to support the demands from domains like healthcare,
fitness or home automation [1]. The result from the intersection between the widespread sensing all
over the world, due to the smartphones and the models developed from that continuous recording,
is a research area that has attracted increasing attention in recent years [2].

The main challenges to be tackled are two: first, managing the vast number of information that the
devices can produce, as well as their temporal dependency, and, second, the lack of knowledge about
how to relate this data to the defined movements. Some methods have achieved remarkable results in
extracting information from these sensors readings [3,4]. However, it is relevant to note that in such
studies, the devices have been modified to be carried in a particular way, attached to different body
parts, such as waist or wrist. Therefore, the success of those models can be biased using data collected
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in such a controlled environment, with specific device orientations and a few activities. Regarding
these orientations, this is far from the ideal scenario, as every person may use these devices, especially
their smartphones, in many different ways. For the same individual, different clothes may vary the
orientation and placement of the device. In the same way, for different individuals, their body shape,
as well as their behavior, can make an enormous difference too. In this way, the artificial intelligence
(AI) models proposed to date are highly dependent on orientation and placement. For that reason,
they cannot be generalized to every kind of user, so there has not been a real transition to real-life, yet.
Presently, personalization of AI models in HAR for large numbers of people is still an active research
topic [5,6], despite being actively researched for nearly a decade [7,8].

To address the aforementioned issues, this work presents a more realistic dataset which is
independent of the device orientation and placement, while it also keeps the independence of the user.
Those are the main differences according to data with other works developed so far. Additionally,
with the implementation of a simple support vector machine (SVM) model, we present a first model as
proof of concept to detect the main activities in the more realistic dataset. In this way, we are laying
the foundations for the transition of this type of system into real life.

Therefore, the main contributions of this paper can be summed up as follows:

• Provide and make publicly available a new HAR dataset closer to a realistic scenario (see the files
in Supplementary Materials). This dataset is independent of the device orientation and placement,
while it is also individual independent.

• The new dataset adds additional signals not very explored until today like the GPS and
magnetometer sensor measurements.

• A first reference model is provided for this dataset, after applying a specific sliding window
length and overlap.

• A study of the best architecture for longer-themed activities, such as those suggested in our work.

The organization of the rest of the paper is as follows. Section 2 shows some related works on
HAR, as well as other datasets used in this field. Section 3 gives a thorough explanation of the dataset
arrangement, as well as the data collection process. Section 4 presents and discuss the experimental
results obtained on the SVM model we propose, using our custom dataset; while finally, Section 5
contains the conclusions and future work lines.

2. Related Work

Inside HAR knowledge area, other datasets have been previously published. The first one worth
to mention, because its widespread use in different works and comparisons, is UCI (University
of California, Irvine) HAR dataset. Proposed in [9], the dataset contains data gathered while
carrying a waist-mounted smartphone with embedded inertial sensors. The time signals, in this
case, were sampled in sliding windows of 2.56 s and 50% overlap between them, as the activities
researched are done in short intervals of time: standing, sitting, laying down, walking, walking
downstairs and walking upstairs. In this work, they also created an SVM model to be exploited. With a
total of 561 features extracted, they got particularly good results, with accuracies, precisions and recalls
higher than 90%. However, it is a dataset taken in a laboratory environment, with a particular position
and orientation. For that reason, in a realistic environment in which users could use their smartphones
in their way, the results obtained would not be trustable.

Apart from the UCI HAR dataset, there is the WISDM (Wireless Sensor Data Mining) one [10],
which is also widely used. In this case, the sliding windows chosen were of 10 s, with apparently no
overlap applied. They mention that they also worked with 20 s, but the results were much better with
the first case. Here, the activities researched were: walking, jogging, ascending stairs, descending stairs,
sitting and standing. In their work, they used some WEKA (Waikato Environment for Knowledge
Analysis) algorithms like J48 or Logistic Regression to perform some predictions over their data,
with quite good outcomes. Nonetheless, it has the same problem as the previous case, so its results
could not be taken to a real-life environment either.
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To highlight these differences, we show in Table 1 a qualitative comparison between these two
datasets and the one we propose in this paper.

Table 1. Comparison between datasets: UCI HAR, WISDM and the proposed one.

UCI HAR WISDM Proposed

Type of actions studied Short-themed Short-themed Long-themed
Smartphone orientation and positioning Fixed Fixed Free
Different individuals Yes Yes Yes
Fixed sensor frequency Yes Yes No
Sensors used Acc. and gyro. Acc. and gyro. Acc., gyro., magn. and GPS

In the literature, many works tested and validated these datasets. For example, in [11],
they made a comparison between Convolutional Neural Networks (CNN), Random Forest, Principal
Component Analysis (PCA) and K-Nearest Neighbors (KNN) based algorithms. They concluded
that CNN outperforms the rest of the ones they tested, apart from seeing that larger sliding
windows did not necessarily improve their behavior. Also, they proposed some CNN architectures,
making a comparison between different combinations of hyperparameters and the performance they
achieved. Similarly, more recently, [12] also proposed a CNN model to address the HAR problematic,
with apparently slightly better results. On the other hand, [13] submitted a combination between
feature selection techniques and a deep learning method, concretely a Deep Belief Network (DBN),
with some good results, higher than the ones achieved with SVM-based models, which showed to be
one of the best algorithms to use in HAR problematics. By contrast, in [14,15] they made comparisons
between different feature selections for different widely used machine learning (ML) algorithms in the
literature. Results showed that frequency-based features are more feasible, at least for algorithms like
SVM or CNN, as they throw the best results.

Furthermore, many other works built their dataset to carry out their research. One of the most
interesting ones is [16]. In their work, they propose an online SVM model approach for nine different
smartphone orientations. Regarding the data collection, they took it while carrying the mobile in
a backpack. On the opposite hand, they also made a comparison between their custom approach
and some other generic classifiers, such as KNN, decision trees, and Naive Bayes. These methods,
alongside some other techniques like SVM, CNN, Random Forest, and Gradient Boosting, showed to
be valid for HAR with a reasonable size of data. In the end, their approach outperformed the rest of
the classifiers, but they addressed that the future of HAR would be in deep learning methods, as they
seem to get better results in practice. More recent works, like [17,18] show similar results. In these
cases, more sensors apart from accelerometer and gyroscope were used, like GPS or magnetometer,
showing their potentiality in more long-themed activities like walking or jogging.

Following the same line, other works made their datasets but applying purely Deep Learning
methods. In [19], the results show that these methods might be the future for HAR, as their results are
very hopeful, at least in the non-stationary activities such as walking or running, as SVM still reigns in
short-timed activities such as standing or laying down. More recently, works implementing LSTM
(long short-term memory) models are arising. The principal advantage of these implementations is
that they take into account past information and, at being a deep learning-based technique, they do
not need a prior feature extraction to perform the training. The downside is that they need big datasets
to get reliable classification results, as well as more time to be trained and suitable stop criteria to
avoid overfitting (and underfitting). For example, in [20,21] we can see this kind of models and with
particularly good results. In fact, in [20] they implemented a modification of LSTMs which are called
Bi-LSTMs (bidirectional LSTMs). What makes this modification special is that these models can also
learn from the future, throwing accuracies of around 95%.

However, as we already addressed in the introduction, all these works depend on a particular
device orientation to get these successful results. In [22], the problem of different device orientations,
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as well as different smartphone models, was addressed. In this case, they got good results by
transforming the phone’s coordinate system to the earth coordinate system. Moreover, their results did
not show remarkable decreases in accuracy when carrying different smartphone models, but only when
the orientation changed. Even so, it does not address the problem that arises when the smartphone is
put in different places and not only in the pocket (for example, a bag).

As can be seen, there are problems of lack of realism and applicability in real life of the systems
and datasets developed so far in HAR. While the results of many of the models developed in this field
are quite promising, their real-life application would probably not be as successful. Therefore, in our
work, we are determined to know these problems with the formation of our own more realistic dataset.
With a simple SVM model, we could see the performance differences concerning other works and
overcome them in future developments, if there are many.

3. Materials and Methods

This part contains a step-by-step description of our work, divided into the following sections.
First, Section 3.1 presents the procedure carried out to collect the data. Then, in Section 3.2, we describe
how the data was prepared to use once the data collection was over, as well as the features extracted
from them. Finally, Section 3.3 offers a summary of the classification algorithm applied.

The dataset and all the resources used in this paper are publicly available (see the files in
Supplementary Materials).

3.1. Data Collection

Data collection was made through an Android app developed by the authors that allowed an
easy recording, labeling and storage of the data. To do this, we organized an initial data collection that
lasted about a month, to see what data we were getting and to be able to do some initial tests on it.
Later, we carried out another more intensive collection, over a period of about a week, to alleviate the
imbalances and weaknesses found in the previous gathering. Each of the people who took part in the
study was asked to set the activity they were going to perform at each moment, through that Android
app, before starting the data collection. In this way, once the activity was selected, the gathering of such
data was automatically started, until the user indicated the end of such activity. Hence, each stored
session corresponds to a specific activity, carried out by a particular individual. Regarding the activities
performed, they were four:

• Inactive: not carrying the mobile phone. For example, the device is on the desk while the
individual performs another kind of activities.

• Active: carrying the mobile phone, moving, but not going to a particular place. In other words,
this means that, for example, making dinner, being in a concert, buying groceries or doing the
dishes count as “active” activities.

• Walking: Moving to a specific place. In this case, running or jogging count as a “walking” activity.
• Driving: Moving in a means of transport powered by an engine. This would include cars, buses,

motorbikes, trucks and any similar.

The data collected comes from four different sensors: accelerometer, gyroscope, magnetometer
and GPS. We selected accelerometer and gyroscope because they are the most used in the literature
and the ones that showed the best results. We also added the magnetometer and GPS because we think
they could be useful in this problem. In fact, in our case, GPS should be essential to differentiate the
activities performed by being able to detect the user’s movement speed who carries the smartphone.

We save the data of the accelerometer, the gyroscope and the magnetometer with their tri-axial
values. In the case of GPS, we store the device’s increments in latitude, longitude and altitude, as well
as the bearing, speed and accuracy of the collected measurements. Also, for the accelerometer, we
used the gravity sensor, subtracting the last reading of the latter from the observations of the first.
In this way, we get clear accelerometer values (linear accelerometer), as they are not affected by the
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smartphone’s orientation. Therefore, we obtain a dataset independent of the place where the individual
is, as well as of the device’s bearings.

On the other hand, before saving the data locally, a series of filters are applied. In the case of the
accelerometer and magnetometer, we use a low-pass filter to avoid too much noise in these sensor’s
measurements. Concerning the gyroscope, to bypass the well-known gyro drift, a high-pass filter
was used instead. Nevertheless, we also had to deal with Android’s sensor frequency problem, as we
cannot set the same frequency for each one of them. In our case, this is especially problematic, having
to join data from very high-frequency sensors such as the accelerometer, with a low-frequency sensor,
such as the GPS. From the latter, we obtain new measurements every ten seconds, approximately,
compared to the possible ten, or even 50, measurements per second we can get from the accelerometer.
Anyhow, given the inability to set a frequency in Android and having to take the values as they
are offered by the system itself, there may be gaps in the measurements. These gaps are especially
problematic in the case of GPS, where there may be cases where no new measurements were obtained
in more than a minute (although perhaps this is mainly due to the difficulty of accessing closed
environments). Such gaps also occur in the case of the accelerometer, gyroscope or magnetometer,
despite offering about 10, 5 or 8 measurements per second, respectively, in the most stable cases.
In these cases, the gaps are between 1 and 5 s, and occur mostly at the start of each data collection
session, although much less frequently than with GPS. In this way, in Table 2, we show the average
number of recordings per second for each sensor and each activity measured, as well as the resulting
average frequency. Below each average value, in a smaller size, we also show the standard deviation
for each class. Please note that for moving activities such as “active” or “walking” there is an increase
in these measurements, especially with the accelerometer. This is because the smartphone detects
these movements and, to get the most information, its frequency is increased automatically to get the
maximum number of measurements. However, this increase also occurs during “driving” activity,
even more so. Vibrations due to the car use may be the cause of this increase, as they might also be
detected by the sensors of the smartphone. Additionally, in “walking” and “active” activities there
may be certain inactive intervals (like waiting for a traffic light to go green or just standing doing
something, respectively) that lower these averages.

Table 2. Average number of recordings per second for each sensor and each activity measured.

Activity Accelerometer Hz. Gyroscope Hz. Magnetometer Hz. GPS Hz.

Inactive 11.00
±16.38

4.66
±0.74

7.91
±11.72

0.13
±0.35

Active 32.55
±24.80

4.46
±1.44

9.13
±13.64

0.06
±0.23

Walking 31.24
±27.47

6.24
±11.86

8.16
±12.05

0.06
±0.23

Driving 51.16
±31.59

4.66
±2.42

17.00
±20.01

0.04
±0.20

In this way, the final distribution of the activities in our dataset is the one shown in Table 3. In this
table, we measured the total time recorded, the number of recordings, the number of samples and the
percentage of data (this one related to the number of samples), for each of the activities we specified.
Here, each recording refers to a whole activity session, since the individuals begin an action until they
stop it; while each sample is related to a single sensor measurement. As can be seen, there are less
samples on “inactive” activities in proportion to the total time recorded. This is because the frequency
of the sensors increases with activities that require more movement, as explained above, so in these
cases they remained at a lower value. Therefore, the total percentage of the data may give a wrong view
of the total data distribution, once the sliding windows are applied. This is because, by using these
windows on which to compute a series of features, the number of samples actually moves into second
place, with the total time recorded being the most important value. The more total time recorded,
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the more sliding windows computed, and the more patterns for that class. Hence, there would be
a much clearer imbalance in the dataset, where “inactive” activity would have three times as many
patterns as in the case of “walking”. Regarding the number of recordings made, there are far more
with the “walking” activity than with the rest. Anyhow, we consider that the dataset remains useful
and feasible to implement models that could distinguish these activities. Moreover, the total number
of individuals who participated in the study was 19. Therefore, the dataset also contains different
kinds of behaviors that end up enriching the possible models developed later.

Table 3. Dataset distribution for each activity measured.

Activity Time Recorded (s) Number of Recordings Number of Samples Percentage of Data

Inactive 292,213 147 7,064,757 24.25%
Active 178,806 99 8,918,021 30.62%
Walking 98,071 200 4,541,130 15.59%
Driving 112,226 128 8,602,902 29.54%
Overall 681,316 574 29,126,810 100%

On the other hand, there is also another problem in Android, as not all devices contain a gyroscope
or a magnetometer to this day. While it is mandatory to have an accelerometer and a GPS, a gyroscope
or a magnetometer are not compulsory in older versions of Android. In this way, some of our users
took measurements without including these sensors. In Tables 4 and 5, we show the number of samples
that do not include a gyroscope or a gyroscope and a magnetometer simultaneously, as the people
who did not have a magnetometer did not have a gyroscope either. Something important to highlight
in these tables is the difference in the relation between the number of samples and the time recorded
compared to the one showed in Table 3. Here, the number of samples is much higher in relation to
the time recorded. This may explain the strange data that we pointed out before in Table 2, as the
accelerometer may increase more its frequency in general, by becoming the only sensor to detect
motion. On another note, the percentages we show in this table are related to the whole amount of
data, from Table 3. Fortunately, these percentages are quite low, and the dataset is not as affected by
this problem. Anyhow, it will be something to keep in mind when preparing the data to be applied to
a future AI model.

Table 4. Dataset distribution for each activity measured without gyroscope.

Activity Time Recorded (s) Number of Recordings Number of Samples Percentage of Data

Inactive 11,523 8 668,536 2.29%
Active 13,866 7 619,913 2.13%
Walking 4169 15 584,262 2.01%
Driving 25,718 23 3,776,468 12.97%
Overall 55,276 53 5,649,179 19.40%

Table 5. Dataset distribution for each activity measured without gyroscope and magnetometer.

Activity Time Recorded (s) Number of Recordings Number of Samples Percentage of Data

Inactive 5409 2 269,710 0.93%
Active 10,286 2 90,487 0.31%
Walking 0 0 0 0%
Driving 0 0 0 0%
Overall 25,695 4 360,197 1.24%

3.2. Data Preparation and Feature Extraction

After having collected the data, we proceed to prepare them to be introduced later in the model.
To do so, and taking into account the well-known time-series segmentation problem in HAR, we opted
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to use sliding windows of 20 s, with an overlap of 19 s (95%). We chose 20 s because it is the most
we have seen used in this field. Moreover, we consider that our activities, being long-themed, need a
large window size to be correctly detected. We thought even a greater size could be beneficial,
but we decided to be conservative and see what happens with a smaller one. As for the overlap,
we chose the maximum possible that would allow us to have comfortable handling of the data, as well
as a higher number of patterns, with one second between windows. In this way, we get around
half a million patterns, on a quite long time window, compared to previous works. Additionally,
with this distribution, we hope to get reliable results for the movements we are analyzing, as they are
long-themed (inactive, active, walking and driving).

However, to apply these windows, it is first necessary to pre-process the data. The algorithm
implemented to do so consists of deleting rows that met one or more of the following properties:

1. GPS increments in latitude, longitude and altitude that are higher than a given threshold, obtained
from a prior, and very conservative, data study. We detected that there were occasional “jumps”
in our GPS-related values, as some of these observations were outside the expected trajectory.
For this reason, we decided to fix a threshold of 0.2 for latitude and longitude increments, and 500
for the altitude ones. In this way, any value that is too far out of line is eliminated, keeping those
that are closer to the expected.

2. Timestamps that do not match the structure defined (yyyy-MM-dd HH:mm:ss.ZZZ) or that do not
correspond to an actual date (year 1970 values, for example).

3. Any misplaced value between timestamp and z-axis magnetometer, which showed to appear in
some very few observations at the beginning of the project.

Table 6 shows the mean and standard deviation values of each sensor for each of the activities
studied, after the application of this algorithm. To correctly understand the values indicated in this
table, it is important to explain what each of these sensors measures. The accelerometer values
correspond to the acceleration force applied to the smartphone on the three physical axes (x, y, z),
in m/s2. On the other hand, the gyroscope measures in rad/s the smartphone’s rotation speed around
each of the three physical axes (x, y, z). Regarding the magnetometer, it measures the environmental
geomagnetic field of the three physical axes (x, y, z) of the smartphone, in µT. As for the GPS, its
values correspond, on the one hand, to the increments of the values of the geographical coordinates,
longitude and latitude, in which the smartphone is located, with respect to the previous measurement.
Similarly, the increments in altitude, in meters, were also measured. Then, the values of speed,
bearing and accuracy were also taken into account. Speed was measured in m/s and specifies the
speed that is taking the smartphone. The bearing measured the horizontal direction of travel of the
smartphone, in degrees. Finally, accuracy values refer to the deviation from the actual smartphone
location, in meters, where the smaller the value, the better the accuracy of the measurement. Going
back to Table 6, in each cell, the values corresponding to the mean are at the top and, at the bottom, in a
smaller size, the standard deviation values. Each pair of values corresponds to the set that forms each
sensor. In the case of the accelerometer, gyroscope and magnetometer, these refer to the values related
to their “X”, “Y” and “Z” axes. As for the GPS, this set is formed by the latitude increments (Lat.),
the longitude increments (Long.), the altitude increments (Alt.), the speed (Sp.), the bearing (Bear.)
and the accuracy (Acc.) of every measurement. Here, it is worth noting some rare data, such as those
relating to GPS “inactive” activity, where the values are very high concerning what is expected from
such action. In this case, we consider that these values are due to the fact that such activity is carried
out in indoor environments, which are not so accessible for GPS. Even so, as can be seen, there are
some clear differences between the activities, so the possibilities of identification with future models
are more than feasible.
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Table 6. Sensor’s mean and standard deviation values for each activity measured.

Activity

Inactive Active Walking Driving

X 0.11761
±0.45934

−0.01338
±1.30277

0.09425
±3.33422

−0.04747
±0.83290

Accelerometer Y 0.06136
±0.26764

0.07598
±1.45440

−0.37604
±4.35808

−0.12936
±0.93828

Z 0.84318
±2.66926

0.13008
±1.70294

0.07353
±4.09859

0.18127
±1.24042

X −0.00004
±0.03828

−0.00001
±0.36806

0.00760
±1.31125

0.00080
±0.19224

Gyroscope Y 0.00004
±0.04719

−0.00102
±0.40959

−0.00020
±0.89244

0.00277
±0.19835

Z 0.00001
±0.03526

0.00055
±0.24528

−0.00560
±0.53685

−0.00243
±0.16678

X 25.93805
±56.45617

6.03153
±30.00980

−0.28182
±27.03210

−5.96356
±46.08005

Magnetometer Y −19.62683
±85.70343

−0.02890
±28.76398

18.73800
±29.63926

10.73609
±40.46829

Z −56.60425
±33.19593

9.56310
±39.76136

0.64541
±25.55331

−2.93043
±29.45994

Lat. 0.00075
±0.00166

0.00112
±0.00234

0.00047
±0.00220

0.00175
±0.00365

Long. 0.00125
±0.00285

0.00118
±0.00314

0.00056
±0.00300

0.00204
±0.00420

GPS Alt. 32.59169
±53.06269

30.77538
±48.65634

34.06931
±42.51933

41.59391
±54.74934

Sp. 0.37222
±0.82495

0.12109
±0.81007

0.79924
±0.71835

10.82191
±11.82733

Bear. 57.25005
±105.49576

14.69719
±56.00693

124.85103
±119.80663

118.88108
±118.78510

Acc. 265.44485
±494.66499

214.57640
±429.81169

75.54539
±259.59907

192.90736
±508.87285

After applying previous preprocessing, since data collection required the user to tap a button
before performing the activity, we eliminated the first five seconds of each activity collection. In the
same way, we did so with the final five seconds of each measurement. Hence, we can prevent the
future models from ending up learning the movement that precedes the start or the end of the action,
such as, for example, putting the smartphone in the pocket or pulling it out. While doing this, we also
get rid of those sessions that have quite large gaps between the data (at least five seconds) for any
sensor other than the GPS, by considering them as invalid. In this way, in Table 7, the final results
after the application of this sliding window and overlap are shown for the samples containing all
the sensors. As we already addressed in the previous section, although at the sample level the data
may appear lower for activities such as inactive or walking, at the final pattern level the results are
much different.

Table 7. Number of patterns for the samples containing all the sensors with a sliding window of 20 s
and 19 s overlap.

Activity

Inactive Active Walking Driving Overall

214,130 140,060 83,376 61,710 499,276
(43%) (28%) (17%) (12%)
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Later, we had to go through a transformation process to extract the features and apply all the
information needed for the classification algorithm. Due to GPS’ low frequency, to carry out this feature
extraction, it was necessary to previously replicate some of the data stored by this sensor, for each of
the windows applied. To do this, if the difference between one observation and the next differed in a
longer time than one second, the latter measurement is replicated, with a different timestamp. For this
reason, all sessions that do not contain at least one GPS observation are removed from the list of valid
ones for this process. We repeat this step until all the windows that may be in the middle are correctly
filled. We selected one second as the amount of time to be between each sample, so there is always at
least one observation in each of the windows applied, making the final feature extraction match to the
data obtained. After that, for each set of measurements, we computed six different types of features,
each generating a series of inputs for the AI model. The features used were: mean, variance, median
absolute deviation, maximum, minimum and interquartile range, all based in the time domain. All of
them were used in previous works like [16], with remarkable results. In this way, we maintain the
simplicity of the model, being able to complicate it or change it in future works according to the results
we achieve.

3.3. Classification Algorithm

As already indicated in the related work section, there are many kinds of models used in HAR.
In our case, we chose to employ an SVM model. Although SVM showed excellent results with rather
short-themed activities, we consider it interesting to test it as an initial model in our dataset. It is one
of the most used models in HAR, applied in works such as [9,16] and, more recently, in [23], all with
outstanding overall performance in this field, as well as being a simple and straightforward AI model.

An SVM is a supervised machine learning model that uses classification algorithms for two-group
classification problems. After giving an SVM model tagged training data sets for either category,
they can categorize new examples. To do this, the SVM looks for the hyperplane that maximizes the
margins between the two classes. In other words, it looks for the hyperplane whose distance from
the nearest element in each category is the highest. Hither, non-linearity is achieved through kernel
functions, which implicitly map the data to a more dimensional space where this linear approximation
is applied. On the other hand, other hyperparameters such as C or gamma also affect the definition of
this hyperplane. As for C, it marks the width of the margins of this hyperplane, as well as the number
of errors that are accepted. Concerning gamma, it directly affects the curve of the hyperplane, making
it softer or more accentuated, depending on the patterns that are introduced into the model.

While SVM is typically used to solve binary classification tasks, it can also be used in multi-class
problems. To do this, it is necessary to use a one-vs-all or one-vs-one strategy. The first case is designed
to model each class against all other classes independently. In this way, a classifier is created for
each situation. On the other hand, the second case is used to model each pair of classes separately,
performing various binary classifications, until a final result is found. In our case, we will be using a
one-vs-all approach, as it is the most used one in the literature. For this, we implemented it on Python,
using the functions provided with Scikit-learn.

4. Results and Discussion

4.1. Results

To provide reliable results in this dataset to future users, we conducted a series of experiments
on it. For this purpose, we applied SVM classifiers, looking for the best kernel between Polynomial,
RBF (Radial Basis Function) and Linear SVM. Also, we explored the optimal trade-off parameter
C, the bandwidth γ in RBF and Polynomial kernels, as well as the degree in this last one, with the
features discussed in the previous section. The reason we selected these kernels was, on the one hand,
because the RBF kernel is one of the most used ones in the literature. On the other hand, the linear and
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the polynomial ones were also selected to have a basis for comparison. To select the best configuration
and architecture of the network, we obeyed the following organization:

1. First, with the whole combination of all sensors, we made a stratified 10-fold with which to have
10 sets with presumably the same number of patterns for each class.

2. Then, we took each of those folds to use them to perform a grid search on their corresponding
dataset. To evaluate the resulting predictions, since we use a one-vs-all approach that will have
unbalanced data in each sub-classifier, we chose the f1-score metric to minimize this problematic.
The f1-score is a measure of the test accuracy, based on the harmonic mean of the precision and
the recall metrics. Its formula would be as follows:

F1 = 2 × Precision × Recall
Precision + Recall

With that in mind, it is closely linked to the correct classification of each pattern, not being so
influenced by class imbalances. When this happens, accuracy might give an incorrect idea of
the model’s performance. However, the f1-score will give a slightly smoother value that better
represents that model, making it a good option for our grid search. On the other hand, we also set
a maximum number of iterations (1000) as a stop criterion, given the high-dimensional data and
the scaling problem of SVM. To carry out this process, we selected the following hyperparameters:
as kernels, we chose the polynomial, the RBF and the linear ones, because of what we addressed
before. As for parameter C, we selected those of the set {1, 10, 100, 1000, 10000}. For the γ

parameter, specifically for the RBF and polynomial kernels, we chose those of the set {0.0001, 0.001,
0.01, 0.1, 1}. Concerning the degree parameter for the polynomial kernel, we selected those of the
set {1, 2, 3, 4}.

3. Once the grid search is done, we evaluated the results and selected the best combination of
hyperparameters for each fold. Then, we tested the best corresponding model.

4. Finally, we studied the impact of the gyroscope and magnetometer, taking advantage of the users
that could not include these sensors in their measurements. For this purpose, we prepared three
different sets: accelerometer + gyroscope + magnetometer + GPS (all users but the ones missing
gyroscope and magnetometer), accelerometer + gyroscope + GPS (all users but the ones missing
magnetometer) and accelerometer + GPS (all users).

The first steps of the experiments yielded the results that can be seen in Table 8. In this table,
for each cell, we show the average test f1-score obtained (top), as well as its standard deviation (below).
As can be seen, the best results correspond, in general, to the RBF kernel, and, more specifically, for cases
where g equals 0.1, especially in conjunction with C = 100. With this combination of hyperparameters,
we managed to achieve an f1-score of 74.34%.

The average confusion matrix yielded by the third step of the experiments is the one showed in
Table 9, along with its particular metrics (recall, precision and accuracy). This result corresponds to
an accuracy of 69.28%. As can be seen, the model manages to correctly separate “inactive” events
but struggles with the rest, especially with the “active” one. In this case, we think that this is due
to the diffusion of this action since it combines both moments of inactivity and movement, in which
we may walk from one place to another. On the other hand, we can also see that the activities of
“walking” and “driving” are also confused with each other. This was expected considering that most
driving took place in an urban environment. In this scenario, there may be traffic jams or moments of
less fluidity that may be quite similar, at a sensory level, to the data obtained while performing the
“walking” activity, as well as the rest of actions. Anyhow, the GPS is probably very influential in this
confusion and it would be interesting to change the related features used to see how they affect the
final classification. Maybe greater sliding window sizes or any kind of feature related to the Fourier
transform of the signal, to pick up its periodic component, could positively affect the final model.
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Table 8. Mean f1-scores achieved for each combination of kernel, C, γ and degree hyperparameters in
the grid search. The best result found is highlighted in bold.

C = 1 C = 10 C = 100 C = 1000 C = 10,000

Linear 36.33%
±17.03

38.96%
±12.11

42.58%
±12.54

42.58%
±12.54

42.58%
±12.54

γ = 0.0001 5.88%
±4.28

11.08%
±11.08

17.81%
±7.68

39.94%
±18.53

37.38%
±20.70

γ = 0.001 15.78%
±14.89

28.26%
±18.39

45.12%
±15.03

41.09%
±9.19

42.75%
±14.17

RBF γ = 0.01 59.16%
±7.07

63.21%
±14.51

58.66%
±11.77

65.44%
±16.52

59.24%
±13.19

γ = 0.1 68.30%
±10.80

73.33%
±6.62

74.34%
±8.26

70.94%
±7.92

69.42%
±9.51

γ = 1 63.73%
±10.69

56.88%
±6.21

56.96%
±6.30

56.96%
±6.30

56.96%
±6.30

γ = 0.0001 12.89%
±9.60

29.65%
±17.48

37.20%
±18.34

26.37%
±13.73

43.37%
±19.91

γ = 0.001 29.39%
±16.57

33.50%
±20.58

34.51%
±15.72

39.10%
±17.36

39.17%
±15.85

Poly d=1 γ = 0.01 32.08%
±16.92

33.90%
±11.22

40.71%
±19.78

43.18%
±18.73

39.07%
±18.59

γ = 0.1 33.21%
±21.96

33.69%
±16.93

40.93%
±15.31

36.65%
±14.93

36.65%
±14.93

γ = 1 36.33%
±17.03

38.96%
±12.12

42.58%
±12.54

42.58%
±12.54

42.58%
±12.54

γ = 0.0001 7.92%
±4.43

6.85%
±3.62

10.22%
±8.73

5.92%
±5.05

9.69%
±7.02

γ = 0.001 10.22%
±8.73

5.92%
±5.05

9.70%
±7.02

12.34%
±6.12

24.01%
±7.49

Poly d=2 γ = 0.01 9.69%
±7.03

12.27%
±5.78

26.54%
±7.70

22.56%
±5.74

20.64%
±6.93

γ = 0.1 23.63%
±7.41

24.40%
±5.83

26.24%
±7.85

26.23%
±7.85

26.23%
±7.85

γ = 1 27.35%
±10.83

27.33%
±10.84

27.33%
±10.84

27.33%
±10.84

27.33%
±10.84

γ = 0.0001 5.61%
±4.41

6.21%
±4.08

7.45%
±4.55

10.01%
±6.79

10.03%
±6.79

γ = 0.001 10.01%
±6.79

10.03%
±6.79

6.60%
±4.46

8.19%
±7.02

20.48%
±12.54

Poly d=3 γ = 0.01 5.87%
±3.97

19.68%
±13.58

24.29%
±9.31

22.63%
±8.17

16.92%
±7.38

γ = 0.1 26.40%
±7.11

17.90%
±8.51

17.60%
±12.79

17.60%
±12.79

17.60%
±12.79

γ = 1 17.77%
±8.63

17.77%
±8.63

17.77%
±8.63

17.77%
±8.63

17.77%
±8.63

γ = 0.0001 5.87%
±3.31

6.42%
±3.93

9.09%
±3.98

8.91%
±8.84

13.12%
±8.93

γ = 0.001 13.12%
±8.93

7.92%
±4.44

6.18%
±3.27

11.03%
±10.01

11.26%
±9.90

Poly d=4 γ = 0.01 9.16%
±8.76

7.87%
±6.80

6.45%
±3.21

5.52%
±1.81

7.18%
±4.55

γ = 0.1 8.71%
±4.79

9.55%
±6.75

9.49%
±6.89

9.49%
±6.89

9.49%
±6.89

γ = 1 8.97%
±5.29

8.97%
±5.29

8.97%
±5.29

8.97%
±5.29

8.97%
±5.29
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Table 9. Average confusion matrix for the experiments conducted.

Ground Truth
Inactive Active Walking Driving Precision

Inactive 16,787 610 486 90 93.40%
Active 3026 8676 1163 914 62.97%

Walking 1341 3772 5675 1714 45.39%
Driving 259 948 1015 3453 60.58%

Recall 78.40% 61.95% 68.05% 55.96% 69.28%

To a lesser extent, it is also important to note that there are some cases in which some activities
are confused as an “inactive” action. This was also relatively expected, as every activity is subject to
prolonged stoppages. For example, while acting as “walking” or “driving”, traffic lights that force the
individual to stop may appear. In these situations, these pauses may be mistaken by the model for cases
of pure inactivity. Perhaps the use of other and more specific features could improve the differentiation in
all these cases, as well as the use of another type of AI algorithms and bigger sliding window sizes.

Regarding the fourth and last step, we also applied the same algorithm for the rest of the data sets
formed, obtaining the results shown in Table 10. Similar to the other tables shown, the average values
are on the left side of each cell, while the standard deviations are on the right side, in a smaller size.
This comparison is made from the average of the test values yielded by the experiments conducted to
each set. As can be seen, the combination of the accelerometer, the magnetometer and the GPS, with
the lack of the gyroscope, performs better in comparison with the other two, especially with the case
formed only by accelerometer and GPS. However, the expected best result would have been the one
that appends the gyroscope too, as in the other works that included it in their studies. Perhaps the fact
that we are studying long-themed activities is something in which the gyroscope does not have much
of a presence. In addition, the model has more patterns with the winning combination, which could
also positively influence the final result.

Table 10. Mean accuracies achieved for each set of data, with the best group result highlighted in bold.

Acc. + GPS. Acc. + Magn. + GPS Acc. + Gyro. + Magn.+ GPS

67.53% ±6.33 74.39% ±10.75 69.28% ±15.10

4.2. Discussion

Although the results obtained might not seem as good as those seen so far in the rest of the
literature, we consider that they are promising given the problem addressed. The data used are very
different from those of the other datasets that currently exist in the field, as well as being much less
specific. Therefore, while the results may seem worse, actually they are not comparable. The data
collected correspond to different profiles of people, each with their physical peculiarities and ways of
using their smartphone. Moreover, the nature of each of the defined activities implies short periods
of some of the other actions. For example, within the “active” exercise, there are both moments of
inactivity and moments of travel. Within the “walking” activity, there may be stops due to traffic
lights or other obstacles encountered along the way. Furthermore, during the action of “driving”, it is
noteworthy that an urban environment has many peculiarities and stops that can complicate the final
classification. Therefore, given these problems and the simplicity of the proposed model, we consider
that these results are a relatively good first approximation of what they could be. We believe that
perhaps with other types of models also used in this field, such as Random Forest, the results could be
improved considerably. Also, through the application of algorithms based on deep learning, such as
LSTM, that showed exceptional performance in this domain too. Hence, with this change in the model
to be used and the addition of new metrics, we would surely get closer to that real-life environment
we are searching.
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5. Conclusions and Future Work

In this paper, we presented a dataset for the HAR field. This dataset contains information from 19
different users, each with its own way of using their smartphone, as well as their physical peculiarities.
The amount of data is enough to make classifications about them, and the information gathered is
realistic enough to be taken to a real-life environment.

Therefore, with the development of this dataset, we hope to alleviate the problems that are seen
in other works. While it is true that the final results we got may not be as good as those seen to date,
we believe that it will be the beginning of the road to take the models developed for HAR to real
life. We also hope that the current confusions of the proposed model, among some of the determined
activities, can be overcome in future research. In this way, it would be possible to implement a system
capable of correctly detecting a person’s movements or activities, regardless of the way they use their
smartphone or their physical peculiarities. This could be very interesting for many companies or
individuals to be able to monitor or predict the activities performed by a particular individual.

For this reason, we will continue advancing in the same line of work, testing other techniques that
also had pretty good results in the field, such as Random Forest, CNN or LSTM. Also, the deletion or the
addition of new features, such as those related to the Fourier transform, to search for possible periodic
components in the stored signals, could positively affect the final model. In this way, we will be able to
compare the results obtained, in search of the best model to solve this problem. In addition, we will also
explore the real impact of the sensors used, as well as other possible sliding windows greater sizes and
combinations of hyperparameters, in search of improving the best configuration found so far.

Supplementary Materials: The complete dataset, as well as the scripts used on our experiments, are available
online at http://lbd.udc.es/research/real-life-HAR-dataset. Similarly, they have also been uploaded to Mendeley
Data [24].
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a b s t r a c t

In recent years, mainly due to the application of smartphones in this area, research in human activity
recognition (HAR) has shown a continuous and steady growth. Thanks to its wide range of sensors,
its size, its ease of use, its low price and its applicability in many other fields, it is a highly attractive
option for researchers. However, the vast majority of studies carried out so far focus on laboratory
settings, outside of a real-life environment. In this work, unlike in other papers, progress was sought
on the latter point. To do so, a dataset already published for this purpose was used. This dataset was
collected using the sensors of the smartphones of different individuals in their daily life, with almost
total freedom. To exploit these data, numerous experiments were carried out with various machine
learning techniques and each of them with different hyperparameters. These experiments proved that,
in this case, tree-based models, such as Random Forest, outperform the rest. The final result shows an
enormous improvement in the accuracy of the best model found to date for this purpose, from 74.39%
to 92.97%.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Having become a hot research topic in recent years, human
activity recognition (HAR) analyses series of sensor-collected data
to identify the actions taken by a person [1–3]. These sensors can
be used through wearable devices such as wristbands or, more
recently, smartphones. Both cases offer a broad set of sensors that
can be used relatively easy, with excellent accuracy and a small
size that favours its portability. In addition, this area has many
application possibilities in various fields such as health, fitness or
even home automation [4–8]. All this, together with the recent
application of smartphones in HAR and its global use, make this
field a highly attractive option for research [9,10].

There are several research challenges within this field. Firstly,
there is the challenge of correctly processing the vast amounts
of data that these devices collect, while controlling the tempo-
rality of such data. Also, although significant advances have been
made [11,12], the relation between these data and most human
movements is still not known precisely, making the task even
more difficult. Besides, most of the studies carried out to date
were done in a laboratory environment, with highly controlled
movements and specific placements of the device that collects
the data [13,14]. That is interesting in order to see what the

∗ Corresponding author.
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daniel.rivero@udc.es (D. Rivero), enrique.fernandez@udc.es
(E. Fernandez-Blanco), miguel.luaces@udc.es (M.R. Luaces).

approximate relation between the information collected and the
action studied is. However, the excellent results seen in these
works may not be as good when they are applied outside that
highly-controlled environment. That is because, in a daily life
environment, people will use and carry the data collection device
differently, outside of what was previously examined. In this
way, the orientation and placement of the device could vary
greatly, even when performing the same action. Also, each person
may have many physical peculiarities that could considerably
influence the final result as well. In fact, the personalization of
AI models in HAR for large numbers of people is something that
it is being researched since almost a decade [15–18]. For these
reasons, the transfer of this knowledge to real-life remains to be
seen.

In this paper, looking to close the gap with the real-life ap-
plication, a dataset gathered for this purpose was used [19]. For
that goal, the dataset was collected using the sensors of several
individuals’ smartphones, with almost total freedom. In this way,
a comparative study between the last results obtained and the
current ones is presented. To do so, numerous machine learning
algorithms frequently used in HAR were implemented, in search
of the best combination between algorithm and hyperparameters.
In the same manner, a comparison of the results obtained by
using the data taken with all the sensors, as well as with the
absence of the gyroscope, is also presented to observe which case
behaves better. In this way, we will be able to get even closer to
that real-life ideal that is currently being pursued.

https://doi.org/10.1016/j.knosys.2023.110260
0950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Thus, the main contributions of this paper are the following:

• A comparison of the main machine learning algorithms ap-
plied in the HAR field, using a dataset taken in a real-life
environment, unlike in other studies.

• The addition of the Extreme Gradient Boosting (XGB) algo-
rithm to the comparison, not very explored until today in
this knowledge area.

• A study of the best model configurations for long-themed
activities (such as driving or jogging), based on the indicated
dataset, with changes and additions to the last feature set
used.

• A review of the gyroscope’s real influence to the final results.
• The improvement of the current approaches in this field,

oriented towards real life.

The remaining sections of this paper are organized as follows:
Section 2 shows some related works on HAR, Section 3 gives
a thorough explanation of how the data was prepared, as well
as a brief description of every algorithm and metric used, Sec-
tion 4 presents and discuss the experimental results obtained
on the models we propose, and, finally, Section 5 contains the
conclusions and future work lines.

2. Related work

Human activity recognition (HAR) has been studied exten-
sively in recent years and, over the last decade, the continuous
flow of works has brought a steady pace of advances. Most
of these works were carried out using datasets such as those
provided in [20,21], which are two of the most widely used
ones in HAR. Both datasets offer a large amount of information
about different actions to be exploited, using smartphone sensors
such as the accelerometer and the gyroscope. However, for both
cases, these data were taken in a laboratory environment. That
means that the smartphone was placed in a particular position
and the actions performed were highly controlled. An example
would be [22], where a comparison is made between different
machine learning algorithms, namely, Convolutional Neural Net-
works (CNN), Random Forest (RF), K-Nearest Neighbours (KNN)
and also a feature selection method, Principal Component Anal-
ysis (PCA). Among all of them, CNN was the best by far, for
which they also contributed different architectures, with several
combinations of hyperparameters and the result of each one of
them. Besides, they also concluded that with rather large time
windows the results did not improve. Likewise, in [23], another
CNN model was also proposed for this problem, with slightly
better performance. Alternatively, other works such as [12] pro-
vided techniques based on deep learning, such as the Deep Belief
Network (DBN). Here, after a feature selection process, they also
obtain pretty good results, even better than those of the models
based in the Support Vector Machine (SVM) algorithm, which
proved to be the best to use for the HAR problem. Conversely,
research was also done on the selection of features for different
machine learning algorithms widely used in HAR. The results of
works such as [24,25] showed that the frequency-based param-
eters are more feasible since they were the ones that showed
better results.

However, not all the work relied solely on the accelerometer
and gyroscope for its research. Some studies such as [26,27] show
high-grade results with the addition of other sensors such as the
GPS or the magnetometer. In fact, in these works, they studied
long-themed activities such as walking or jogging, which shows
the potential of these sensors for this type of actions. On the
other hand, in [28], an online SVM model is proposed for nine
different smartphone orientations, although all of them are based
on leaving the mobile phone in a backpack. They also made a

comparison with other methods typically used in HAR, such as
KNN, Decision Tree (DT) and Naïve Bayes (NB). All these methods,
together with other techniques such as SVM, CNN, Random Forest
(RF) and Gradient Boosting (GB), proved to be fully valid in
HAR for a reasonable amount of data. At the same time, it also
indicates that the application of deep learning techniques could
be a very up-and-coming line of research for the HAR field, as
some of the best results in practice seem to be obtained with this
type of methods.

In the same vein, more recently, research in HAR is focusing
more on the application of purely deep learning techniques. One
of the first works to apply these techniques was [29], in which
a comparison of different architectures for a deep CNN model
with other methods widely used in the literature, such as SVM or
Multilayer Perceptron (MLP), is presented. Moreover, currently,
besides the deep CNN models, much research is being done with
models that implement the Long Short-term Memory (LSTM)
technique. The main advantage that these implementations have
is that they can include information from the past in their train-
ing, as well as not needing a previous feature extraction period.
However, as a disadvantage, they need a large amount of data
to obtain reliable results, as well as requiring an adequate stop
criterion to avoid overfitting and underfitting. Some examples
of the application of this technique are the works of [30,31],
in which excellent results were obtained. Specifically, in [30],
a modification of this method was carried out, called Bi-LSTM
(bidirectional LSTM), which also manages to learn from the fu-
ture, throwing accuracies of around 95%. On the other hand,
other works have been in charge of comparing in depth the
two most used deep learning methods, CNN and LSTM and their
variants, in search of the most suitable model for HAR [32,33]. The
results show that both techniques have very similar potentials
and performances, being probably two of the best options to use
for short-themed activities such as sitting or standing. Nonethe-
less, it seems that some studies suggest that the application of
CNNs over LSTMs is favoured, due to its higher speed and its
straightforward application [34].

However, despite all the progress mentioned above, all the
works share the same problem. That one is no other than the
dependency on precise use guidelines for the device to obtain
good results. While there are some works such as [35,36] that
have addressed this problem, they cannot be considered feasi-
ble for real life. In these cases, they obtained good results by
transforming the phone’s coordinate system to the Earth’s coor-
dinate system. In addition, in the case of [35], different models
of smartphones were also used, without an apparent drop in the
eventual accuracy. In any case, when changing the orientation
of the smartphones, the final performance does decrease. Finally,
they also do not address the problem of placing the smartphone
in different places, like a backpack, and not just in a trouser
pocket.

Nonetheless, a very recent work does address this problem
rightly [19]. There, a dataset focusing on the application of HAR
techniques in real life is presented, which will be used in this
paper as well. Also, they did a series of experiments with machine
learning techniques, but they are very elementary and could
be highly improved. Therefore, this work has as main aim to
advance in the resolution of these problems of lack of realism
and applicability in real life of all the models developed up to
date in HAR. While it is true that the advances made so far
are very promising, if those advances were taken into a real-
life environment, more than probably they would show a grave
detriment on their performance. Hence, with the development
of new models, comparing them to each other and building on
a much more realistic dataset, it is hoped to surpass the results
obtained so far in this transition to a more credible environment.
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Fig. 1. Examples of data taken by the accelerometer and gyroscope of a specific individual’s smartphone, during the first 15 seconds of each session, for each of the
specified activities, being: (a) Raw data. (b) Data after having been preprocessed.

3. Experimental setup

This section contains a description of all the resources and
methods that were used to carry out this work. Firstly, in Sec-
tion 3.1, the data preprocessing guidelines are presented, as well
as the chosen features for the machine learning models. Then,
Section 3.2 gives a brief description of each artificial intelli-
gence algorithm used, as well as introducing their most crucial
hyperparameters.

3.1. Data preparation and feature extraction

To carry out this project, the dataset published in [19] was
used. In that work, the authors gathered information from four
different sensors: accelerometer, gyroscope, magnetometer and
GPS. Likewise, it also offers datasets in which the gyroscope does
not exist, or neither the gyroscope nor the magnetometer exist
simultaneously. The last best results came from the case where
the gyroscope data were missing. For this reason, in addition
to studying all the sensors, it was decided to study this option
as well. In this way, a detailed comparison can be made, in
search of the most representative set and the real influence of the
gyroscope on the final result. Regarding the activities performed,
they were four, as said in that work:

• Inactive: the individual does not have the smartphone on
him.

• Active: any action that involves moving, such as cooking or
brushing your teeth, but not moving anywhere in particular.

• Walking: any trip made without the use of vehicles, such as
walking or running.

• Driving: every kind of journey made utilizing an engine-
powered transport, without the need to be the person driv-
ing it.

As for the data preparation, it obeyed the same steps as in the
original proposal, so the following actions were carried out:

• All outliers in the GPS data that exceeded 0.2 in latitude and
longitude increments or 500 in altitude increments were
ignored.

• The first and last five seconds of each data collection ses-
sion were excluded to prevent the model from learning the
movements of before and after the activity (putting in or
taking the smartphone out of the pocket, for example). Each
session corresponds to a whole activity recording, since a
person starts an action until they stop it.

• Due to the lack of GPS data in many sessions, they were
replicated so that there was always one record per second.
For this purpose, if the difference between one observation
and another was greater than one second, the last measure-
ment was repeated, with a different timestamp. Similarly,
for the same reason, any data session that did not have at
least one GPS observation was disregarded.

• Any data session that had long gaps (> 5 seconds) between
the accelerometer, gyroscope or magnetometer sensor ob-
servations was also ignored.

In order to represent more clearly the arrangement of these
data, Figs. 1 and 2 show examples of the data provided by a
specific user for each of the indicated activities. In both figures,
the image on the left (a) shows the first 15 s of each activity
before any preprocessing, while the one on the right (b) shows the
result of such preprocessing. The selection of this time interval
allows for a straightforward interpretation of the values on a
considerable figure size. In order to improve the readability, the
figures were divided due to the high variability shown by the av-
erage of the values for each sensor. Fig. 1 shows the accelerometer
and gyroscope data, while Fig. 2 shows the magnetometer and
GPS data. The data for the accelerometer, gyroscope and magne-
tometer are shown separately for each of their three axes (‘‘Acc’’,
‘‘Gyro’’, and ‘‘Magn’’ on the figures). As for the GPS acronyms,
these correspond, on the one hand, to the latitude, longitude and
altitude increments between each sample (‘‘GPS_lat’’, ‘‘GPS_long’’
and ‘‘GPS_alt’’, respectively). On the other hand, the speed, bear-
ing and accuracy of each of its measurements correspond to
‘‘GPS_sp’’, ‘‘GPS_bear’’ and ‘‘GPS_acc’’, respectively. Note that each
GPS measurement is plotted as a single point instead of a con-
tinuous signal to highlight its differential behaviour regarding
the other sensors. Additionally, each figure contains a series of
vertical bars, every 15 s, to delimit the different activities in the
same plot. It should be highlighted that these are not continuous
signals from one activity to another. Each action is given by
different sessions, from the initial moment of data collection until
the 15 s have elapsed. As can be seen on the (b) figures, all GPS
data is replicated, and the first few seconds of each session are
cut out, for the reasons indicated above. Moreover, some clear
trends can be observed for each sensor, depending on the activity
performed.

Once data were loaded and preprocessed as previously de-
scribed, the features were extracted. That extraction was based on
the application of a sliding window from 20 to 90 s, in increments
of 10, with the maximum possible overlap (one second less than
each full window size), to have as many samples as possible. Thus,
as an example shown in the original work for a window size of
20 s and the dataset containing all the sensors, Table 1 shows
the number of available patterns and their distribution by every
activity studied. On the other hand, in each of those windows, the
features shown in Table 2 were calculated. As can be seen, there
is a primary set already proposed in [19] (‘‘Primary set’’ column)
that will be used as a basis for comparison. Similarly, another
series of features are also shown (‘‘Proposed additions’’ column),
which were added to the primary set. In this way, it will be possi-
ble to examine the differences in performance between the initial
set and the one formed by that set plus the proposed collection.
Each of the sub-columns that can be observed in this table refers
to the sensors to which these features were practised. In the case
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Fig. 2. Examples of data taken by the magnetometer and GPS of a specific individual’s smartphone, during the first 15 seconds of each session, for each of the
specified activities, being: (a) Raw data. (b) Data after having been preprocessed.

Table 1
Number of patterns available and their distribution by every
activity studied, for a window size of 20 seconds and the dataset
containing all the sensors.

Activity
Inactive Active Walking Driving Overall
214,130 140,060 83,376 61,710 499,276
(43%) (28%) (17%) (12%)

Table 2
Feature set used.
Features

Primary set Proposed additions

General General Not for GPS Only for GPS

Mean Signal magnitude area
Variance Energy Number of zero crosses
Median absolute deviation Number of observations Number of local maxima Total distance travelledMaximum Maximum time gap Number of local minima
Minimum Minimum time gap Total positive time
Interquartile range Total negative time

of ‘‘Not for GPS’’, they relate to the features that did not make
sense to be used for GPS. That is because for the GPS the values
are much more separated in time (approximately one value every
10 s) and always remain on the positive side of the signal, as these
are absolute increments between observations. Besides, for the
same reason, there are not three accurate axes like the X, Y and
Z used in the other sensors, so it was also not attainable to use
the signal magnitude area feature (SMA). Thus, a specific feature
for this sensor was applied, ‘‘total distance travelled’’, which, from
the increments of the latitude and longitude values, approximates
the distance travelled using a Pythagorean theorem. The resulting
value corresponds to the sum of all the hypotenuses, i.e. all the
distances calculated in each of the observations.

Regarding the implemented features, it was decided to apply
some of those included in the proposed collection, such as ‘‘num-
ber of zero crosses’’, ‘‘number of local maxima/minima’’ and ‘‘total
positive/negative time’’. This is due to having seen their reliable
performance in [37], in which a comparison of different features
for HAR was made. The first of those listed refers to the number of
times the signal changes from positive to negative or vice versa.
All of them were considered attractive given the variability in the
activities to be studied. For example, in a case of inactivity, these
values should be much lower than those that could be found
in a situation where the individual is walking or running. On
the other hand, ‘‘energy’’ and ‘‘signal magnitude area’’, are two
very common calculations in signals and the HAR field, so it was
decided to include them as well. As for ‘‘number of observations’’,
‘‘maximum/minimum time gap’’ and ‘‘total distance travelled’’,
these were features that were thought that could be favourable
given the peculiarities of this dataset, in order to take advantage

of the fact that there are some gaps between the data, mainly in
the case of GPS.

3.2. Classification algorithms

Within the scope of HAR, numerous machine learning algo-
rithms can be applied. In this case, it was decided to use the
following ones: Support Vector Machine (SVM), Decision Tree
(DT), Multilayer Perceptron (MLP), Naïve Bayes (NB), K-Nearest
Neighbour (KNN), Random Forest (RF) and Extreme Gradient
Boosting (XGB). The selection of these algorithms is due, in most
cases, to the fact that they were the most used and with the
best results within this field [22,28,29], as seen in the Related
Work section. Only the case of XGB would be a novelty, as it
has not been seen so much in this area. Anyhow, its addition
was considered attractive to the list due to its high popularity in
recent years and its outstanding results in many machine learning
competitions [38]. Moreover, every algorithm mentioned above
was implemented in Python, using the Scikit-learn library [39],
as well as the XGBoost one [40] for its own case.

3.2.1. Support Vector Machine
Support Vector Machines (SVM) are machine learning models

often used in binary classification problems [41]. This type of
models searches for the hyperplane which maximizes the mar-
gins between two previously specified and labelled classes. To
make this hyperplane non-linear, functions called kernels are
used, which are one of the most crucial hyperparameters in SVM.
These functions transform non-linear spaces into linear spaces,
by changing the dimension in which they are plotted, making
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possible the application of this linear approach. Depending on
the kernel used (linear, polynomial or radial basis function), the
hyperparameters to be applied change. The only fundamental
hyperparameter that occurs in any kernel is C, which defines the
number of errors that can be accepted by the model, as well
as the width of the margins of the resulting hyperplane. In the
same way, other fundamental hyperparameters also influence to
a great extent the definition of such hyperplane. One of them is
gamma (not applicable in linear kernels, among others), which
determines the curves that the hyperplane can take, making them
more accentuated or softer, depending on the patterns that are
introduced into the model. Similarly, for polynomial kernels, the
degree of the polynomial broadly affects the curvature that such
a hyperplane can take. In fact, for example, if the degree is equal
to 1, the result will be equivalent to that of a linear kernel (one
straight line).

Usually, SVMs are employed to solve binary classification
problems, but they can also be used for multi-class ones. To
perform these tasks, it is necessary to choose a one-vs-one or
one-vs-all strategy. In the first case, the classes are modelled in
pairs, performing several binary classifications until a final result
is obtained. Conversely, in the second case, the models are formed
by confronting each class with the rest independently, creating a
specific classifier for each situation. In this paper, the one-vs-all
approach will be the one implemented, since it is the most used
one in the literature [20,42]. In this way, the final result returned
will be the average of all the classifiers created in the process.

3.2.2. Decision Tree
Decision Trees (DT) are one of the closest models to human

thought, representing knowledge through trees. To do this, they
generate a series of rules or questions that they use to predict
and classify the data entered. There are numerous tree creation
algorithms, including ID3 [43], C4.5 [44] or CART [45]. In this
paper, the latter one will be used, as there is a widely accepted
version, which is available and on which no modifications have
been made for the purpose of comparison. To carry out this
creation process, the algorithm follows a series of steps:

1. It starts by looking for the attribute that best defines each
of the classes and places it at the top of the tree. This
attribute is also known as the root node. To determine
the order in which the attributes are evaluated, it uses
statistical measures such as information gain. This metric
calculates the expected reduction of uncertainty, which
is obtained from the division of the dataset into a given
attribute.

2. The algorithm then generates a criterion by which it sepa-
rates the data, depending on the probability distribution of
each of the classes in the tree.

3. Finally, it forms branches that split the datasets into sub-
sets known as internal nodes. To evaluate these divisions,
the algorithm uses the Gini Index, which provides a score of
how good the resulting subsets are. The smaller this value
is, the better the division.

Once these steps have been performed, the algorithm repeats the
first and second steps until it reaches, in each branch, a leaf node,
which is a subset of data that cannot be further divided.

3.2.3. Multilayer Perceptron
The Multilayer Perceptron (MLP) is one of the most widely

used neural models nowadays, as well as being one of the first
machine learning techniques to appear [46]. Unlike more tra-
ditional neuron networks, it can have more than one layer of
neurons. For the simplest case, it would consist of three different
layers, where the first one would be the input layer, followed

by the hidden layer and ending with the output layer. The data
are entered by the input layer, taking the predictions in the
output layer. The hidden layers can be multiple, depending on
how complex the model needs to be for the specified problem.
Each layer is represented as follows:

y = f (W × x + b) (1)

The letter ‘‘f’’ would be the activation function, which is responsi-
ble for describing the input–output relations in a non-linear way.
In this way, the model has more power to be more flexible in
the description of arbitrary associations. On the other hand, ‘‘W’’
refers to the layer weights, which change as errors are found,
by adding the learning rate, which can be constant or dynamic.
Similarly, ‘‘x’’ would correspond to the input data vector of the
previous network and ‘‘b’’ would be the bias vector, which is an
additional set of weights with which to allow the layer to produce
a series of output data. In order to carry out the training of the
network, it is necessary to define a loss function. This loss will
be high if the class predictions do not correspond to the ground
truth, and will be low if they do. In this way, the layer weight
values (W) would be added to this loss. The idea is that during
the training of the model this loss value will be low. For this
purpose, functions called optimizers are used, which look for the
appropriate values of the weights with which to lower this value.
In this paper, the Adaptive Moment Estimation (Adam) function
will be used [47], as it is the more recommended one for large
datasets. Moreover, to avoid overfitting, these algorithms use an
alpha parameter that penalizes weights with large magnitudes.

3.2.4. Naïve Bayes
The Naïve Bayes (NB) classifiers are a collection of classifi-

cation algorithms based on Bayes’ Theorem [48]. This theorem
expresses the conditional probability of an event A given B, from
the conditional probability of B given A and the marginal prob-
ability of A. This definition is represented in the Bayes’ Rule:

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B|A) Pr(A) + Pr(B|¬A) Pr(¬A)
(2)

Thus, it is not a single algorithm, but a family of algorithms that
share a common principle, which is that in each pair of classified
features, each one is independent of the other. The main differ-
ences between each of the algorithms of this family are based on
the assumption they make regarding the distribution of Pr(B|A).
The continuous values associated with each feature are assumed
to follow a specific distribution, such as the Gaussian one, a given
multinomial distribution or Bernoulli’s multivariate event model,
where the features introduced are independent booleans (binary
variables) [49]. In this paper, this last assumption will be used,
since the rest do not apply to our problem, or offered preliminary
results far below what it is considered randomness (50% success
rate). On the other hand, although the assumptions made by this
kind of methods may seem very simple, the truth is that this
kind of algorithms have worked well in many tasks. Moreover, it
is an extremely fast classifier compared to other types of more
sophisticated machine learning algorithms, so it is considered
that it is worth trying.

3.2.5. K-Nearest Neighbour
The K-Nearest Neighbour (KNN) algorithm is supervised and

instance-based, so it needs the data entered to be pre-labelled, as
well as not being able to create a model explicitly [50,51]. Instead,
it memorizes the training instances that are used as a basis for
the prediction phase. The most crucial point in this algorithm is
the selection of the ‘‘K’’ number, which represents the number of
neighbours that are taken into account in the neighbourhood to
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classify the previously specified groups. In this way, the algorithm
follows a series of steps defined for each of the observations in the
data:

1. The distances between the selected observation and all
other observations in the dataset are calculated. This dis-
tance can be understood as a similarity measure between
these elements. It is calculated using a predefined function,
such as the Euclidean or the Manhattan distance.

2. Then, the closest K-elements are selected and a majority
vote is taken among them. The dominant class will be the
one deciding the final classification, depending also on the
weights given to each of these classes.

One of the most prominent problems in KNN is the immense
amount of memory and time required as the selected dataset
grows. That is because they need to evaluate every observation
in the data, so if the number of features and data is very high,
the computational resources required for their training can be
quite significant. Nevertheless, it is considered as an algorithm
that can produce great results, being also easy to understand and
to implement.

3.2.6. Random Forest
Models based on Random Forest’s (RF) algorithm are among

the most popular nowadays [52,53]. Through the creation of
multiple decision trees from previously tagged data, they can
produce very robust models. That is because, by having to create
different trees, they can select the best possible solution in a
much more general and flexible way, as well as also reducing
overfitting by not having a single decision tree. Thus, the main
work of the algorithm is divided into the following steps:

1. First, you start by selecting various subsets randomly over
the given dataset.

2. Then, the algorithm will build decision trees for each of
these examples, following the steps described in 3.2.2. The
number of decision trees constructed will be given from the
number of estimators hyperparameter, which is specified
previously.

3. Once the trees have been created, the resulting prediction
is obtained from each of them. At this point, a vote is
also taken on each of these resulting values, where the
dominant class will decide the final result.

4. Finally, the most voted class is selected as the final result
of the prediction.

When making predictions with the model already created, this
algorithm is usually much slower than the rest. That is because
of having to average the outcomes of each of the trees that make
up the final model. Even so, it is widely used today because
it is capable of creating very robust models with a high-grade
performance, being also faster to train than many of the other
artificial intelligence algorithms used nowadays.

3.2.7. Extreme Gradient Boosting
Although Extreme Gradient Boosting (XGB) is not an algo-

rithm by itself but a refined implementation of the Gradient
Boosting algorithm [40], it is worth to be considered. The main
reason is that this approach has won several competitions and
has recurrently offered very competitive results in the related
literature [38]. The implementation provides a more efficient and
flexible method by parallelizing the tree boosting process. Con-
cerning the Gradient Boosting Machine (GBM), it is an algorithm
that seeks the production of a model through the formation of
numerous ‘‘weak’’ prediction models, usually decision trees. For
this purpose, decision trees are created in a stage-wise fashion,

Table 3
Binary confusion matrix example.

Model output

False True
Ground
truth

False TN FP
True FP TP

sequentially, following the same lines listed in 3.2.2. As in Ran-
dom Forest, a number of estimators hyperparameter is used to
determine the number of trees to be created. The idea is to seek
the progressive improvement of the final model. To do this, a loss
function is defined that evaluates the performance of the last tree
created, and which, presumably, will progressively decrease as
all the observations in the trees built are better classified. That
results in a final model that is much more robust and easy to
tune, as well as offering excellent results. However, it can be quite
sensitive to overfitting and noise, so it is important to be careful
when training it.

3.3. Evaluation metrics

One of the most elementary and easily interpreted metrics is
the confusion matrix. A confusion matrix is a table that facilitates
the visualization of the performance of a classification model
from a set of test data. A simple example would be the one
showed in Table 3. From this, we can draw many widely used
terms to evaluate these confusion matrices, such as: precision,
recall, accuracy and F1-score [54].

Precision and recall are the metrics used to measure the qual-
ity and quantity of the classifications made, respectively. Pre-
cision measures the number of true positives, divided by the
total number of positive results returned. Concerning recall, it
measures the number of true positives, divided by the number
of correct results that should have been returned. Their formulas
would be as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Any other way, accuracy and F1-score metrics are used to
know the performance of a model in test. The first consists of the
measurement of all correctly identified cases, while the second is
based on the harmonic mean of the recall and precision metrics.
Their formulas would be as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

F1 = 2 ×
Precision × Recall
Precision + Recall

(6)

However, in a multi-class problem such as the one in this
paper, the way these metrics are computed changes. As a model
example, it can be seen how these values would be calculated in
Table 4, compared to the binary case of the previous example.
Thus, to calculate the overall precision and recall of the whole
model, the final value is obtained from various types of averaging,
among which the following stand out: micro and macro [55]. The
first one considers the total of TP, FN and FP to calculate the
metric, so it is suitable for problems with mutually exclusive
classes. As for macro, it returns the average of calculating the
metric for each label, regardless of the proportion of each of them
in the dataset. Concerning accuracy, it is usually calculated in the
same way as in the latter case.

On the other hand, F1-score has more ways of weighting its
result to evaluate multi-class classification problems. In addition
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Fig. 3. Methodology followed for each algorithm and window size specified.

Table 4
TP, TN, FP and FN calculations for the ‘‘Class 1’’ class of a
multi-class confusion matrix example.

Model output

Class 1 Class 2 Class 3

Ground
truth

Class 1 TP FP

Class 2 FN TNClass 3

to the two most commonly used ones discussed above, there
is a variant of macro, macro-weighted (provided by the Scikit-
learn library), which does take into account the data proportions
by averaging the precisions and recalls of each of the classes
involved.

Although accuracy is the most widely used measure globally,
F1-score is also closely linked to the correct classification of
groups, but it is not as influenced by possible imbalances between
classes in the datasets [56]. In fact, when this occurs, the accuracy
could give an incorrect impression of the final results. In this
paper, the F1-score will be used as the initial assessment metric,
specifically with the macro-weighted case of averaging, as the
proportions of the data are quite inclined towards one of the
classes involved. Anyhow, the final results will be shown mainly
with the accuracy metric, since it is the most common one for
comparison with the rest of the works.

3.4. Validation and optimization techniques

One of the most widely used model validation techniques
in the field of machine learning is cross-validation [57]. Before
entering the data in the model to be trained, the data is divided
into training and test. This elementary division of data is also
called hold-out. In this way, there is a set of data destined to train
the model and another subset that serves to test its performance,
with data a priori unknown to it. One of the most common ways
of making this division is employing the k-fold cross-validation
technique. Here, the aim is to partition the original data set
into ‘‘k’’ equal sized subsamples. Then, one of these subsamples
is selected as the validation set to test the model, being the
rest of subsamples used to train it. This process is repeated ‘‘k’’
times until all subsets are selected as a test once. Finally, the
results obtained by the model are averaged and the relevant
performance evaluation metrics are calculated. In this paper, a
variant of this technique will be used, called stratified k-folding.
This alternative seeks that the proportion of each class in each
of the subsets created is practically the same. In this way, the
existing imbalance on the dataset and its possible influences on
the model performance are avoided.

As for the optimization of the models to be used, there is a
technique widely employed in the field called grid search [58]. A
grid search is a process that consists of an exhaustive search for
the best combination of hyperparameters introduced to a model
using a particular algorithm. Here, each of the possibilities of the

set of hyperparameters previously indicated is tested. It is a long
and expensive process, but with which it is possible to know the
best possible performance of the model to be used. In this paper,
the F1-score commented in 3.3 will be used as the evaluation
metric for these combinations. Also, some of these combinations
will be trained not once, but 50 times. This is because non-
deterministic algorithms such as Multilayer Perceptron (MLP),
Random Forest (RF) and Extreme Gradient Boosting (XGB) will
be used. The nature of these types of algorithms means that
there is always a small random component that affects their final
result. Thus, by averaging the values obtained in each of these
repetitions, it is possible to get a reliable outcome.

In the present paper, these techniques will be used together
to find the most robust and optimal model for these problems, as
shown in Fig. 3. For this purpose, an initial 10-fold will be applied
to the dataset. Each of the training parts of each fold will be
introduced later in the grid search. To validate the performance
of each of these models, the data of the corresponding fold will
be divided applying a hold-out. Hence, 90% of the data will be for
training and the resulting 10% for testing. It was decided to apply
this technique instead of the traditional k-fold cross-validation
due to the high number of experiments to be performed in the
grid search. In this way, we obtain the final results in a reasonable
time, as we do not have to evaluate each of the folds. Besides, the
high number of patterns available (around 450,000 for each fold)
could lead to greater redundancy in the data if we applied another
10-fold. Finally, the best model selected by the grid search will be
tested again, this time with the corresponding part for testing of
the initial 10-fold. Thus, the models are tested with truly unseen
data during their training, making the final result more realistic
concerning their data generalization capabilities.

4. Results and discussion

Within this section, all the results of the experiments carried
out will be displayed. First, in Section 4.1, all the data obtained
will be represented, with their corresponding graphs and eval-
uation metrics. Then, in Section 4.2, the main observations and
considerations of the results obtained will be discussed.

4.1. Results

After having prepared the data, applying the selected window
sizes with the previously discussed features (Table 2), a series of
experiments were conducted on them. As described before, the
sliding window sizes ranged from 20 to 90 s, in increments of 10,
with the maximum possible overlap (one second less than each
full window size). To do this, the most applied machine learning
algorithms in HAR were used, which are: Support Vector Machine
(SVM), Decision Tree (DT), Multilayer Perceptron (MLP), Naïve
Bayes (NB), K-Nearest Neighbour (KNN) and Random Forest (RF),
with the addition of Extreme Gradient Boosting (XGB). In order
to get the best possible results for each of them, it was decided
to explore the best architecture for each of them beforehand. For
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Table 5
Chosen hyperparameters to perform further grid search for each machine learning algorithm.
Algorithms Hyperparameters

SVM

Kernel = {linear, RBF (Radial Basis Function), polynomial}
C = {1, 10, 100, 1000, 10000}
Gamma (not applicable for linear kernels) = {0.0001, 0.001, 0.01, 0.1, 1}
Degree (only applicable for polynomial kernels) = {1, 2, 3, 4}
Maximum iterations = 1000

DT
Maximum depth = {5, 8, 15, 30, None}
Leaf minimum size = {1, 2, 4, 8, 16, 32, 64}
Minimum size for node division = {2, 5, 10}

MLP

Hidden layers and units size = {(5,), (10,), (20,), (30,), (50,), (70,), (100,)
(5, 5), (10, 10), (20, 20), (30, 30), (50, 50), (70, 70), (100, 100)}
Activation function = {tanh (Hyperbolic Tangent), ReLU (Rectified Linear Unit)}
Alpha = {0.0001, 0.05, 0.1}

NB It has no specific hyperparameters. In our case, we used the model based on Bernoulli,
since the rest, after some preliminary tests, were not applicable to this problem.

Number of neighbours = {3, 5, 7, 11, 15, 19, 24, 29, 34}

KNN Weights = {uniform, distance}
Metrics = {Euclidean, Manhattan}
Leafs size = {30, 50, 100}

RF

Number of estimators = {100, 250, 500, 1000}
Maximum depth = {5, 12, 25, 50}
Leaf minimum size = {1, 2, 4}
Minimum size for node division = {2, 5, 10}

XGB Number of estimators = {100, 300, 500, 800, 1200}
Maximum depth = {5, 8, 15, 30, None}
Minimum size for node division = {1, 3, 5}

Table 6
Accuracy results comparison between algorithms and sliding window sizes for the initial feature set and the complete dataset.

Window size

20 30 40 50 60 70 80 90

SVM 69.28%
±15.10%

78.07%
±10.37%

81.30%
±8.79%

79.52%
±10.57%

78.84%
±8.54%

79.45%
±9.77%

81.23%
±8.53%

80.90%
±9.02%

DT 88.17%
±12.47%

85.79%
±16.40%

88.12%
±8.83%

86.71%
±13.47%

87.82%
±13.00%

86.17%
±14.37%

87.57%
±12.81%

89.91%
±7.15%

MLP 86.46%
±6.30%

86.80%
±6.02%

86.85%
±6.12%

86.59%
±6.61%

86.65%
±7.11%

86.39%
±7.69%

86.57%
±7.90%

85.47%
±8.65%

NB 78.11%
±6.93%

78.68%
±6.61%

79.09%
±6.73%

79.48%
±6.92%

79.66%
±6.95%

80.01%
±7.08%

80.09%
±7.08%

79.62%
±6.81%

KNN 85.68%
±7.20%

86.30%
±6.20%

86.83%
±6.34%

86.32%
±6.48%

86.56%
±6.50%

86.84%
±6.77%

86.99%
±6.57%

87.09%
±6.76%

RF 91.78%
±5.20%

92.27%
±5.58%

92.36%
±5.74%

92.56%
±5.92%

92.55%
±5.99%

92.29%
±5.86%

92.37%
±5.80%

92.28%
±6.50%

XGB 90.58%
±7.57%

90.47%
±9.09%

91.42%
±7.62%

91.36%
±7.76%

91.80%
±8.06%

92.23%
±7.30%

91.21%
±6.98%

91.30%
±7.09%

this reason, different values for the most crucial hyperparameters
of each of them were selected, in search of the best possible
combination between them. To choose the best final result, the
next steps were followed, for each of the previously specified
datasets:

1. The first step was to carry out a stratified 10-fold to have
ten different datasets, with approximately the same pat-
tern distribution for each class.

2. Then, with each of the previous folds, a grid search was
carried out to find the best combination of hyperparame-
ters of each algorithm. Because the dataset used has some
unbalance towards the class of ’’inactive’’, the resulting pre-
dictions were evaluated using the F1-score metric, offering
a value that should better represent the performance of the
model. On the other hand, concerning the hyperparameters
used for each of the selected machine learning algorithms,
they were all arranged in Table 5. The intention was to
have a wide range of hyperparameters, to know the best
possible option. Therefore, attempts were made to increase
the number of possibilities in those that were more influ-
ential in the final result. However, the overall complexity

of each training increases with higher amounts of hyperpa-
rameters, so it was necessary to be conservative in general.
Any other hyperparameters not listed there were chosen
and set to the default value, after some preliminary exper-
iments and confirmation of good performance. In this way,
the number of experiments is adequate to find the optimal
model in a reasonable time.

3. For the MLP and RF algorithms, given their non-
deterministic nature, the previous step was repeated 50
times, for each of the ten initial folds. In this way, we avoid
that their random behaviour affects the final result, aver-
aging all the obtained ones. On the other hand, although
the XGB algorithm also should have this non-deterministic
nature, for the Python package used in this work the results
are always the same, so it was not necessary to perform
these repetitions.

4. Once the grid search was completed, the results were eval-
uated and the best combination of hyperparameters for
each of the folds was selected. Then, each of the best
models selected was tested with truly unseen data from
the initial 10-fold.

8

79



D. Garcia-Gonzalez, D. Rivero, E. Fernandez-Blanco et al. Knowledge-Based Systems 262 (2023) 110260

Table 7
Accuracy results comparison between algorithms and sliding window sizes for the proposed feature set and the complete dataset.

Window size

20 30 40 50 60 70 80 90

SVM 80.77%
±12.64%

82.00%
±13.45%

82.15%
±14.12%

83.38%
±10.85%

83.59%
±11.84%

85.12%
±11.55%

86.56%
±11.30%

85.98%
±11.18%

DT 89.99%
±6.13%

89.92%
±6.62%

87.95%
±10.18%

88.27%
±11.01%

87.68%
±12.17%

86.94%
±14.31%

89.63%
±8.38%

88.26%
±10.26%

MLP 83.76%
±10.37%

84.00%
±10.49%

84.24%
±10.38%

84.60%
±10.22%

84.73%
±10.32%

84.32%
±10.79%

84.96%
±10.37%

84.43%
±10.09%

NB 81.69%
±7.20%

82.21%
±7.16%

82.49%
±7.16%

82.77%
±7.32%

82.86%
±7.60%

83.06%
±7.67%

83.27%
±7.78%

82.72%
±7.68%

KNN 87.62%
±7.37%

88.27%
±7.02%

88.72%
±6.99%

88.99%
±6.96%

88.76%
±7.94%

88.80%
±8.01%

89.02%
±8.00%

88.03%
±7.94%

RF 91.71%
±5.47%

92.08%
±5.49%

92.26%
±5.68%

92.51%
±5.86%

92.73%
±5.98%

92.77%
±6.16%

92.97%
±6.23%

92.61%
±6.60%

XGB 88.32%
±12.29%

88.99%
±11.66%

88.87%
±12.61%

88.78%
±14.26%

89.72%
±11.54%

89.55%
±12.54%

90.38%
±9.64%

91.15%
±7.01%

Once the steps indicated in the previous paragraph have been
carried out, for each of the algorithms and sliding window sizes
used, the results shown in the Tables 6 and 7 were obtained. The
value below each accuracy result refers to its standard deviation.
These values correspond to the initial and proposed sets of fea-
tures, respectively. As can be seen, the tree-based models, DT, RF
and XGB, work considerably better than the rest, since they are
the only ones capable of approaching and even surpassing the
90% of success. The cases of RF and XGB stand out even more
because they are less variable than DT. However, as it is logical,
the computational complexity of these algorithms is much higher
than in the case of DT. On the other hand, the size of the windows
is not as influential as it was thought at first, except for SVM,
where the fluctuations are quite broad, especially in the step of
20 to 30 s. For that reason, although the best value is obtained
with a 80-second window, the model might perform similarly
with a window such as the 20-second one, since the difference
in accuracy is pretty low in most cases. In this way, they would
be easier to apply to a real-life environment, as they can be
used more finely with the activities that are being carried out at
each moment. As for the differences between each of the sets of
features, the truth is that these were much smaller than expected.
In fact, after performing a T-test between each pair of values of
both groups, significant differences were only found in one case.
This only case corresponds to the SVM algorithm, specifically for
the 30-second window size. For the rest, the p-values were all
above 0.1, which means that the results are statistically similar.
However, some clear improvements are visible for the proposed
set, as in the cases of SVM, NB and KNN. On the contrary, for
MLP and XGB, it seems that the results are slightly worse. The
rest of the algorithms remain with very similar values to each
other, especially in the case of RF. Additionally, the test results
between each pair of results in Tables 6 and 7 seem to indicate
that the new features do not add information that would signifi-
cantly increase accuracy, not making it possible to reach a reliable
conclusion. Moreover, in the same way, in Fig. 4 the F1-scores
resulting from each of the algorithms and window sizes used
are shown, for each of the sets of features applied. Both metrics
are displayed to, on the one hand, show the numerical accuracy
results in tables as a comparison with other works. On the other,
it is also possible to show the differences between each case in a
much more visual way through the F1-score graphs.

On the other hand, the results obtained for the dataset that did
not include the gyro, both with the old and the new features, are
also shown in Tables 8 and 9, respectively. As in the previous case,
a T-test was also carried out to check the differences between
the sets of features introduced in the models. Once again, the
only case where significant differences can be seen is with SVM

and a window size of 30 s. Therefore, the results are, in general,
statistically similar, so we cannot claim that they are different.
In any case, the observations from before are repeated, with
improvements in SVM, NB and KNN, as well as a worsening
in MLP and XGB. However, in this case, DT worsens slightly.
Anyhow, as can be seen, the results are, in general, somewhat
worse than those obtained with all the sensors. Although there
is indeed some case with some improvement, like the one found
in [19], with SVM and 20 s of a window, it is considered that
the models work better with the complete case. In this way, the
gyroscope does provide a slight improvement in the models, as
shown in previous works that included it in their tests. Similarly,
the F1-scores for this case are also shown in Fig. 5.

Regarding the winning hyperparameter combinations of each
algorithm, for each window size and dataset, the best values of
F1-score obtained for each of those combinations are shown in
Fig. 6. Here, the ‘‘Feature dataset’’ field refers to the combination
of the set of features and the dataset used in each case, as shown
in Table 10. Thus, the numbers 1 and 2 would correspond to the
dataset containing all sensors, while 3 and 4 to the dataset not
including gyroscope data. At the same time, the numbers 1 and 3
would also correspond to the initial set of features, while 2 and 4
to that proposed in this paper. As can be seen, no single winning
hyperparameter combination is obtained for each algorithm, but
different sets depending on the case study. Therefore, the data
displayed there for each of the applied algorithms are detailed
below:

• SVM. The RBF kernel was by far the most selected, with
only a few cases of grade 3 polynomial kernels in the larger
window sizes when using the proposed feature set. The
linear kernel was always lower in overall performance. As
for C, the values fluctuated a lot, but seemed to settle more
for the intermediate values of 10, 100 and 1000, leaving
quite apart from the value 1. Finally, with gamma something
similar happened, although the extreme values of 1 and
0.0001 were practically never selected, being clearer the
dominance of the rest of the values, more or less in equal
parts.

• DT. The maximum depths in DT always remained at the
low values of 5 and 8, except for some isolated cases for
the complete dataset with the primary feature set (case
1). In the latter case, the chosen value was 15. As for the
minimums per leaf and to divide the node, their values were
very arbitrary and all were selected more or less equally, so
it is not possible to draw a reliable conclusion.

• MLP. The case of (100,) was by far the most selected for
the size of the hidden layers. However, there were also
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Fig. 4. F1-scores for: (a) The initial feature set and the complete dataset. (b) The proposed feature set and the complete dataset.

Table 8
Accuracy results comparison between algorithms and sliding window sizes for the initial feature set and the dataset missing the
gyroscope’s measurements.

Window size

20 30 40 50 60 70 80 90

SVM 74.39%
±10.75%

73.47%
±9.66%

76.77%
±10.98%

81.00%
±9.41%

80.66%
±12.96%

82.56%
±7.68%

80.70%
±9.22%

81.77%
±9.28%

DT 82.74%
±13.36%

83.67%
±13.72%

87.07%
±8.23%

87.06%
±9.19%

87.88%
±8.75%

88.82%
±6.29%

88.60%
±7.44%

87.28%
±8.93%

MLP 86.35%
±4.95%

86.70%
±4.97%

86.46%
±5.22%

86.63%
±6.06%

86.88%
±6.56%

87.16%
±6.85%

87.00%
±7.10%

87.01%
±7.42%

NB 80.23%
±7.30%

80.39%
±7.27%

80.62%
±7.50%

81.24%
±7.32%

80.94%
±7.35%

80.97%
±7.63%

81.32%
±7.63%

81.42%
±7.13%

KNN 84.61%
±6.15%

86.10%
±5.13%

86.28%
±5.57%

86.81%
±5.38%

86.84%
±5.52%

86.68%
±5.85%

86.92%
±5.88%

86.18%
±9.49%

RF 89.34%
±6.67%

89.75%
±7.27%

90.03%
±7.64%

90.45%
±7.44%

90.62%
±7.52%

90.63%
±7.92%

90.76%
±8.01%

90.36%
±8.06%

XGB 87.40%
±10.57%

89.21%
±7.34%

89.75%
±7.22%

90.35%
±6.80%

90.27%
±7.41%

89.53%
±8.61%

89.75%
±8.06%

90.50%
±6.62%

Table 9
Accuracy results comparison between algorithms and sliding window sizes for the proposed feature set and the dataset missing the
gyroscope’s measurements.

Window size

20 30 40 50 60 70 80 90

SVM 80.65%
±11.65%

81.34%
±9.45%

80.66%
±11.48%

82.57%
±9.56%

82.77%
±8.71%

83.71%
±7.96%

84.64%
±7.86%

84.88%
±7.75%

DT 82.15%
±12.88%

81.97%
±12.50%

84.77%
±10.49%

84.71%
±12.07%

84.04%
±12.62%

84.64%
±12.34%

85.55%
±11.90%

86.66%
±9.72%

MLP 84.07%
±7.82%

84.57%
±8.02%

85.03%
±7.98%

85.45%
±7.68%

85.69%
±7.54%

85.51%
±7.82%

85.94%
±7.55%

86.17%
±7.42%

NB 81.49%
±6.44%

82.18%
±6.70%

82.53%
±6.93%

82.60%
±7.23%

82.72%
±7.34%

82.92%
±7.66%

83.04%
±8.04%

82.75%
±7.72%

KNN 85.43%
±6.49%

86.25%
±6.50%

86.96%
±6.34%

87.16%
±6.17%

87.47%
±6.05%

87.45%
±6.04%

87.60%
±5.64%

86.73%
±6.05%

RF 88.94%
±6.22%

89.55%
±6.24%

90.17%
±6.29%

90.19%
±7.15%

90.41%
±7.51%

90.50%
±7.85%

90.62%
±7.97%

90.22%
±7.90%

XGB 85.57%
±11.17%

84.96%
±13.02%

87.33%
±11.12%

86.15%
±12.98%

86.57%
±12.75%

87.44%
±11.37%

88.33%
±10.61%

87.32%
±10.79%

some cases of (70,), for the 90-second windows, and (5,)
for the 20-second ones (for the primary feature set). As for
the activation functions, the tanh (Hyperbolic Tangent) case
dominated for the primary feature set (cases 1 and 3), while
ReLU (Rectified Linear Unit) was always the chosen function
in the proposed one (cases 2 and 4). Besides, the ReLU was
also always chosen for the 20 and 30-second windows of the
cases 1 and 3. Regarding the alpha values, generally, those
of 0.1 were chosen much more, with some appearances of
0.05 and only one choice of 0.0001.

• NB. No hyperparameters to choose.
• KNN. Here, the number of neighbours was always 34 for the

smaller window sizes (until 40 or 50 s). For the following
ones, the number was regularly diluted to the lowest values
in the list with the size of 90 s, except for the complete
dataset with the primary feature set (case 1), where these
high values were relatively constant. As for the weight, it
was pretty arbitrary in all cases, so it is not possible to draw
a reliable conclusion. Concerning the chosen metric, it was
always Manhattan, in absolutely all measurements. Finally,
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Fig. 5. F1-scores for: (a) The initial feature set and the dataset missing the gyroscope’s measurements. (b) The proposed feature set and the dataset missing the
gyroscope’s measurements.

Fig. 6. F1-scores for each winning hyperparameter combination of each algorithm used.

the size of the leaves did not seem to have any influence
whatsoever on the results, as the accuracy was always the
same for any of the three values studied.

• RF. In the vast majority of cases, the number of estimators
remained at the value of 1000 and, to a lesser extent, 500.
The value of 1000 dominated mostly in cases where the
proposed feature set was applied (cases 2 and 4). On the
other hand, the maximum depth was more inclined towards
the mean values of 12 and 25, with some cases of 50. The
dominance of these mean values was clearest in cases 2
and 4, as with the previous parameter. As for the minimum
per leaf, the most selected value was 1, although in case
1, 4 was the most dominant by far. Finally, the minimum
to split the node does not seem to be entirely conclusive,
as all cases were selected more or less equally, with some
tendency towards the lower values of 2 and 5. The value of
10 was only ever selected for cases 3 and 4 (non-gyroscope
ones).

• XGB. In this case, the values are pretty arbitrary. How-
ever, there does seem to be a trend towards the number
of 1200 estimators compared to the rest, especially with
the non-gyroscope dataset. As far as the maximum depth
is concerned, 5 and 8 were the most widely used values.
Finally, the minimum to divide the node was centred much
more on the lower numbers of 1 and 3.

To select the best-resulting model, a Critical Difference di-
agram was carried out, as shown in Fig. 7. This diagram was
constructed from all the datasets, features and window sizes
used, with the best values obtained for each case (the ones
showed in Tables 6, Table 7, Tables 8 and 9). As it is shown in
the aforementioned figure, RF, XGB, DT and MLP models appear
to be statistically equivalent. From these four, given the results,
it was decided to select RF, because it has the highest accuracy
peaks and is less computationally complex than XGB. Addition-
ally, although it requires more time and computational resources
than MLP and DT, its performance is considerably better, as well
as being a more advanced version of the latter one.

As can be seen in all the tables and figures shown, the best
model obtained is the one thrown by the Random Forest algo-
rithm, for 80-second time windows and for the proposed set of
features. This case yields the average confusion matrix shown in
Table 11, along with its particular metrics (recall, precision and
accuracy). The model manages to correctly classify all activities,
although some problems with the ‘‘active’’ action are visible.
That is because this activity is very diffuse, and can include both
moments of activity and inactivity while the individual remains
‘‘active’’. Thus, some confusion can be expected from the classifier
with the rest of the activities concerning this one. Although there
is still room for improvement, it is considered that the classifier
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Table 10
Combinations of dataset and feature set used.

Dataset Features

Complete Missing gyroscope Primary set Proposed additions

Case 1 X X
Case 2 X X
Case 3 X X
Case 4 X X

Fig. 7. Critical Difference diagram made from all the results obtained with all
the algorithms used.

Table 11
Average confusion matrix for the best combination found.

Ground truth Precision

Inactive Active Walking Driving

Inactive 19,965 230 261 13 97.54%
Active 888 12,980 1,005 373 85.14%
Walking 24 325 6,043 94 93.17%
Driving 50 44 29 5,157 97.67%

Recall 95.40% 95.59% 82.35% 91.49% 92.97%

Table 12
Average confusion matrix for the 20-second window size option of the best case
found.

Ground truth Precision

Inactive Active Walking Driving

Inactive 20,451 328 190 22 97.43%
Active 852 13,089 1,359 493 82.88%
Walking 51 474 6,700 106 91.39%
Driving 58 115 90 5,550 95.48%

Recall 95.51% 93.45% 80.35% 89.94% 91.71%

achieved far exceeds what was expected, with a resulting accu-
racy of 92.97%, a much higher value than that of 74.39% achieved
in other works [19].

That was the highest result among all the combinations of
feature set, window size and dataset. However, after performing a
Tukey test, it was clear that there were no significant differences
among the different window sizes, as it is evident if we take a
look at Fig. 8. Thus, any window size would be feasible to be
selected as the best, depending on the problem in which it would
be used. In this case, it is considered that 20-second windows
would be more than enough to obtain good results, since it would
allow a more suitable classification of the activities to be studied
by being able to separate them into 20-second intervals. The
average confusion matrix for this case would be the one shown
in Table 12. As can be seen, the most fundamental differences lie
in the ‘‘active’’ activity, as noted above. Even so, the results are
statistically similar to those of the best case found with window
sizes of 80 s, so it is considered feasible to select this one option
preferably.

Fig. 8. Results of the Tukey test performed for all window sizes used with
Random Forest, for the complete dataset and proposed feature set (case 2).

4.2. Discussion

The results obtained in this paper manage to advance to a
great extent towards that real-life environment that is so much
sought after. The resulting accuracy of the best model found is
exceedingly superior to the best obtained so far, from 74.39% to
92.97%. Besides, several findings have been made about the given
dataset, as it appears that the size of the sliding window is not as
crucial as first thought. Consequently, the results are quite similar
between all the window sizes used in the vast majority of cases.

On the other hand, it has also been possible to reinforce
the demonstration of the advantages of using the gyroscope as
opposed to not using it in HAR, resulting in a better performance
than when it is not used. However, in an effort to further improve
the final results, it has not been possible to enhance the primary
set of features used in [19]. The additions proposed in this paper
have not been entirely conclusive, since the comparison between
using each set has quite similar performances to each other, with
improvements and worsenings depending on the algorithm and
window size used. While there are clear cases of an upgrade such
as SVM and NB, the same cannot be said of MLP, XGB and even
DT. Perhaps the most robust examples in this sense were KNN
and RF, with pretty slight variations in both cases. Probably the
proposed features are adding noise to some algorithms and hence
are not entirely favourable.

In any case, given the results, it can be concluded that the best
algorithms to use in this matter are the tree-based ones (DT, RF
and XGB), since they have been the ones that have given the best
outcomes with a considerable difference from the rest. Even so,
MLP and KNN deserve special mention, since its results have been
kept only a little below the latter.

Also, on the other hand, it should be noted that there are
still problems in optimally discerning the activity of ‘‘active’’,
unlike the rest, where the percentage of success is very high.
Although this activity is very diffuse and can be easily confused
with cases of ‘‘inactive’’ or ‘‘walking’’ (especially with this one),

12

83



D. Garcia-Gonzalez, D. Rivero, E. Fernandez-Blanco et al. Knowledge-Based Systems 262 (2023) 110260

Fig. 9. Recall and precision values for the ‘‘active’’ and ‘‘walking’’ activities and
every sliding window size used.

it is possible that with a more in-depth study for this case the
final solution will be found. In fact, looking at the confusion
matrices for each of the window sizes of the case indicated in
Table 11, a relevant trend is indeed observed. With smaller win-
dow sizes, this confusion is more pronounced, with more samples
misclassified among these activities. Similarly, with larger sizes,
this confusion is milder. This is shown in Fig. 9. However, as
previously discussed, window size did not end up being a crucial
parameter for the overall performance of the models studied,
although it seems to be a trend to have the highest accuracy peaks
on the 80-second windows. Additionally, as can be seen in that
figure, there is a clear downgrade when the window size reaches
the value of 90. Perhaps using other more influential features for
this activity could make it possible to obtain the optimal model
for this case. Also, the application of other types of algorithms,
such as LSTM and CNN, characteristic of the deep learning aspect,
could improve the performance, as they are giving outstanding
results in HAR in recent years.

5. Conclusions and future work

In this work, a series of experiments were carried out in search
of the improvement of the last model developed in HAR, for a
dataset oriented to the introduction of this problem in a real-
life environment. By using various machine learning algorithms,
different features and much larger sliding windows, the results
were severely improved. In addition, it has been observed that
the preliminary results on the dataset in which gyroscope’s mea-
surements were missing were inconclusive. This sensor finally
proved to improve the final performance in a general way in all
the algorithms used, as in the rest of the works that included it
in their experiments.

Unfortunately, the proposed set of features has not obtained
such good results. The performance of the algorithms with this
set and the primary one is quite similar in most cases, with ups
and downs depending on the algorithm to be used, so its impact
is not entirely conclusive. Perhaps it is necessary to think of other
types of features that could improve the classification of the ‘‘ac-
tive’’ activity, which, although the current models differentiate it
relatively well, is quite improvable. Also, it could be interesting to
make some kind of evaluation and selection of features, applying,
for example, a Principal Component Analysis (PCA), to see which
ones are the most suitable.

Another point worth to be mentioned is the fact that the size
of the windows does not have as much influence on the final

results as was first thought. For that reason, a window of 20 s
could be perfectly chosen (at least in the best case found, for the
Random Forest algorithm), as it would be easier to apply in a real-
life environment. In this way, it could be possible to detect and
classify each activity more finely, as well as making it possible to
get these results in a shorter time since the start of the action.

For the aforementioned reasons, it is considered that the re-
sults can still be upgraded. Perhaps also with the application
of algorithms purely focused on deep learning, such as CNN or
LSTM, which are the two most widely used algorithms in recent
years in HAR and which, apparently, are offering the best results
nowadays. For this purpose, the exploration will continue in
order to improve these results in the future, probably with the
algorithms mentioned above, in search of the optimal model.
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Appendix. Supplementary materials

The complete dataset, as well as the scripts used to preprocess
its data, are available online at http://lbd.udc.es/research/real-
life-HAR-dataset. Similarly, these have also been uploaded to
Mendeley Data [59]. Additionally, the code used to carry out the
experiments in this work is available online at http://gitlab.lbd.
org.es/dgarcia/new-machine-learning-har.
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A B S T R A C T

Nowadays, the field of human activity recognition (HAR) is a remarkably hot topic within
the scientific community. Given the low cost, ease of use and high accuracy of the sensors
from different wearable devices and smartphones, more and more researchers are opting to
do their bit in this area. However, until very recently, all the work carried out in this field
was done in laboratory conditions, with very few similarities with our daily lives. This paper
will focus on this new trend of integrating all the knowledge acquired so far into a real-life
environment. Thus, a dataset already published following this philosophy was used. In this way,
this work aims to be able to identify the different actions studied there. In order to perform this
classification, this paper explores new designs and architectures for models inspired by the ones
which have yielded the best results in the literature. More specifically, different configurations
of Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) have been
tested, but on real-life conditions instead of laboratory ones. It is worth mentioning that the
hybrid models formed from these techniques yielded the best results, with a peak accuracy of
94.80% on the dataset used.

1. Introduction

Research in the field of human activity recognition (HAR) has shown stable progress in recent times. With the rise of wearable
devices (mainly bracelets) and, above all, smartphones, it is feasible to think about the possibility of transferring the work carried
out in this area to a large part of the world’s population. To this end, sensor data from these devices are analysed in search of
the classification of actions performed by a particular individual [1–3]. In this way, the applications of the work carried out in
this field are multiple, from healthcare [4–6] to fitness [7,8], as well as more specific cases such as home automation [9]. For all
these reasons, and thanks to the high portability and accuracy of the sensors of these devices, researchers find in HAR an incredibly
tempting research opportunity [10–12].

However, there are some problems that need to be tackled. Firstly, there is the need to handle the temporality of the data,
which is especially difficult when dealing with the large amount of information these devices produce. While it is true that previous
works have made significant advances [13–15], there are still many activities whose relationship with prior data is still unclear. In
addition, most of those works are carried out in a laboratory environment, with a series of pretty specific conditions that are not
entirely feasible to transfer to real life. Although these works are helpful to get an approximate idea of the information collected and
the actions performed, their outstanding results for the cases studied are very relative. One of the main issues is that the orientation
and positioning of the device during the experimentation time can notably affect the final result [16]. Most researchers work with
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a smartphone around the waist [17] or using a wristband or bracelet [18]. Those developments could lead to remarkably reduced
performances if they are applied to other datasets, especially real-life ones. In fact, specifically for the case of smartphones in
everyday life, each person carries and uses them in a different way. That would highly affect the data provided by their sensors, as
the previously mentioned orientation and positioning would vary considerably. Even when using different models of smartphones,
differences in final measurements may occur [19]. Moreover, in addition to the latter, each individual has a series of physical
peculiarities that could also influence the final result, even when using the device in the same way and performing the same
action [20]. In fact, this problem has been studied for years, in order to personalise artificial intelligence models for large numbers
of people [21,22].

For all those reasons, this work sought to help close that gap between all the acquired knowledge in HAR and its application in
real life. To this end, a dataset already formed for this purpose was used [23]. The data was taken from the personal smartphone
sensors of 19 individuals, ensuring that the actions performed were as similar as possible to those in their daily lives. To date,
some work has been done using such a dataset, but using techniques related to traditional machine learning [24,25]. In this way,
a study was carried out on the most suitable configurations for the deep learning algorithms that are yielding the best results in
HAR: Convolutional Neural Networks (CNN) and Long-Short Term Memory models (LSTM) [26,27]. To this end, based on these
techniques, new architectures have been designed to exploit this real-life data. In such a manner, it is hoped to obtain results that,
if not ideal, are close to the optimum that is being sought.

Therefore, the key findings of this paper can be condensed into the following statements:

• An in-depth exploration of the most appropriate configurations for CNN and LSTM networks with real-world data in the HAR
domain, using smartphone sensors.

• A new architecture to exploit HAR data taken from different smartphone sensors in a daily life environment, applying deep
learning algorithms.

• The use of much more straightforward models than those used in previous real-life HAR domain work, without the need to
manually compute its features.

• The improvement of the current results and approaches applying deep learning to a real-life HAR dataset.
The rest of the paper is organised as follows: Section 2 focuses on the evolution of HAR and the most relevant and recent work

in this area, Section 3 describes the deep learning algorithms selected to perform all the related experiments, Section 4 depicts the
preparation of the data and highlights the evaluation and validation techniques used, together with the proposed architectures and
models, Section 5 discusses the main results of the work, and finally, Section 6 contains a series of conclusions and possible lines
of future work.

2. Related work

This section is divided into two distinct parts. Firstly, in Section 2.1, a detailed comparison is made between the main datasets
used by the scientific community and the one used in this paper. Then, in Section 2.2, a series of notable recent works that made
use of those datasets are presented.

2.1. Smartphone datasets

Over the past decade, there have been numerous contributions to human activity recognition (HAR), leading to continuous
advancements in the field. These developments have been supported by various datasets used as benchmarks to validate experiments
and expand knowledge in the domain [28]. The data within these datasets originate from distinct wearable devices, such as activity
wristbands, heart rate monitors, and more recently, smartphones. Among the latter, the UCI HAR dataset was the most widely
used one by the scientific community [29]. It focused on activities like walking, sitting, and going upstairs, using data from
the accelerometer and gyroscope of a specific smartphone. In addition, 30 participants were involved in the study, placing the
smartphone on the left side of their waist. Each activity was performed for a few seconds to collect relevant features. Finally, the
output data were sampled at a frequency of 50 Hz, and all the data collection took place in a laboratory setting.

The WISDM dataset [30] is another widely used dataset for human activity recognition, alongside the UCI HAR dataset. The
activities included in this dataset are highly similar to those found in the UCI HAR one. Additionally, both datasets involve studying
activities performed for several seconds. However, the main difference lies in the placement of the smartphone. In the case of the
WISDM dataset, the smartphone was positioned in one of the front trouser pockets of each of the 29 participants who took part in
the study. Unlike the UCI HAR dataset, the WISDM one only uses accelerometer data, sampling them at a fixed frequency of 20 Hz.
As with the previous dataset, the data collection process for the WISDM dataset was also carried out under controlled laboratory
conditions.

Similarly, the HHAR dataset [19] gathered data from eight smartphones and four smartwatches. The smartphones included four
different models, while the smartwatches consisted of two distinct types. To collect the data, each participant had the smartphones
securely placed in a pouch attached to their waist, and two smartwatches were worn on each wrist. The study involved only nine
individuals as participants. As for the activities performed in this dataset, these were basic examples like walking, cycling, or running,
but they were recorded over a more extended period of five minutes. Unlike the previous datasets mentioned, the data collection
for HHAR did not take place in a laboratory setting. Instead, participants were instructed to follow specific routes within designated
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Table 1
Comparison of the main HAR datasets based on smartphone sensor data, along with the real-life one used in this paper.
Dataset Sensor(s) used Activities

recording time
Number of
subjects

Sampling
frequency

Device(s) used Device
placement

Environment

UCI HAR Acc. and gyro. Few seconds 30 50 Hz 1 smartphone Left belt Controlled
WISDM Acc. Few seconds 29 20 Hz 1 smartphone Front pants

leg pocket
Controlled

HHAR Acc. and gyro. 5 min 9 Variable 8 smartphones and
4 smartwatches

Waist and
wrist

Semi-controlled

UniMiB SHAR Acc. Fixed flow
duration

30 50 Hz 1 smartphone Trouser front
pockets

Controlled

Real-life dataset Acc., gyro.,
magn. and GPS

Free 19 Variable 19 personal
smartphones

Free Free

timeframes. Regarding the sampling rate, efforts were made to use the maximum value supported by Android. However, there was
finally some variability in the sampling rates recorded during the study.

Another noteworthy dataset is the UniMiB SHAR one [31]. For data collection, a specific smartphone was positioned in the front
trouser pocket of each of the 30 participants. Unlike some previous datasets, only accelerometer data were used, sampled at a fixed
frequency of 50 Hz. Regarding the activities studied, these encompassed walking, standing up, running, jumping, and various others.
The entire data collection process was conducted under controlled laboratory conditions, with researchers guiding the participants
through specific activities.

As can be seen, the mentioned datasets exhibit significant differences among them. However, they all share a limitation in their
data-gathering conditions. Specifically, the measuring devices were fixed to specific body parts, and the activities were performed
in predetermined ways for set durations. To address this limitation, the current paper employed a real-life dataset in which the
participants carried out the specified activities in a more natural and unrestricted way. In addition, in this dataset, data were
collected from participants’ personal smartphones, allowing them to carry out and measure the actions as they do regularly, with
the smartphone positioned in their preferred habitual manner. In this way, Table 1 presents a summary of key information from
each discussed dataset, comparing them to the one used in this work. Note that the abbreviations used in the table correspond to
accelerometer (acc.), gyroscope (gyro.), and magnetometer (magn.). There, several distinctions are evident with the real-life dataset.
Firstly, including the GPS sensor in data collection is a significant difference. This sensor’s ability to detect speed and orientation
could be beneficial for classifying the activities under study. Moreover, another noteworthy contrast is the variability in the sensors’
sampling frequencies, which deviates from most datasets found in the literature. Unlike other measurement devices that can be
set to a specific frequency value, smartphones lack this consistency throughout the data collection process, even if the highest
value supported by the smartphone’s operating system is set. This variability may not pose a problem for short and controlled
data collection, as corrupted data will be minimal. However, for longer durations, such as in the chosen dataset, that needs to be
considered, and appropriate data processing will be required. Furthermore, as for the number of participants and the use of different
device models, higher variability would be preferred to ensure a more reliable representation of real-world contexts. In this way,
the main difference lies in how the data were collected in a free environment with no specific conditions, making the proposals
using other datasets less applicable to real-life scenarios.

2.2. Latest approaches

The introduction of wearable devices and widespread smartphone usage has significantly boosted the development of HAR. Since
then, there has been a continuous rise in the diversity, improvement, and optimisation of artificial intelligence models that use this
type of data. Following a chronological order, in the first years of the last decade, many works focused mainly on the exploitation
of Support Vector Machines (SVM), as they seemed to be the models that yielded the best results for this subject [32,33]. Later,
other possibilities began to be explored, as in the case of [34]. There, a comparison was carried out between other machine learning
algorithms that also get good results in more fields, such as K-Nearest Neighbours (KNN), Multi-layer Perceptron (MLP) or the ones
based on Bayes’ Theorem. However, SVM still presented the best results to that date. In fact, later, another paper was also published
in which an analysis of the principal machine learning algorithms used globally was also carried out, together with SVM [35].
Once again, SVM proved to be the most suitable for HAR. However, they also carried out a study on the influence of smartphone
orientations on the returned data. The results showed that variations in this respect could significantly affect the final results. In
the same way, work was also carried out on selecting the most convenient features to train these models, such as [36,37]. The
results shown by these works proved that frequency-based parameters seemed to be the most suitable for HAR, having the highest
percentage of correctness in the trained classifiers.

More recently, other works have been carried out in which deep learning approaches have been applied. Some of the most
relevant ones are those of [38,39], for proving the high-grade results obtained by applying deep learning techniques, specifically
Convolutional Neural Networks (CNN), on data from the HAR domain. In this way, a detailed comparison between different machine
learning algorithms, combined with some custom features, is subsequently presented in [14]. The algorithms used were: CNN,
Random Forest (RF) and KNN. Out of all the methods tested, CNN yielded significantly superior results. As a result, they also
conducted an extensive analysis to determine the optimal architectures and configurations for this particular case. Since then,
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although more traditional algorithms have continued to be used, deep learning became the most chosen option by researchers to
solve this problem. In addition to the excellent results, the fact that no manual feature selection is required for some deep learning
algorithms, like CNN, makes them even more attractive. Along the same lines, in addition to CNNs, models based on the Long
Short-Term Memory (LSTM) technique began to be used to a large extent. That is due to the usual treatment of the temporality of
the data in HAR. LSTMs are known for being models capable of including information from the past in their training, which is very
positive for optimally classifying the data. Nonetheless, a drawback of these methods is their requirement for a substantial amount
of data and time to attain appropriate training, which makes them quite different from CNNs. A few instances that demonstrate the
application of this technique are represented in [26,40–42], where excellent results were obtained. In fact, in [41,42], a variant of
this technique is presented, capable of achieving even better results than in its original form. This variant is called Bidirectional
LSTM (Bi-LSTM) and can store data both from the past and the future (assuming that LSTMs usually store it unidirectionally from the
past), adding it to the learning during the training of the models that implement it. Compared to its original form, the disadvantage
is its higher complexity, as it has to study two time directions instead of one, leading to even longer training times. Given that,
work in HAR is currently focused on the use of CNN and LSTM and their variants, in search of the most suitable model, as both
techniques yield outstanding results in this field [15,43–45]. In any case, while both techniques are suitable for brief activities such
as sitting or hand raising, it seems that, in general, there is a slight bias towards CNN over LSTM, given its speed and ease of
implementation [46].

On the other hand, not all the research carried out was based primarily on the accelerometer and gyroscope sensors. Examples
such as [47,48] prove the potential of other sensors, such as the magnetometer or GPS, with excellent results when added to their
studies. More specifically, these sensors seem to work well with diverse types of long-themed activities, such as walking or running,
as shown in these studies.

However, although all those works served to expand the knowledge in HAR, their advances would not be sufficient to be
transferred to an application in everyday life. They have obtained their data in very controlled environments, with pretty specific
instructions, so it is not feasible to expect the same good results if we transfer the proposed models to real life. While there are some
works such as [49,50] that have tackled this problem, there is still a long way to go. In these cases, they achieved good results by
transforming the smartphone’s coordinate system into the Earth’s one. Anyhow, their performance drops when changing the device’s
orientation device. In addition, they neither take into account the possible different placements of the smartphone, resulting in the
same problems as in the other works.

Fortunately, very recent works have been published that seek to fill that gap between the laboratory models and their real-
life applications [23,25]. Specifically, in [23], a dataset was published expressly focused on solving this problem, which will be
used in this paper. In [25], the same dataset was also used, with an in-depth study of different machine learning algorithms and
configurations, with a particularly significant improvement in the initial results. Other recent work using the same dataset, such
as [24], is also worth mentioning, with a graph-theory approach based on Random Forest. However, those works still fall in manual
feature engineering, oppositely to deep learning which pursues the automation of this part. Given the latest trends and advances
made in HAR, algorithms such as CNN or LSTM should result in an optimisation of the final performance. In fact, there is already
a paper using such algorithms on that dataset [51], but they do not mention how the data were preprocessed to feed the proposed
models. Likewise, they also do not match the percentage of data per class they present in comparison with the original dataset. The
class that should have the highest number of samples is presented as one of the classes with the fewest. Finally, they only use the
accelerometer from the four original sensors. For all these reasons, it is impossible to reproduce their experiments as the specific
conditions under which they were carried out are unknown. Hence, it is not possible to compare it with the present paper. Anyhow,
it is considered that their approaches can be vastly improved, following a much more suitable methodology for such a dataset.
Therefore, this paper aims to get the best model for the given dataset, in a quest to move towards that highly pursued real-life ideal.

3. Deep learning

Within the field of human activity recognition, the artificial intelligence algorithms used are very diverse. However, inside the
deep learning area, two models stand out above the rest: Convolutional Neural Networks (CNN) and Long Short-Term Memory
(LSTM). Therefore, these two were used to compound the proposed models of this work. All their implementation was carried out
entirely in Python, using the Tensorflow and Keras libraries [52,53]. Additionally, for the cases that implement LSTM, the cuDNN
library [54] was used to take advantage of the speed of the GPUs available to carry out the experiments of this work.

3.1. Convolutional Neural Network

Convolutional Neural Networks (CNN) [55,56] are one of the most widely used models nowadays. Since the gradient modification
carried out in [57], they have become a state-of-the-art model to extract information in almost any area of knowledge. These
networks consist of a series of layers formed by a set of neurons or filters that receive different pieces of information as input. In
this way, each filter is fed with different data from a sliding window or kernel over the initial signal or image. Unlike traditional
neural networks, the weights of each of these filters are the same [58]. Therefore, the output (𝑋(𝑙)) is the convolution of the input
features (𝑋(𝑙−1)) with a set of learnable filters (𝑊 (𝑙)), to which biases (𝑏(𝑙)) are added. Finally, an activation function (𝑔(𝑙)) is applied.
The most commonly used one in HAR research (and the one selected for this paper) is the Rectified Linear Unit (ReLU), which returns
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Fig. 1. Comparison of a traditional convolution and its equivalent Depth-wise Separable convolution.

0 when it receives a negative value or the value itself if it is positive. In such a way, the whole process results in the equation below
(note that here the symbol ‘‘×’’ reflects a convolution):

𝑋(𝑙) = 𝑔𝑙(𝑋(𝑙−1) ×𝑊 (𝑙) + 𝑏(𝑙)) (1)

That scheme can be repeated several times, where each layer will extract more features from the information already acquired in
previous layers.

Moreover, for this paper, a MaxPooling layer was added after each convolutional layer. Such layers are used to down-sample
the spatial dimensions of the input data, retaining the most relevant features. To do that, they divide the input data into a set of
non-overlapping rectangular regions, outputting the maximum value of each one. In this case, these regions were implemented with
a size of 2, as seen in many other works in HAR [59,60]. That makes the resulting models more robust to possible changes or
distortions in the data and reduces the computational time required to train them [61].

Once the features have been extracted from the input matrix and transferred through each layer, they are fed into a fully
connected perceptron (Dense layer). As for the final prediction and the probability vector 𝑝𝑡 = [𝑝𝑡1 , 𝑝𝑡2 , . . . , 𝑝𝑡𝑘] ∈ R𝑘, the softmax
function was used, which converts the input values into a probability distribution, with values between 0 and 1. These input values
would be the output values of the previously mentioned perceptron (z), giving rise to the following operation:

𝑝𝑡𝑖 =
𝑒𝑧𝑖∑𝑘
𝑗=1 𝑒

𝑧𝑗
(2)

Then, the results obtained would be returned directly, selecting the label with the highest probability after the softmax.
However, for this paper, it was opted to use the Depth-wise Separable Convolutional Neural Networks (DS-CNN) variant [62].

The choice of this variant is mainly due to its higher speed and efficiency compared to its original form. That is particularly appealing
considering the large number of patterns to be used in this work. Moreover, it is starting to be applied in the most recent HAR studies,
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Fig. 2. Example of a LSTM unit, as shown in [40] (weight matrices and bias not displayed).

with excellent results [63]. Nevertheless, this modification is known for drastically reducing the requirements by significantly cutting
down the number of necessary parameters [64]. To do that, the kernel is applied separately on each of the available channels of
the input signal, rather than on all of them at once. This convolution would work the same way as the traditional one but using
fewer features in each case. Then, the information obtained for each channel is combined through another convolution, projecting
the resulting data onto a new feature map. The difference here is that the latter is carried out as a point-wise convolution (i.e. 1 × 1
convolution). As shown in Fig. 1, this ensues in fewer operations by integrating the data from the different channels. In this way,
the computations are done with much less data and an equivalent outcome to traditional CNNs.

3.2. Long Short-Term Memory

Unlike their precursor, the Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks [65] are a type of
system capable of selectively remembering or forgetting data. To this end, they perform a series of slight modifications to the data
they use, based on so-called cell states. For ease of understanding, an example of an LSTM unit is shown in Fig. 2. As can be seen,
the typical LSTM network consists of a series of memory blocks called cells, between which two different states are transferred: the
cell state (c) and the hidden state (h). In order for these blocks to be able to remember data, they implement a structure consisting
of three different gates, as detailed below:

1. Forget Gate (the red one in Fig. 2). It removes all information that is no longer relevant for learning. To do that, the input
data of the current time (𝑥𝑡) and the hidden state of the previous cell (ℎ𝑡−1) are multiplied by their correspondent weight
matrix (W ). Also, a bias (b) is added to the operation to get a better fit of the data. That constructs a regulatory filter, which
is represented by the resulting sigmoidal function 𝜎 that follows:

𝑓𝑡 = 𝜎
(
𝑊𝑥𝑓 × 𝑥𝑡 +𝑊ℎ𝑓 × ℎ𝑡−1 + 𝑏𝑓

)
(3)

That would result in a value between 0 and 1. When multiplied by the cell state, it decides whether that information should
be continued or not.

2. Input Gate (the green one in Fig. 2). It is responsible for adding relevant information to the model and filtering out any that
may be redundant. To this end, another sigmoidal function is constructed, multiplied by a hyperbolic tangent one (tanh) that
outputs the data between −1 and 1. In this way, the tanh function decides which data can be added later to the model, using
a sum operation with the information of the forget gate. These functions are represented as follows:

𝑖𝑡 = 𝜎
(
𝑊𝑥𝑖 × 𝑥𝑡 +𝑊ℎ𝑖 × ℎ𝑡−1 + 𝑏𝑖

)
(4)

𝑐′𝑡 = 𝑡𝑎𝑛ℎ
(
𝑊ℎ𝑐 × ℎ𝑡−1 +𝑊𝑥𝑐 × 𝑥𝑡 + 𝑏𝑐

)
(5)

3. Output Gate (the blue one in Fig. 2). This gate decides which outcome to keep, regarding that not all information flowing
through the cell state may be adequate. In much the same way as before, sigmoidal and hyperbolic tangent functions are
multiplied to filter these data. These functions are shown below:

𝑜𝑡 = 𝜎
(
𝑊𝑥𝑜 × 𝑥𝑡 +𝑊ℎ𝑜 × ℎ𝑡−1 + 𝑏𝑜

)
(6)

𝑐′′𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡) (7)
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Fig. 3. Example of a Bi-LSTM network.

In this way, new cell and hidden states are obtained. Then, they are transferred to the next unit, repeating the process discussed
above. These states are calculated as follows:

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐′𝑡 (8)

ℎ𝑡 = 𝑜𝑡 × 𝑐′′𝑡 (9)

As for the prediction and the probability vector 𝑝𝑡 = [𝑝𝑡1 , 𝑝𝑡2 , . . . , 𝑝𝑡𝑘] ∈ R𝑘, these are calculated from the resulting hidden state
(ℎ𝑡). This forms a softmax function (s), already commented in 3.1, which results in the following equation:

𝑝𝑡 = 𝑠(𝑊ℎ𝑘 × ℎ𝑡 + 𝑏𝑘) (10)

Finally, the class label 𝑘𝑡 is assigned to the one with the highest value in the vector of probabilities.
In the present work, in addition to traditional LSTMs, their bidirectional variant (Bi-LSTMs) was also used. This modification was

formerly presented for the predecessor RNNs [66], but it can be used in the same way in a multitude of networks. The difference
that characterises this variant is that it makes networks capable of storing data in both directions, usually by adding the future
case (assuming that LSTMs usually store data unidirectionally from the past). This peculiarity, coupled with the fact that they are
recently being used in the field with high-quality results, makes them a pretty attractive option for this work. In order to carry out
this modification, two different LSTM models are trained, one that explores the input data (x) backwards and one that does the
same but forwards, as shown in the example Bi-LSTM network in Fig. 3. During each model training, in each time step, a merging
stage (f ) is performed to mix the outputs obtained. That step can be carried out in different ways, but the most common and the one
that was implemented in this work will be that of concatenation. In such a way, the output (y) of the first model is concatenated
with the second model’s. That ensures the latter can allow for both signal directions in the following time steps.

3.2.1. Hybrid models
A hybrid model refers to a model that combines different types of machine learning or deep learning algorithms. One of the most

prominent examples in the HAR field is the combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory
(LSTM) models. That is due to the peculiarities of each of them. On the one hand, CNNs try to reflect the spatial features of the
data introduced into them. On the other hand, LSTM models look for these elements in the temporal section of the data that feeds
them. Therefore, if the aim is to classify data with different signal distributions and time intervals, these algorithms combined could
significantly improve performance.

Thus, in this work, those algorithms were combined using the variants discussed in the previous sections: Depth-wise Separable
Convolutional Neural Networks (DS-CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM) models. That led to the following
hybrid models: (DS-CNN)-LSTM and (DS-CNN)-(Bi-LSTM). Hence, the spatial features extracted by the CNNs can be further exploited
by the LSTMs, merging them with the temporal characteristics that can be derived by the latter. That should result in a substantial
improvement in the final performance, although the corresponding execution times also increase with higher model complexity.

The way these models are assembled differs slightly from their individual cases. For this paper, the DS-CNN layers were
always applied first, before the LSTM-based ones, to properly exploit the features as discussed in the previous paragraph. Thus, in
hybrid models with more than one layer, a (DS-CNN)-(DS-CNN)-LSTM-LSTM style structure will be followed, without interleaving
independent models. With this architecture, the outputs of the last MaxPool performed in the DS-CNNs will be the inputs of the
LSTM-based models. Similarly, the outputs of the uttermost LSTM will be the outputs of the full hybrid model.
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4. Methodology

This section explains in detail all the techniques and resources employed in this work. Firstly, Section 4.1 discusses how the data
was processed and prepared for input into the subsequent artificial intelligence models. Then, Section 4.2 presents the different
evaluation metrics used in this work. After that, Section 4.3 outlines various techniques to validate and improve the generalisation
of the resulting models. Finally, Section 4.4 introduces the proposed models’ architecture and configurations.

4.1. Data preparation

As previously mentioned, the dataset presented in [23] was used to carry out this work. Here, it is also worth noting that
the data collection aimed to include individuals with diverse characteristics, encompassing physical diversity, smartphone usage
patterns, and device models. Consequently, the study involved 19 participants, aged approximately 25 to 50 years, to ensure a wide
range of behavioural patterns contributing to the development of future models. However, gender diversity is limited, with only two
women among the participants. Nevertheless, participants’ physical characteristics, habits, and preferences regarding smartphone use
and positioning display considerable variation. Hence, while there is potential for improvement in variability, significant diversity
remains present. As for the sensors used, there were four: accelerometer, gyroscope, magnetometer and GPS. Nonetheless, what
makes the dataset most remarkable is that the individuals who took part in the data gathering were given almost total freedom,
only having to use a custom Android app to start or stop the concerned activity. These activities were the following, as discussed
in that work:

• Inactive: not carrying the smartphone on you at all.
• Active: any activity with movement, but without moving to a specific point in time. That would include activities such as:
giving a lecture, cleaning the house or being at a concert.

• Walking: any trip made on foot, whether it is a regular walk or a jog.
• Driving: all journeys made via motorised transportation, without requiring the traveller to be the driver.
Concerning data preprocessing, almost the same dynamics as in the original work were followed, carrying out the following

operations:

• Every outlier found in the GPS data was removed. That is the measurements that surpassed 0.2 decimal degrees on latitude
and longitude increments between observations or 500 m in the case of altitude. Given its sampling rate, these measures seem
unreal to accomplish for any living being.

• The first and last five seconds of each session were eliminated to avoid confusion during the training of the deep learning
models. These time intervals correspond to the stages in which individuals picked up or put away the smartphone at the start
or end of the action. Therefore, they were not relevant to the activity in question. Note that each session corresponds to an
independent data gathering, from the moment when an individual begins an action until they finish it.

• The GPS data are largely sparse in each session, mainly because of the long waiting time between observations (>10 s). In
the original paper, if there is more than one second between samples, the first one is replicated second by second, with a
different timestamp, until this time difference does not prevail, in both directions. However, in the present work, since the
sliding windows will move 10 s at a time, such replication was done every ten seconds instead of only one. Anyhow, every
session without any GPS observations was discarded.

• Any session with substantial time gaps without observations (>5 s) was considered corrupt and, therefore, was ignored. Note
that this does not include GPS data.

To prove the importance of this preprocessing, an example of how the different sensors behave in each of the specified activities
can be seen in Fig. 4. Those examples correspond to the first 15 s of different sessions taken by one specific individual in the study.
The selection of this time interval is due to the fact that it allows each activity and sensor behaviour to be illustrated easily on a
single figure. Note that each subfigure displayed there corresponds to data taken while performing one of the four studied activities:
inactive (a), active (b), walking (c) and driving (d). Also, to represent all the values on the same scale, the values corresponding
to the GPS were divided by 10. Similarly, the values for the magnetometer and accelerometer were also divided by a value of 5
and 2, respectively. In this way, it is possible to easily observe the changes occurring in each sensor, for each specified action. For
the accelerometer, gyroscope and magnetometer, those data are displayed for each of its three axes: Acc_x, Acc_y and Acc_z, Gyro_x,
Gyro_y and Gyro_z and Magn_x, Magn_y and Magn_z, respectively. As can be seen in each subfigure, there are evident irregularities for
the first seconds of each session, which only add noise to their interpretation. Concerning GPS, the increments in latitude, longitude
and altitude from the last observation are displayed (GPS_lat, GPS_long and GPS_alt ), together with speed, bearing and accuracy of the
current measurement (GPS_sp, GPS_bear and GPS_acc). For this particular case, it is possible to see the small number of observations
recorded, compared to the other sensors ones represented, highlighting the need to replicate them. Anyhow, distinct patterns can be
discerned for each sensor, contingent on the executed activity. However, it is worth noting that, although considering those evident
differences, this may not be the case with other types of actions. After all, although four activities are being studied, all of them
encompass a variety of diverse actions, except for the ‘‘inactive’’ activity. For instance, washing dishes or teaching a class could
exhibit significantly different signals despite both falling under the ‘‘active’’ activity category. Similarly, the same could apply to
‘‘walking’’ and ‘‘driving’’ activities. In the former case, differences might arise within the same activity if the session involves going
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Fig. 4. Raw (scaled) data captured by a single individual’s smartphone sensors, within the first 15 s of various example sessions, for each designated activity,
being: (a) Inactive activity. (b) Active activity. (c) Walking activity. (d) Driving activity.

Table 2
Sensor’s average sampling frequency and their respective standard deviation values for each activity measured
(in Hz), after data preprocessing.

Activity

Inactive Active Walking Driving

Accelerometer 9.51
±13.92

32.30
±23.49

28.29
±24.29

37.04
±20.94

Gyroscope 4.67
±0.72

4.45
±1.45

6.34
±12.13

4.70
±2.62

Magnetometer 7.66
±11.28

8.23
±12.38

6.41
±8.66

7.00
±9.94

GPS 0.01
±0.09

0.03
±0.16

0.07
±0.26

0.13
±0.34

for a walk or jogging. As for the latter, substantial differences could appear depending on whether the individual is driving their
own car or taking public transportation. In this way, although it is believed that these trends could also be present in other data
sessions, they should be approached with a measure of caution.

Following prior data preprocessing, it was decided to apply 30, 60 and 90-s sliding windows, with an overlap of 20, 50 and 80 s,
respectively (moving the window 10 s at a time). The selection of these time intervals and no others is due to the performances
observed in other works using the same dataset, such as [25]. It is considered that, with this selection, it is possible to see the general
behaviour of the proposed models to see if there is any trend in the results towards larger or smaller window sizes. Furthermore,
it can be considered a reasonable amount of time given the long-themed nature of the activities included in this dataset, without
being too broad or limited. In fact, if it were, it would not be possible to separate and identify the actions correctly, and there could
be periods of inactivity in an activity that is supposed to be entirely associated with ‘‘walking’’, for example, by going for a random
walk and stopping at a traffic light.
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Table 3
Number of available patterns and their distribution among the above-mentioned activities, for an overlap of 10 s
less than each full window size.
Window size Activity

Inactive Active Walking Driving Overall

30 21,152
43%

13,778
28%

7823
16%

6109
13%

48,862

60 20,836
44%

13,487
29%

7204
15%

5716
12%

47,243

90 20,486
44%

13,223
29%

6732
15%

5439
12%

45,880

However, in order to feed the prepared data into the deep learning models, it was necessary to perform another series of
operations. With the considerable differences observed in the frequency of each sensor for each activity studied, it is unattainable to
transfer the data directly to the model. Table 2 shows the values of this frequency for each sensor and activity performed after
preparing the data as detailed above. As can be seen, there are very abrupt cases, especially with the accelerometer, since it
drastically changes its sampling frequency when any movement or vibration is detected. For that reason, for example, the frequency
is much higher for the case of ‘‘walking’’ compared to ‘‘inactive’’. Likewise, there is a substantial change in the gyroscope’s frequency
for the ‘‘walking’’ activity, compared to the rest. Anyhow, the differences are slighter than with the accelerometer, as it focuses on
changes in the smartphone’s orientation and not on any movement or vibration that may exist. As for the magnetometer and GPS,
their variations are more arbitrary, although there is a tendency to get more GPS measurements as the travelling speed increases.
In addition, each smartphone may have slight differences for the same observation [19], which may also affect this sampling rate.
In fact, some of these differences were thought to be mainly due to the behaviour of some sensors in moments of high or low
movement [23].

Nonetheless, upon further exploration, those changes seem to be also somewhat arbitrary. Indeed, a peculiar behaviour was
observed for the accelerometer, gyroscope and magnetometer. The data provided by these sensors are generally given either every
20 ms or every 200 ms. In the few cases in which this is not the case, it is by a slight difference, with a frequency closer to 10 ms,
or approximately 180 ms, depending on the case. Moreover, these differences do not seem to correspond to any specific individual
or activity, as they may be noted even during the same data collection session from a specific one. Therefore, the hypothesis is,
apart from the movements and vibrations commented on before, that there could be some settings on the individuals’ smartphones
affecting these sampling rates. For example, the trigger of automatic battery saving when reaching a certain threshold, even if all
permissions were activated for the data collection Android app used for such work.

For all those reasons, it was necessary to transform the data so that each sensor had the same sampling rate across all associated
observations. For that purpose, one possibility could be to apply linear interpolations, as they were the most commonly used
operation in the field when the context required it [15,67,68]. Only in [19] was some exploration with other more complex
interpolations like the quadratic or cubic ones, but without an in-depth investigation. Regarding the values of this sampling rate, no
clear consensus has been found in the scientific community for smartphone sensors. Some researchers say that around 2–3 Hz is the
most appropriate [69]. Others prefer to set it between 0–15 Hz [11], or even up to 50 Hz in some situations [70]. Anyhow, they all
were studies carried out in controlled laboratory environments and without handling sensors with frequencies as different as GPS’s.
Therefore, given the distinct and scarce approaches in the HAR literature, an experimental solution was chosen. The present work
deals with a singular case in which sampling rates stabilise around a value every 20 ms or 200 ms (50 Hz and 5 Hz, respectively).
Given that, it was considered that the most appropriate approach would be to fix this frequency at 5 Hz, always selecting the closest
real value to each time instant, every 200 ms. In this way, the observations to be introduced later in the proposed models would be
completely real, without the modification they could suffer when going through a traditional interpolation. In addition, the temporal
error that could be accumulated for cases that do not strictly follow these dynamics would be small, given the little and unusual
changes that occur at these frequencies. Thus, when data are given every 20 ms, only those observations that correspond to the
time instants that occur every 200 ms would be selected, ignoring the rest. When the data are given every 200 ms, it would be only
necessary to pick those observations that correspond to each 200 ms advance in time. Although it is true that with this approach a
considerable amount of existing patterns from the original dataset are eliminated, it is considered the most appropriate choice for
the problem to be solved, given the circumstances. Concerning GPS, although it is not particularly affected by that problem, it does
have a very high and irregular frequency, compared to the rest of the sensors used. Hence, following the same idea as before, it was
decided to set the frequency at 0.1 Hz (one value every 10 s). That is possible thanks to the replication carried out before, detailed
at the beginning of this section.

After carrying out all the steps discussed above, the total number of patterns is shown in Table 3 for each proposed window size.
As can be seen, there is a clear imbalance towards the ‘‘inactive’’ activity, probably due to the ease of collecting this type of data
compared to the rest. Even so, it is considered that the overall number of patterns in each class is sufficient to perform a satisfactory
classification, as seen already in other works using the same dataset [23,25].

4.2. Evaluation metrics

In order to easily view and evaluate each model classification, the most widely used option by the scientific community is the
confusion matrix. From this matrix, many metrics can be extracted. Since this paper deals with a multi-class case, a one-versus-all
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strategy was followed to reduce them to a binary type. Thus, each class is analysed separately comparing it with the rest together.
From there, some of the most elementary metrics that can be extracted are the number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN), for a given class. In addition, from these values, other representative metrics can also
be calculated, such as precision, recall, accuracy, and 𝐹1-score [71]. Among those metrics, the most commonly used one to measure
the performance of a test model is accuracy. For its calculus, the percentage of correctly identified cases out of the total is measured
using the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(11)

However, there are cases where the latter metric can lead to some bias, especially on an imbalanced dataset. For this very reason,
when there is a considerable imbalance in the data, the 𝐹1-score [72] metric is usually also shown. To measure it, precision and
recall are combined in a harmonic mean, with precision being the ratio of the TP to all cases labelled as positive by the model (TP
+ FP), while recall refers to the division of the same TP by the total number of positives in the ground truth (TP + FN). Given that,
its formula would be as follows:

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(12)

For this paper, the results will always be evaluated based on the accuracy metric to be able to compare it properly with the
rest of the works carried out on the same dataset. Anyhow, given the clear imbalance present in the data, the 𝐹1-score will also be
shown for the most representative cases to get a closer look at the actual performance of the models. Since this paper presents a
multi-class problem, an averaging process is necessary to get the overall value of this metric. Given that, the macro strategy, which
returns the mean value obtained by computing the metric for each label individually, was followed.

4.3. Validation techniques

Cross-validation [73] is regarded as one of the most reliable methods for validation. Before data is fed directly into the model, it
undergoes a process of division into training and testing. In such a way, the model will be able to use one subset of the data only
for training and another for testing, the latter a priori unknown to the model. The most prevalent way to carry out this division is
through k-fold cross-validation. This technique consists of partitioning the original dataset into a number k of subsets of equal size. One
of these partitions will form the test set of the model, while the rest will be used for training. Then, the procedure will be reiterated
k times, ensuring that each subset has been designated as a test set once. Finally, after feeding the models with each partition, the
outcomes are averaged, and the pertinent metrics are computed. In such a manner, the random component of splitting the original
set in training and testing only once, which could lead to unreliable results, is largely avoided. For this paper, a modified version
of this approach, known as stratified k-fold cross-validation, was employed. This alternative aims to ensure the same percentages
of class representativeness in all the partitions carried out. Hence, it can mitigate the influences of the present imbalance in the
initial dataset. All things considered, in this work, a stratified 10-fold was applied, splitting the data into training and test, with a
distribution of 90%, and 10% for each subset formed, respectively.

Nonetheless, with that approach, one of the most common issues in any work related to machine learning may arise. That is
the overfitting problem [74,75]. A model is said to be overfitting a dataset when instead of extracting information from patterns,
it mainly memorises them. This problem is even bigger in deep learning because of the increase in the number of weight drives,
which considerably expands the memorising capacity of the network. To alleviate this issue as much as possible, for each training
set, 11.11% of the data included therein has been assigned to a validation set. Thus, the general distribution for each fold would
be 80% training, 10% validation and 10% test. In this way, during training phase, the model’s performance is tested against the
validation set. That yields a loss value that evaluates the classification at that point, based on the sum of the errors obtained for each
sample. The lower the value, the better the classification, a priori. However, this value may reach a point where the improvements
are almost imperceptible, leading the model to a clear case of overfitting. To avoid that, an early-stopping function was applied to
each model [76]. This kind of function seeks to interrupt training when that point is reached, returning the best weights obtained
by the model so far. For this work, training will be interrupted when the model has not improved the last best loss value for 20
iterations (out of a fixed total of 100 iterations). In this way, although it is impossible to guarantee that training does not stop at a
local minimum, the generalisation capacity of the model may be improved.

In addition to the above, a Dropout layer was also set up for each proposed model. This layer dumps part of the outputs, forcing
the model to rely on other connections. In this way, the generalisability of the model increases considerably. This layer was applied
for 50% of the input units and placed just before the final output. Both the quantity and the placement selected for these layers are
those commonly used in the literature [77].

4.4. Proposed approach

As discussed before, the algorithms selected for this work were Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) models, given their outstanding results in the field. Specifically, for the CNN case, Depth-wise Separable
Convolutional Neural Networks (DS-CNN) were used, to speed up the experiments without affecting performance. On the other
hand, in the case of LSTM, its bidirectional variant (Bi-LSTM) was also used, as it was considered that it could provide good results
for the problem to be solved, given its recent applications.
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Table 4
Training hyperparameters.
Hyperparameter Value

Batch size 32
Layers [1, 2]
Neurons (or CNN filters) [16, 32, 64]
Kernel (CNN only) [3, 5, 7]
Padding (CNN only) Same
Activation ReLU
Optimiser ADAM
Loss Cross-entropy
Iterations ≤100
Early stopping 20

Fig. 5. Implementation of each individual algorithm used, for the case of having a number of layers equal to two, being: (a) DS-CNN model. (b) LSTM model.
(c) Bi-LSTM model. (d) (DS-CNN)-LSTM model. (e) (DS-CNN)-(Bi-LSTM) model.

Nonetheless, given the prominent use of those algorithms simultaneously in the literature, it was also decided to do the same
for this paper. In addition to using those algorithms individually, they were also combined, resulting in (DS-CNN)-LSTM and (DS-
CNN)-(Bi-LSTM) hybrid models, as discussed in Section 3.2.1. In this way, it is possible to make a comparison between all proposed
models, observing in detail the advantages and disadvantages of each one.

Concerning the hyperparameters used for each of those models, they are shown in Table 4. The batch size was set to 32. After a
few preliminary explorations with higher values (64, 128, 256, 512 and even 1024), this was the best trade-off between efficiency
and accuracy. Consequently, considering that the changes in classification accuracy were negligible between 32 and the rest, it was
decided to discard them. Regarding the rest of the hyperparameters, note that in the hybrid models, a layer number of one would
correspond to a total of two layers (one per individual network). Likewise, two layers would result in a total of four layers. For
example, when we join a DS-CNN with an LSTM with a layer number of 2, it would look like this: (DS-CNN)-(DS-CNN)-LSTM-LSTM.
That is two layers for DS-CNN and two for LSTM, with the DS-CNN layers always going before the LSTM ones, as said in Section 3.2.1.
Therefore, it was not considered to explore with more layers, as this would remarkably increase the complexity of the models. As
for the neurons, a similar combination as in [59] was used, but without going that further. Concerning kernel size, once again, the
variety used in [59], with fewer options, was the one applied. In addition, the padding of the DS-CNNs was set to ‘‘same’’ to be
able to perform convolutions of the desired size. This parameter allows the algorithm to fill with zeros evenly around the signal,
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Fig. 6. General architecture of the whole model used to carry out the experiments.

allowing the input dimensions to match the output dimensions. As for the activation, optimiser and loss functions, the most widely
used in the literature were the ones applied: Rectified Linear Unit (ReLU), Adaptive Moment Estimation (ADAM) and cross-entropy,
respectively. Finally, a number of 100 iterations was set, with an early stop of 20 if the validation loss did not improve. Thus, the
model gets enough time to recognise the patterns while avoiding overfitting. Any other parameters that might be present were kept
by default.

With respect to the architecture followed to implement those models, you may see the implementation followed for each
algorithm individually in Fig. 5. Note that, in the case represented there, all models are shown with two layers to visualise the
most complex versions of each kind. There, each subfigure shows a different algorithm, from top (input layer) to bottom (output
layer). In the case of DS-CNN (a), each model is formed by a convolutional layer (SeparableConv), followed by a MaxPooling layer,
as seen in the rest of CNN works in HAR. Also, in the end, regardless of the previous number of layers, a Flatten layer is added. That
is to format the resulting feature map to allow for being consumed by subsequent layers. To do that, the input data is converted
into a one-dimensional array. Concerning LSTMs (b), they are formed only by the layer that implements this algorithm, in this
case following cuDNN’s implementation to accelerate its training time. For its bidirectional variant (c), this layer is enclosed by the
wrapper that adds this functionality (Bidirectional()). Finally, for the hybrid models, (DS-CNN)-LSTM (d) and (DS-CNN)-(Bi-LSTM)
(e), the previous cases are combined. In this way, the layers corresponding to DS-CNN are added first, which will subsequently feed
those based on LSTM. As the resulting DS-CNN feature maps can already be consumed directly by LSTM, it is not necessary to add
a Flatten layer for these hybrid cases.

In such wise, the entire final model consists of four different inputs, one for each sensor used in the dataset, as shown in Fig. 6.
In this manner, it is possible to use each sensor’s data, while avoiding dealing with the peculiarities of each one by focusing on
one particular sensor at a time. Thus, the data measured by each sensor is transferred through the CNN and LSTM networks, as
appropriate. As for the model layers represented there, the same one is always applied for each of the four branches. For example,
if a DS-CNN model is used for the accelerometer data, the same is implemented for the rest of the sensors. Note that each of those
networks would correspond to the models shown in Fig. 5. That results in different outputs for each sensor, depending on the
particularities encountered in each case. Then, in order to be able to combine everything in the same model, the outputs of each
of these branches are concatenated in a single layer. After that, to avoid overfitting and increase the generalisation capacity of the
implemented models, a Dropout layer was added, affecting 50% of the input units, as commented in Section 4.3. Finally, a Softmax
layer was set to obtain the desired output with the four activities to be studied.

5. Results and discussion

This section shows all the results obtained from the proposed experiments. On the one hand, Section 5.1 indicates the performance
of each experiment, with its corresponding outcomes. Then, Section 5.2 introduces a series of comments and observations on the
obtained results.

5.1. Results

With the models discussed in Section 4.4, the results shown in Tables 5, 6 and 7 were obtained. There, the values corresponding
to the average accuracy of every possible combination of hyperparameters are represented, with their standard deviation below.
Those hyperparameter combinations correspond to the number of layers (L), the number of neurons in each layer (N) and the kernel
size (K). Moreover, each table corresponds to a specific sliding window size: 30, 60 and 90 s, respectively, as pointed out previously.
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Table 5
Accuracy results obtained detailed for a window size of 30 s.

N = 16 N = 32 N = 64

L = 1 L = 2 L = 1 L = 2 L = 1 L = 2

DS-CNN

K = 3 89.21%
±8.17%

88.02%
±10.37%

87.95%
±9.26%

88.30%
±9.66%

89.10%
±7.06%

89.15%
±8.95%

K = 5 88.64%
±7.80%

88.39%
±9.22%

87.59%
±8.66%

88.68%
±8.95%

88.73%
±7.85%

88.08%
±9.54%

K = 7 88.33%
±8.01%

87.95%
±8.70%

89.23%
±7.36%

88.57%
±9.52%

88.00%
±8.68%

87.50%
±11.53%

LSTM 90.99%
±6.99%

91.07%
±5.88%

93.15%
± 4.52%

91.49%
±5.58%

91.91%
±6.63%

90.06%
±7.36%

Bi-LSTM 91.91%
±4.76%

90.33%
±8.21%

89.46%
±8.72%

90.99%
±6.73%

91.22%
±5.86%

90.09%
±8.85%

DS-CNN-LSTM

K = 3 92.15%
±7.09%

90.47%
±7.71%

91.15%
±7.54%

90.38%
±8.91%

91.85%
±6.34%

91.20%
±7.88%

K = 5 91.58%
±7.22%

90.04%
±8.2%

91.07%
±7.79%

88.96%
±10.05%

91.64%
±6.73%

92.46%
±5.61%

K = 7 91.75%
±5.62%

90.84%
±7.04%

91.76%
±6.21%

91.23%
±6.89%

90.36%
±8.39%

89.05%
±9.43%

DS-CNN-Bi-LSTM

K = 3 91.88%
±7.24%

90.40%
±7.29%

91.64%
±7.10%

90.47%
±8.26%

91.49%
±7.26%

90.64%
±8.70%

K = 5 92.56%
±5.84%

90.31%
±9.21%

90.92%
±7.20%

89.87%
±8.20%

91.77%
±6.94%

91.24%
±8.48%

K = 7 90.63%
±8.16%

91.63%
±6.48%

90.99%
±7.47%

90.45%
±7.35%

91.32%
±7.42%

90.51%
±8.02%

Table 6
Accuracy results obtained detailed for a window size of 60 s.

N = 16 N = 32 N = 64

L = 1 L = 2 L = 1 L = 2 L = 1 L = 2

DS-CNN

K = 3 89.64%
±7.67%

89.38%
±9.00%

88.35%
±8.74%

89.86%
±9.51%

89.13%
±8.00%

88.74%
±9.39%

K = 5 89.18%
±7.99%

89.62%
±8.72%

89.38%
±8.00%

88.94%
±9.57%

88.31%
±8.88%

89.98%
±8.74%

K = 7 89.64%
±8.25%

89.10%
±10.22%

88.31%
±8.77%

89.80%
±8.56%

88.29%
±8.38%

89.38%
±9.08%

LSTM 91.14%
±8.36%

92.89%
±5.07%

92.15%
±7.26%

93.11%
±6.50%

92.39%
±7.21%

92.99%
±5.04%

Bi-LSTM 91.70%
±8.02%

92.02%
±7.22%

92.75%
±6.58%

92.17%
±7.07%

92.61%
±6.04%

91.89%
±7.30%

DS-CNN-LSTM

K = 3 92.64%
±6.42%

92.71%
±6.87%

93.14%
±6.71%

92.83%
±6.04%

93.09%
±6.14%

92.89%
±5.97%

K = 5 93.04%
±5.65%

91.55%
±8.37%

93.01%
±7.30%

91.57%
±9.27%

92.55%
±6.47%

91.72%
±7.66%

K = 7 93.49%
± 5.34%

92.09%
±7.71%

93.24%
±6.39%

92.33%
±7.67%

92.42%
±9.11%

92.54%
±7.08%

DS-CNN-Bi-LSTM

K = 3 92.63%
±7.25%

91.68%
±7.50%

92.81%
±6.95%

91.66%
±8.16%

91.64%
±9.05%

90.80%
±8.98%

K = 5 92.37%
±7.17%

92.32%
±7.08%

92.69%
±5.72%

91.91%
±6.57%

92.38%
±7.67%

91.37%
±8.09%

K = 7 92.93%
±7.11%

92.48%
±6.57%

92.69%
±7.59%

90.95%
±8.73%

91.89%
±7.18%

90.39%
±8.99%

As can be seen, the accuracies obtained, in general, are higher than those obtained in other works on the same dataset [23,25].
Given the results, the use of deep learning algorithms can be considered one of the best options to exploit such data, especially
those based on CNN and LSTM, as proved in recent works in the literature. As for the performance of the models depending on
the particular algorithm selected and a specific set of hyperparameters, there do not seem to be very noticeable differences. Their
results are objectively constant for each algorithm in the three tables. However, some contrasts are worth noting. Firstly, there are
some differences if we look at the values obtained by each algorithm independently. In general, the best results are obtained by
the hybrid algorithms mentioned above, closely followed by those based on LSTM, but worsening slightly when only DS-CNN is
used. Considering these results, for the dataset used, it appears that the LSTM-based algorithms perform better than the CNN-based
algorithms. That seems to indicate that the time component of the signals is more important than the features themselves. To validate
these differences, a Tukey test was performed between each group of results, for each algorithm and window size indicated. The
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Table 7
Accuracy results obtained detailed for a window size of 90 s.

N = 16 N = 32 N = 64

L = 1 L = 2 L = 1 L = 2 L = 1 L = 2

DS-CNN

K = 3 90.27%
±7.74%

90.32%
±8.54%

89.73%
±7.99%

90.31%
±8.48%

89.76%
±8.09%

89.33%
±9.88%

K = 5 89.54%
±7.99%

89.51%
±10.5%

89.65%
±8.54%

89.27%
±9.47%

89.28%
±10.09%

89.78%
±9.56%

K = 7 90.70%
±7.29%

89.25%
±9.40%

88.43%
±10.38%

89.50%
±9.38%

89.89%
±8.17%

89.17%
±8.86%

LSTM 91.88%
±7.14%

91.92%
±6.81%

91.69%
±8.82%

93.52%
±5.59%

92.15%
±7.07%

91.28%
±8.55%

Bi-LSTM 93.09%
±5.10%

92.35%
±6.62%

91.60%
±8.25%

92.12%
±8.23%

91.82%
±8.07%

92.47%
±8.67%

DS-CNN-LSTM

K = 3 93.20%
±5.31%

92.65%
±8.44%

93.60%
±5.96%

92.68%
±7.84%

93.34%
±5.67%

92.77%
±8.30%

K = 5 93.57%
±5.14%

92.86%
±8.10%

94.78%
±4.64%

92.62%
±9.16%

92.93%
±6.91%

91.48%
±9.28%

K = 7 93.62%
±7.10%

91.56%
±10.29%

94.19%
±5.72%

92.72%
±7.80%

94.80%
±4.09%

90.88%
±9.79%

DS-CNN- Bi-LSTM

K = 3 93.68%
±6.63%

93.37%
±7.39%

92.72%
±7.36%

91.26%
±8.81%

93.98%
±5.31%

90.73%
±9.33%

K = 5 92.93%
±7.07%

93.10%
±6.59%

92.05%
±8.90%

93.32%
±7.50%

92.80%
±7.55%

93.04%
±6.71%

K = 7 92.80%
±8.09%

94.16%
±5.06%

93.51%
±6.28%

93.37%
±7.68%

93.26%
±6.67%

92.58%
±7.99%

Table 8
Overall accuracy results obtained for each window size.

Window size

30 60 90

DS-CNN 88.41%
±8.93%

89.17%
±8.79%

89.65%
±8.97%

LSTM 91.44%
±6.31%

92.44%
±6.72%

92.07%
±7.44%

Bi-LSTM 90.67%
±7.39%

92.19%
±7.07%

92.24%
±7.61%

(DS-CNN)-LSTM 91.00%
±7.63%

92.60%
±7.12%

93.01%
± 7.49%

(DS-CNN)-(Bi-LSTM) 91.04%
±7.66%

91.98%
±7.66%

92.93%
±7.40%

outcomes of these tests are shown in Fig. 7. Note that the widths of the confidence intervals are plotted at 95%, calculated from
Tukey’s Q value, by default. As previously mentioned, every table showed significant differences in the performance of the DS-CNN
algorithm and any of the other four models. However, between the hybrid models and those based solely on LSTM, there appears
to be statistical equivalence. Similarly, for the groups of results concerning each individual hyperparameter, after applying another
Tukey test, no statistical differences were observed between them.

Moreover, it is also possible to observe how those values change notably depending on the selected window size. Table 8 shows
the mean values of the accuracy obtained for each selected algorithm and window size, in a general way, showing in small, below
each value, its standard deviation. Likewise, Table 9 shows the mean 𝐹1-score values. As can be seen, these values are higher when
the window size is larger (60 and 90 s) compared to those corresponding to a window size of 30 s. In the same way as before,
another Tukey test was performed for the selected window sizes (30 and 90, 30 and 60 and 60 and 90), with their corresponding
detailed performances from the tables above. The results of this test can be seen in Fig. 8. Only in the case of 60 and 90 s was the
𝑝-value greater than 0.1, so no statistically significant difference was found between both sets. However, for the 30-s case, there
is a statistical difference with either of the other two values. That reaffirms the hypothesis already shown in previous works such
as [25], where larger window sizes obtained superior results. In fact, if we go at the very nature of the activities studied in the
dataset used, they have a long-themed character, so it is logical to think that longer time intervals positively affect the classification
of their corresponding data.

All things considered, a peak performance of 94.80% accuracy and 94.27% 𝐹1-score is achieved, corresponding to the (DS-
CNN)-(LSTM) model, with a window size of 90 s, a single layer, 64 neurons and a kernel size of 7. The average confusion matrix
corresponding to this case can be seen in Table 10, along with its particular metrics (recall, precision and accuracy). As can be seen,
the model is able to classify any of the four activities with great accuracy, although there are slight problems with the correct
identification of the ‘‘active’’ class. This activity is quite fuzzy, as it can accommodate actions where there may be periods of
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Fig. 7. Tukey test results for each group of accuracy values referring to each implemented algorithm, for each selected window size: (a) 30 s. (b) 60 s. (c) 90 s.

inactivity or where the individual is walking, which could lead to misclassification into these classes. An example of an action
that could fall into this class and could be easily confused would be giving a lecture. This action alternates between times when
the person may be walking (moving around the classroom) or sitting at the computer. In the first case, that walking moment could
result in classifying samples of ‘‘active’’ as ‘‘walking’’. In the second case, sitting without moving at all is very similar to not having
a cell phone on you, which could lead to misclassifying this action as ‘‘inactive’’. Even with the ‘‘driving’’ activity there could be
confusion, since sitting in the car waiting at a red light, without moving, could also be difficult to classify correctly, even taking into
account the vibrations of motor vehicles. Therefore, it is considered that, despite the discrepancies observed, the model is capable
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Table 9
Overall 𝐹1-score results obtained for each window size.

Window size

30 60 90

DS-CNN 88.05%
±7.68%

88.25%
±8.95%

88.84%
±8.93%

LSTM 91.17%
±5.12%

92.52%
±5.70%

92.38%
±5.83%

Bi-LSTM 90.61%
±5.78%

92.28%
±5.77%

92.21%
±6.67%

(DS-CNN)-LSTM 90.60%
±6.64%

92.43%
±6.03%

92.95%
± 6.22%

(DS-CNN)-(Bi-LSTM) 90.67%
±6.71%

91.82%
±6.92%

92.87%
±6.25%

Fig. 8. Tukey test results for each group of accuracy values referring to each selected window size.

Table 10
Average confusion matrix for the best combination found.

Ground truth Precision

Inactive Active Walking Driving

Inactive 1993.4 42.2 3.8 3.4 97.58%
Active 40.6 1226.8 51.2 20.3 91.63%
Walking 2.9 45.8 613.7 4.9 91.97%
Driving 11.7 7.5 4.5 515.3 95.60%

Recall 97.31% 92.78% 91.16% 94.74% 94.80%

of classifying the data exceptionally well, improving the results obtained with the most traditional machine learning techniques,
going from 92.97% accuracy to 94.80%.

In any case, given the statistical equivalences observed previously, any model, except the DS-CNN, with a window size of 60 or
90 s, could be chosen as the preferred solution to the required classification. Thus, if the least complex option were sought, among
all the statistically equivalent ones, an LSTM model with a single layer and 16 neurons could be sufficient for the problem to be
solved. Likewise, a window size of 60 s could be chosen, since it would enable a more fitting classification of the activities under
examination by permitting their segregation into 60-s intervals. Table 11 depicts the average confusion matrix for this particular
option. As can be seen, the classification is similar to that of the best case obtained, but the confusion with the ‘‘active’’ class is
more accentuated. In light of that, it is possible to select this choice as preferred.

Furthermore, in addition to all the experiments conducted with the proposed approach, it was decided to perform an ablation
study. In this case, this investigation involved isolating each of the initial branches of the general model. Thus, the outputs of
each one go directly to the subsequent layers of Dropout and Softmax, bypassing the concatenation layer. The aim is to observe
the approximate influence of each sensor on the final classification based on their individual results. In this way, experimentation
was done only with the best-case scenario found previously, corresponding to the confusion matrix in Table 10. As a result, more
specific results are obtained while avoiding overloading the paper with extensive tables. With this configuration, the results shown
in Table 12 were obtained. As can be seen, the accelerometer and gyroscope were by far the most accurate sensors. It is worth noting
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Table 11
Average confusion matrix for the least complex case and statistically equivalent to the best one found.

Ground truth Precision

Inactive Active Walking Driving

Inactive 1927.6 41.6 63.7 2.2 94.72%
Active 139.6 1231.6 38.2 26.6 85.77%
Walking 10.3 55.3 612.3 8.7 89.18%
Driving 6.1 20.2 6.2 534.1 94.26%

Recall 92.51% 91.32% 84.99% 93.44% 91.14%

Table 12
Results from the ablation study, for each individual sensor and with the best configuration found
in prior experiments.

Accuracy 𝐹1-score

Accelerometer 91.70% ±6.77 90.55% ±6.34

Gyroscope 90.55% ±6.93 87.56% ±9.42

Magnetometer 80.69% ±14.30 80.69% ±14.30

GPS 81.96% ±14.09 83.70% ±11.77

that even on their own, they can surpass accuracies of 90%. However, both the magnetometer and GPS yielded considerably lower
results. Nevertheless, they manage to secure 80% accuracy. This is quite acceptable considering the nature of these sensors, which,
while beneficial for HAR, do not adapt as well to this field as the accelerometer or gyroscope. All in all, although the individual
results exhibit notable disparities, it is crucial to acknowledge that the measurements from each sensor could hold considerable
value contingent upon the specific context. Significantly, some sensors might prove more suitable than others, depending on the
movement type to be analysed. As a result, given the inherent variability present in the used dataset, the combination of all the
sensors yields the best outcomes achieved to date for this particular dataset.

5.2. Discussion

The outcomes of this paper proved that deep learning algorithms are one of the best options in HAR, even in real-life
environments such as the one discussed here. The accuracy obtained with the best combination of hyperparameters improves on
that obtained with the most traditional machine learning algorithms, from 92.97% to 94.80%. Table 13 shows the comparison of
the best results obtained with the methods used in the present paper, with respect to those of other papers that also used the same
dataset. As can be observed, the resulting hybrid model of combining DS-CNN and LSTM yielded the most exceptional outcomes,
using a window size of 90 s. The superiority of the proposed method over previous approaches may be attributed to several factors.
Firstly, it could be due to the choice of feature set. In earlier machine learning endeavours, this process was manually conducted, and
the selection of features might not have been the most suitable for the problem at hand. In contrast, the deep learning algorithms
presented here automatically perform feature selection, which could ultimately lead to improved results. In addition, combining
the chosen sensors and enabling them to analyse data individually, before concatenating their evaluations, proved advantageous for
this dataset. It should be noted that, in previous works, this evaluation was performed jointly, assessing all sensors simultaneously.
Finally, the intrinsic nature of LSTM, capable of retaining information from the past, also appears highly suitable for HAR, given
the obtained results. In this way, considering the window size as well, it could be concluded that this combination of peculiarities
presents, to date, the optimal model for the used dataset.

In the previous section, it was possible to observe how the models based solely on DS-CNN had a lower performance than the
rest of the models used. Nonetheless, it should be noted that the running times of this case are much lower than those of the other
algorithms implemented. To highlight that, Fig. 9 shows a comparison of the average execution time (in seconds) of each algorithm
over all the experiments carried out. All these operations were performed on NVIDIA A100 40 GB GPUs. Hence, although the results
are objectively worse, it could be a good option when the available time is much more limited. However, it is curious to observe
how these times are longer for the individual cases based on LSTM, compared to the hybrid models that have higher complexity.
Probably, the feature extraction carried out by DS-CNNs, in addition to improving the final classification in these models, may also
be helping to reach a convergence point more quickly.

As already observed in other works on the same dataset like [25], there seems to be a certain tendency to improve classification
with larger window sizes. That is confirmed by the results obtained in this paper, where window sizes of 60 and 90 s performed
objectively better than the 30-s case. However, there did not appear to be any fundamental difference in the other hyperparameters
(number of layers, number of neurons and kernel size). Therefore, as discussed in the previous section, the less complex 60-s case
could be used preferably instead of the best combination one.

Moreover, it is meaningful to highlight the findings from the ablation study. As expected, the accelerometer and gyroscope
outperformed the magnetometer and GPS. Nevertheless, it is significant to see these results validated in a real-life dataset, as this
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Table 13
Comparison of the best results obtained with the methods used in the present paper, with respect to those of other papers that
worked with the same dataset.
Work Algorithm Window size (s) Eval. method Accuracy

[23] Support Vector Machine 20 10-fold 69.28% ±15.10%

[25]

Support Vector Machine 80 10-fold 86.56% ±11.30%

Decision Tree 20 10-fold 89.99% ±6.13%

Multilayer Perceptron 40 10-fold 86.85% ±6.12%

Naïve Bayes 80 10-fold 83.27% ±7.78%

K-Nearest Neighbour 80 10-fold 89.02% ±8.00%

Random Forest 80 10-fold 92.97% ±6.23%

Extreme Gradient Boosting 70 10-fold 92.23% ±7.30%

This work

DS-CNN 90 10-fold 90.70% ±7.29%

LSTM 90 10-fold 93.52% ±5.59%

Bi-LSTM 90 10-fold 93.09% ±5.10%

(DS-CNN)-LSTM 90 10-fold 94.80% ± 4.09%
(DS-CNN)-(Bi-LSTM) 90 10-fold 94.16% ±5.06%

Fig. 9. Average execution time (in seconds) required to complete each of the experiments carried out by each of the implemented models.

confirmation had not been previously conducted. Additionally, the experiments with the comprehensive model demonstrated how
combining these sensors, each with its unique characteristics and measurements, positively influenced the overall results.

Furthermore, it is also worth noting that there is still confusion with the ‘‘active’’ class. As previously mentioned, this class
encompasses a multitude of actions that could be pretty fuzzy for the classification carried out by the model. Within an ‘‘active’’
session, there may be periods of inactivity or when the individual is walking, which may be detected by the model and marked as
an incorrect activity. In any case, these confusions are minor, and they may be simply limitations in the dataset itself. Anyhow, it
is feasible to think that these results could be improved, perhaps with other ways of preprocessing the data or with algorithms that
may arise in the following years.

6. Conclusions and future work

This paper presents a brand-new set of experiments in human activity recognition (HAR) from smartphone sensor data from
activities performed in a real-life environment. To carry them out, the deep learning algorithms that are yielding the best results in
this area were applied: Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) models. By comparing their
variants, combining them and making an exhaustive study of the different hyperparameters to be used, it was possible to improve
the results previously achieved with the same dataset and more traditional machine learning techniques.

The results show that the most suitable models to exploit such data are those based on LSTMs, especially in conjunction with
CNNs. However, at the hyperparameter level, no notable differences were observed concerning performance with different numbers
of layers, neurons or kernel size. Nonetheless, improvements were detected when the window sizes were wider. When these window
sizes were presented in time intervals of 60 or 90 s, the results improved substantially, compared to those obtained with window
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sizes of 30 s. The activities studied in the used dataset have a long-themed nature, so it is plausible to think that longer time intervals
may ease the classification of the samples fed to the implemented models.

Furthermore, it is also worth acknowledging the results of the ablation study. The accelerometer and gyroscope have indeed
shown more robust performance in HAR, yielding high-grade results. That might lead to anticipate that their accuracies would
surpass those of the magnetometer and GPS. However, this had not been confirmed until now on a real-life dataset. Additionally,
the combination of all four sensors, each with its own distinctive characteristics that could influence the outcomes more or less
positively depending on the study context, resulted in the best performance achieved to date for this dataset.

Moreover, it is also worth noting that the ‘‘active’’ class remains the most difficult to classify. Anyhow, in this case, the confusions
are significantly lower than in other works. Given the fuzzy nature with which this activity was defined, it is possible that the results
cannot be improved much further and that this is a restriction of the dataset used. Perhaps it is time to sharpen the focus and tackle
much more specific activities, allowing the transfer of the acquired knowledge to everyday environments with better precision.

In any case, different data treatments could lead to better results. After all, in order to balance the sampling rates of the sensors
used to collect the data, an experimental solution had to be implemented, discussed in detail in Section 4.1. A much more thorough
exploration of how to address this issue, perhaps with the application of different types of interpolations or specific treatments for
each kind of signal, could further refine the proposed models for the dataset used.

On the contrary, while following the same approach, the stratified 10-fold cross-validation applied to the data could have been
conducted differently. As a result, data from the same individual could potentially appear in both the training and test sets using
this methodology. However, it is worth noting that the data exhibit considerable variability in the different actions to be performed,
as mentioned in Section 4.1. As a consequence, the impact of this separation may not be substantial, and the results could be
reasonably consistent with those achieved in this paper. Nevertheless, the outcome of implementing a system that guarantees such
differentiation remains uncertain. Therefore, even though the performance of the proposed models is considered outstanding, further
studies could be conducted to explore and identify the best model and treatment for real-life datasets.
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Appendix B

Resumen extendido en
castellano

Este apéndice resume los contenidos de esta Tesis en castellano. En primer lugar,
la Sección B.1 explica el contexto del campo del reconocimiento de actividades
humanas y las motivaciones para realizar este trabajo. Seguidamente, la Sección B.2
enumera los principales objetivos del proyecto. Tras ello, la Sección B.3 sintetiza los
principales logros y aportes de la Tesis de manera concisa. Finalmente, la Sección
B.4 describe una serie de conclusiones del trabajo, seguido de una lista de posibles
líneas de trabajo futuro en la Sección B.5.

B.1 Motivación
La capacidad de identificar de manera fiable y automática los movimientos
realizados por un ser humano es un desafío que ha sido objeto de gran cantidad de
investigación en las últimas décadas. El principal interés radica en las múltiples
aplicaciones que podrían tener los sistemas que detecten dichas acciones. Por
ejemplo, dentro del mundo de la salud [Subasi et al., 2018, Demrozi et al., 2020,
Liu et al., 2021] y el fitness [Attal et al., 2015, Zainudin et al., 2017], sería posible
conocer los movimientos que realiza un individuo de cara a poder realizar un
diagnóstico más adecuado. Además, también sería posible llevar un tratamiento
con un control más exhaustivo y cómodo para ambas partes. Por otro lado,
también pueden aplicarse los avances en este campo directamente a la domótica
[Raeiszadeh and Tahayori, 2018, Du et al., 2019] o al ocio [Ma, 2021], ya que sería
posible automatizar y desencadenar acciones basadas en los movimientos realizados
por el individuo. Para detectar estas acciones, se pueden utilizar tanto cámaras
de vídeo [Ke et al., 2013, Beddiar et al., 2020] como sensores de movimiento que
puedan llevar encima los individuos [Aggarwal and Xia, 2014, Wang et al., 2019,
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Soleimani and Nazerfard, 2021]. En cuanto a estos últimos, los más comunes son el
acelerómetro y el giroscopio. El primero de ellos se utiliza para detectar vibraciones
o pequeños movimientos en el individuo. En cuanto al segundo, su cometido es el
de medir las diferentes oscilaciones o giros que se puedan producir. Antiguamente,
estos sensores eran mucho más caros y menos accesibles. No obstante, desde la
aparición de los dispositivos wearables y, sobre todo, los smartphones, el campo
del reconocimiento de actividades humanas (HAR) ha experimentado un acelerón
importante. Esto se debe principalmente a que dichos dispositivos ya llevan
implantados de base ese tipo de sensores. Además, hace más de una década,
estos dispositivos se han vuelto enormemente populares en el mundo desarrollado,
hasta el punto de que muchas personas llevan una pulsera de actividad en la
muñeca y, sobre todo, un smartphone en el bolsillo, que utilizan a diario. Este
hecho hace que los costes de investigar en este campo sean mucho menores, con
un acceso mucho más sencillo a sensores de alta precisión. Así, los investigadores
encuentran en HAR una opción muy atractiva en la que poner su granito de arena
[Lara and Labrador, 2012, Hassan et al., 2018, Tang et al., 2022].

Sin embargo, hay una serie de problemáticas que hay que tener en cuenta. En
primer lugar, es necesario llevar un control exhaustivo de la temporalidad de los
datos, lo cual es especialmente complicado al trabajar con grandes cantidades de
información como las que producen los sensores comentados anteriormente. Si bien
ya se han hecho grandes avances en este respecto [Shoaib et al., 2016, Qi et al., 2019,
Xia et al., 2020], todavía existen actividades en las que la relación entre la acción
y sus datos todavía no ha sido del todo resuelta. Esto se debe principalmente a
las condiciones en las que dichos estudios fueron elaborados. En general, en estos
trabajos, el individuo que realiza la acción lo hace de una forma muy controlada,
con unas indicaciones muy concretas de cómo llevarla a cabo [Xu et al., 2019].
Además, el dispositivo de medición utilizado se coloca en un lugar específico y de
una forma determinada, como en la muñeca [Lawal and Bano, 2019] o la cintura
[Jeong and Oh, 2021]. Si bien es cierto que en estos casos se ha conseguido resolver
con gran precisión la gran mayoría de las acciones estudiadas, dichos resultados no
serían del todo fiables si se aplicaran en un entorno de la vida real. En la vida diaria,
esas condiciones tan específicas no se dan habitualmente, por lo que el conocimiento
adquirido no podría ser extrapolado directamente a un entorno más cotidiano y
realista. Por ejemplo, una misma acción no tendría por qué arrojar los mismos datos
en diferentes individuos [Lago et al., 2019]. En el caso de los smartphones, su uso y
su manera de transportarlos difieren para cada persona. Dichas variaciones afectarían
notablemente a las mediciones registradas por los sensores del dispositivo. Incluso
diferentes modelos de smartphone podrían arrojar datos ligeramente diferentes
[Stisen et al., 2015]. Este punto no sería tan crítico utilizando pulseras de actividad,
ya que irían siempre en la muñeca. Sin embargo, su uso es mucho menor que en
el caso del smartphone. A día de hoy, la gran mayoría de las personas disponen
de un smartphone que transportan a todas partes y el utilizar cualquier otro tipo
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de dispositivo wearable, como las pulseras, es más una elección personal. Por otro
lado, la realización de la acción no tiene por qué ser exactamente igual en todo
el mundo. Aunque teóricamente debería serlo, puede haber pequeñas variaciones
que podrían llevar a confusión a la hora de realizar la clasificación. Por ejemplo, al
caminar, no todo el mundo se inclina de la misma manera o desplaza las piernas del
mismo modo. De hecho, algunas de estas diferencias podrían venir también dadas
por la propia diversidad física de cada individuo, incluso utilizando el dispositivo
de la misma manera [Sansano et al., 2020]. Sin ir más lejos y utilizando el mismo
ejemplo anterior, la longitud o el ancho de la pierna de cada persona al caminar
podría dar lugar a variaciones en las mediciones si se llevara el dispositivo, por
ejemplo, en el bolsillo del pantalón. Es más, esa misma colocación podría dar lugar
a resultados diferentes si estamos hablando de, por ejemplo, unas mallas ajustadas
en comparación con unos pantalones cargo holgados. De hecho, esta problemática
de la personificación de los modelos de clasificación para grandes cantidades de
personas es algo que también se lleva estudiando bastante en los últimos años
[Lane et al., 2011, Solis Castilla et al., 2020, Ferrari et al., 2020].

Por todas estas razones, la motivación de esta Tesis radica en la dificultad actual
de aplicar, fuera de un entorno de laboratorio, todos los avances conseguidos hasta
ahora en este campo. Antes de iniciar esta Tesis, no existía ningún conjunto de
datos realista. Por lo tanto, es necesario publicar nuevos conjuntos de datos, con
información proveniente de acciones más realistas y flexibles. En consecuencia, se
podría iniciar un estudio exhaustivo sobre cómo abordarlos correctamente. Para
ello, sería esencial analizar la idoneidad de todas las técnicas de inteligencia artificial
empleadas anteriormente en HAR. El objetivo sería identificar las opciones más
apropiadas y modificarlas en consecuencia para adaptarlas al contexto específico.
En este sentido, vale la pena señalar que obtener un algoritmo óptimo para todas
las situaciones no es factible. Al centrarse en dominios concretos, como la nueva
orientación propuesta, se vuelve más fácil mejorar los resultados para ese caso
particular. Sin embargo, dicha mejora puede implicar un rendimiento inferior
en otros escenarios, tal y como demuestran los teoremas No Free Lunch (NFL)
[Wolpert and Macready, 1997]. Además, sería necesario tener en cuenta que esos
datos podrían presentar características únicas que aún no se han observado en
anteriores desarrollos de HAR. Así, también sería crucial investigar la metodología
más adecuada para procesar esos datos, estudiando la mejor manera de prepararlos
para alimentar los modelos pertinentes. Como resultado, todo el progreso alcanzado
en dichos conjuntos de datos podría aplicarse directamente a entornos de la vida
real, según las actividades estudiadas en ellos.

B.2 Objetivos
Teniendo en cuenta todo lo comentado en las secciones anteriores, el objetivo principal
de esta Tesis es impulsar la orientación de la investigación global en el campo del



112 Appendix B. Resumen extendido en castellano

reconocimiento de las actividades humanas hacia entornos de la vida real. Para ello,
es esencial poder contar con nuevos datos provenientes de entornos más realistas
que puedan ser explotados por toda la comunidad científica. Todo el conocimiento
adquirido hasta ahora en el campo podría aplicarse a ese nuevo enfoque, adaptándolo
en consecuencia. De este modo, el primer objetivo de esta Tesis consiste en realizar
una revisión bibliográfica en profundidad que abarque todo el ámbito HAR. El
propósito es identificar los aspectos cruciales que deben tenerse en cuenta para llevar
a cabo avances relevantes en este campo. Teniendo esto en cuenta, el siguiente
paso consistirá en elaborar un conjunto de datos nuevo, en el que los individuos
que aporten sus mediciones puedan hacerlo de una manera mucho más libre, según
las peculiaridades de cada uno. Después, a partir de dicho conjunto de datos, será
necesario buscar la mejor forma de abordarlo, desde técnicas tradicionales de machine
learning hasta las arquitecturas más recientes basadas en deep learning. Con eso en
mente, se deducen una serie de desafíos de investigación que constituirán el núcleo
de esta Tesis y que se resumen en los siguientes cuatro puntos:

• Revisión bibliográfica exhaustiva de todo el ámbito HAR. Para
llevar a cabo desarrollos relevantes en dicho ámbito, es esencial conocer de
primera mano todo lo que haya sido realizado previamente por la comunidad
científica. Si bien es cierto que dichos trabajos fueron realizados en condiciones
diferentes a las perseguidas en esta Tesis, sus hallazgos podrían aportar gran
valor igualmente. Al fin y al cabo, es necesario conocer las maneras más
adecuadas de procesar datos procedentes de sensores de smartphone, así como
las problemáticas más comunes a tener en cuenta y cómo resolverlas. Del
mismo modo, es crucial mantenerse al día tanto de las tendencias actuales
como de la evolución seguida en el ámbito, de cara a no caer en los mismos
errores y poder detectar nuevas oportunidades de investigación.

• Establecimiento de las pautas necesarias para la elaboración de un
conjunto de datos más realista. Tal y como se comentó en la Sección B.1,
la orientación actual de todos los estudios en HAR imposibilita su aplicación
directa sobre entornos de la vida real en general. Con el fin de intentar iniciar
la reorientación de la investigación hacia esa problemática, se necesita realizar
una recolección de datos que pueda ser explotada por toda la comunidad
científica. Para ello, se utilizarán los smartphones personales de diferentes
individuos, de manera que cada uno de ellos pueda utilizarlo tal y como lo
hace de forma habitual. En cuanto a las actividades a estudiar, el objetivo es
fijar un grupo con suficiente diversidad entre ellas pero sin ser tan específicas
como las de los estudios que se están llevando a cabo actualmente. Así, se
puede establecer un punto de partida con el que estudiar el potencial de esta
nueva orientación y que después pueda enfocarse en acciones más concretas,
según corresponda. De este modo, se conseguiría un conjunto de datos más
realista que los elaborados hasta ahora, con mayor libertad y variabilidad en
los datos estudiados.
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• Estudio de la aplicabilidad de las técnicas de machine learning y
deep learning más utilizadas en HAR para entornos de la vida real.
Una vez tomados los datos, es necesario estudiar la evolución de las técnicas
de machine learning y deep learning aplicadas a una temática HAR. A partir
de ese estudio, se seleccionarán una serie de técnicas que, según los datos
obtenidos en el punto anterior, tuvieran el mejor potencial de obtener buenos
resultados. Al mismo tiempo, se buscará la comparación entre ellos, con
diferentes configuraciones de hiperparámetros y características, con el fin de
obtener la mayor cantidad de información posible. Además, la investigación
también buscará explorar la aplicación de técnicas alternativas que se utilizan
con menos frecuencia en HAR pero que tienen el potencial de contribuir de
manera positiva a la nueva dirección que se persigue en esta Tesis.

• Búsqueda de las aproximaciones más adecuadas para abordar los
retos derivados de la explotación de datos HAR procedentes de
la vida cotidiana. Recolectar datos de manera libre y flexible difiere
notablemente de cómo se haría a partir de condiciones de laboratorio. Los
imprevistos que podrían surgir al construir un conjunto de datos que siga las
pautas propuestas en esta Tesis podrían ser abundantes. Además, debido a la
ausencia de conjuntos de datos basados en HAR que sigan dicha orientación
dentro de la comunidad científica, será esencial investigar y resolver cualquier
problema que pueda surgir durante el proceso de recolección de datos. Esto
requiere la identificación y resolución de esos desafíos en tiempo real, pudiendo
ser completamente diferentes a cualquiera visto anteriormente. Para lograrlo,
se llevará a cabo un estudio exhaustivo para determinar los métodos óptimos
para procesar el conjunto de datos propuesto, así como explorar diversas
configuraciones y arquitecturas para los modelos de inteligencia artificial
seleccionados.

B.3 Contribuciones
A partir de los objetivos comentados en la Sección B.2, ha sido posible avanzar en
la investigación en el campo del reconocimiento de actividades humanas, orientando
todos los hallazgos hacia un entorno de la vida real, tal y como se destacó dicha
necesidad anteriormente. Por lo tanto, las contribuciones se centraron en crear un
conjunto de datos más realista y buscar los mejores modelos para clasificar dichos
datos, desde los más tradicionales hasta los más actuales, siguiendo los objetivos
establecidos al comienzo de la Tesis.

B.3.1 Recolección de datos de la vida real
Sin una recolección de datos que siguiese el enfoque propuesto en esta Tesis era
imposible seguir los objetivos propuestos inicialmente. Este motivo, sumado además
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a la inexistencia de conjuntos de datos basados en HAR con dicha orientación en la
comunidad científica, propició la creación de uno nuevo que pudiese ser explotado
posteriormente por todos los investigadores del campo. De forma resumida, a
continuación se presentan las características más destacadas del conjunto de datos
resultante:

• Smartphones como dispositivo de recolección. Los smartphones actuales
presentan sensores de alta precisión muy accesibles para cualquier investigador
del ámbito. En este caso, se utilizaron el acelerómetro, el giroscopio, el
magnetómetro y el GPS incluidos en los smartphones personales de cada
individuo participante en la recogida de datos. Además, debido a su uso global
en comparación con cualquier otro tipo de dispositivo wearable, los posibles
hallazgos futuros podrían tener un alcance mucho más amplio.

• Diferentes perfiles de participantes. El conjunto de datos resultante proviene
de 19 personas diferentes, cada uno con diferentes peculiaridades, desde la
diversidad física de cada uno hasta el uso y modelo de los smartphones
personales de cada uno. Esto aumenta la variabilidad en los datos, resultando
en más casos de estudio.

• Actividades más genéricas. A diferencia de otros conjuntos de datos basados
en HAR, las actividades aquí estudiadas suelen realizarse durante períodos
más largos de tiempo. Las cuatro que fueron analizadas fueron las siguientes:

– Inactivo: toda acción en la que no se lleve el smartphone encima.
– Activo: cualquier movimiento sin ir a un lugar específico. Ejemplos:

cepillarse los dientes, bailar en un concierto o jugar a algún videojuego.
– Andando: desplazamientos sin vehículo motorizado. Por ejemplo, correr

se clasificaría como “andando”.
– Conduciendo: viajes en un vehículo motorizado sin necesidad de ser

el conductor. Por ejemplo, viajar en autobús se clasificaría como
“conduciendo”.

Esto brinda la oportunidad de observar, de manera preliminar, si la nueva
orientación propuesta en esta Tesis es factible en este campo. Luego, según
los avances realizados y el contexto definitivo, se podrían estudiar nuevas
actividades más específicas basadas en el conocimiento previo.

• Mayor libertad y realismo al realizar las acciones. A los participantes del
estudio solamente se les pidió que realizaran las acciones especificadas, tal
y como las harían de forma habitual, pero iniciando y finalizando la acción
de forma específica a partir de su smartphone personal. Así, se implementó
una aplicación sencilla para Android desde la cual los diferentes usuarios
podían iniciar y finalizar sus sesiones de recolección, así como enviar toda
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esta información a un servidor dedicado de recopilación de datos. Cada
sesión consistió en realizar una acción específica durante la duración de la
misma, desde el momento en que se inició la acción hasta que terminó, ambos
presionando el botón correspondiente.

Desafortunadamente, el conjunto de datos resultante presenta algunas peculiaridades
que dificultan los desarrollos que se podrían realizar a partir del mismo. Todas
estas problemáticas surgieron como imprevistos a la hora de realizar la recogida de
datos. Esto se debe a la novedad de este tipo de recolección, ya que fue llevada a
cabo de forma muy diferente a cómo sería a partir de condiciones de laboratorio. A
continuación, se comentan brevemente cada una de ellas:

• Falta de sensores. No todos los smatphones que participaron en el conjunto
de datos tenían los mismos sensores disponibles. De las 19 personas que
participaron en la recopilación de datos, cinco personas tuvieron ese problema,
con la ausencia de al menos uno de los sensores utilizados.

• Diferencias en la frecuencia de muestreo. Aún procurando establecer la
frecuencia de cada sensor al máximo valor permitido por Android, hay intervalos
que difieren de ese valor. Esto significa que, en algunos casos, la diferencia de
tiempo entre cada observación no es la misma.

• Desbalanceo en los datos. Dada la naturaleza de las acciones a estudiar, un
porcentaje considerable de los datos pertenece a la actividad de “inactivo”,
debido a que es mucho más fácil recopilar muestras de esa manera que en
cualquiera de las otras opciones. Aún así, esa tendencia no es demasiado
acentuada y hay patrones suficientes en cada actividad para obtener resultados
satisfactorios.

Con todo, se consideró que estas problemáticas podrían ser frecuentes en la vida real
y, por tanto, ser algo habitual en este tipo de recogida de datos. Si bien suponen un
esfuerzo mayor en el procesamiento de los datos, son casos de estudio que conviene
analizar. De este modo, el conjunto de datos propuesto presenta varios retos de
investigación en los que profundizar en futuros desarrollos.

B.3.2 Exploración de los datos
Una vez recogidos los datos, se comenzó un estudio exhaustivo para conocer los
modelos de inteligencia artificial más prometedores para clasificar dicha información.
Durante el mismo, también se investigaron las aproximaciones más adecuadas para
preparar y procesar los datos propuestos. En primer lugar, este estudio se enfocó en
el machine learning tradicional, para observar las peculiaridades de los modelos que
más se han estado utilizando a lo largo de toda la investigación en HAR. De cara a
hacer el estudio lo más detallado posible, se tuvieron en cuenta los objetivos que se
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enumeran a continuación. En cada uno de ellos, también se indican brevemente los
hallazgos más destacados:

• Utilización de múltiples algoritmos. Para poder realizar un estudio muy
detallado, fue necesario aplicar una buena cantidad de algoritmos diferentes
para observar sus comportamientos con el nuevo conjunto de datos. De este
modo, se decidió optar por algoritmos muy utilizados en HAR como Support
Vector Machines (SVM), Decision Trees (DT), Multilayer Perceptron (MLP),
Naïve Bayes (NB), K-Nearest Neighbours (KNN) y Random Forest (RF).
Como novedad, se optó también por incluir el Extreme Gradient Boosting
(XGB) por su reciente gran popularidad en otros campos y sus excelentes
resultados, a pesar de no verse tanto en HAR.

Al final, los algoritmos basados en árboles fueron los que obtuvieron mejores
resultados en todos los casos estudiados. Entre ellos, Random Forest destaca
como el que obtuvo los mejores picos de precisión, con un 92.97% de acierto
en su mejor caso.

• Aplicación de diferentes preparaciones de los datos. Debido a la naturaleza
de las actividades recolectadas en el nuevo conjunto de datos, es posible
que ventanas de tiempo más amplias ayuden a clasificarlas de mejor manera.
Por ello, fue necesario también probar los algoritmos dispuestos previamente
con diferentes tamaños de ventana para ver si se encontraban diferencias
significativas. Siguiendo la misma línea, también se decidió realizar una
comparación entre un conjunto de características principalmente estadístico,
con otro que incluyese peculiaridades más concretas de cada señal. Así, se
calcularon valores como el tiempo total positivo, número de mínimos locales,
distancia total viajada, entre muchos otros.

Con todo, cabe señalar que no se encontraron diferencias significativas entre los
conjuntos de características indicados. Sin embargo, sí se observaron mejoras
sustanciales con mayores tamaños de ventana. Cuando el valor alcanzaba
alrededor de 60 segundos o más, los resultados fueron significativamente
superiores a los obtenidos con tamaños de ventana más pequeños, de 20 o 30
segundos.

• Estudio de la influencia real del giroscopio en los resultados. En numerosos
estudios de HAR se demostró que este sensor influía positivamente en la
clasificación de las acciones. Para confirmar que dicho sensor también
presentaba el mismo comportamiento en la nueva orientación propuesta en
esta Tesis, se optó por repetir todas las pruebas realizadas sobre el conjunto
de datos, excluyendo las mediciones del giroscopio.

Finalmente, se pudo concluir que el giroscopio sí influía positivamente en los
resultados finales, tal y como se demostró en otros estudios de HAR.
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Por otro lado, dado que la aplicación de deep learning en HAR no ha dejado de
aumentar en los últimos años, no sería adecuado limitar la exploración a técnicas
basadas en el machine learning más tradicional. De este modo, aunque los resultados
conseguidos en los últimos experimentos fueron muy satisfactorios, se consideró que
podrían ser mejorados mediante la aplicación de deep learning. Las aportaciones
más determinantes de esta segunda parte del estudio se presentan en los siguientes
puntos:

• Implementación de una solución experimental para el tratamiento de los
datos. Las diferentes frecuencias de muestreo presentes en el conjunto de
datos propuesto complicaron esta exploración. Esto se debe a que los modelos
utilizados en este caso calculan las características por ellas mismas, asumiendo
que los patrones son equidistantes a nivel temporal. Por ello, fue necesario
buscar la manera de establecer dicha equidistancia. De esta manera, se observó
que los sensores proporcionaban, generalmente, datos en intervalos de 20 ms o
200 ms. Esto es, sin tener en cuenta el GPS, que tiene una frecuencia muy
diferente al resto (aproximadamente un valor cada 10 segundos). De este modo,
sólo se conservaron en el conjunto de datos las observaciones más cercanas
a cada intervalo de 200 ms desde el inicio de la actividad. Así, aunque hay
pérdida de datos en momentos de mayor frecuencia, se mantiene la información
real correspondiente a ese instante de tiempo, sin rellenar huecos de forma
“artificial”. Además, el número de muestras es más que suficiente para realizar
una clasificación satisfactoria, por lo que dicha pérdida no se consideró un
gran problema.

• Comparación exhaustiva de los mejores algoritmos de deep learning en el
HAR actual. La investigación más reciente en HAR demuestra que el uso
de modelos basados en redes de neuronas convolucionales (CNN) o redes
de neuronas recurrentes basadas en la técnica de Long Short-Term Memory
(LSTM) generalmente ofrecen mejores resultados que otros métodos. Por ello,
se seleccionaron ambos algoritmos para este estudio. Más concretamente, se
optó por la utilización de la variante separable de CNN, DS-CNN (Depth-
Wise Separable Convolutional Neural Networks), ya que son más rápidas y
producen resultados equivalentes a los modelos originales. En cuanto a LSTM,
se utilizó su forma original y su variante bidireccional, Bi-LSTM, ampliamente
utilizada en la comunidad científica, para comparar su rendimiento. De esta
manera, se formaron cinco modelos diferentes (tres individuales y dos híbridos,
respectivamente): DS-CNN, LSTM, Bi-LSTM, (DS-CNN)-LSTM y (DS-CNN)-
(Bi-LSTM). Entre ellos, las variantes híbridas fueron las que arrojaron los
mejores resultados, con un pico de precisión de 94.80% en el mejor caso
encontrado.

• Presentación de una nueva arquitectura para explotar los datos propuestos.
Para evitar lidiar con los problemas presentes en la naturaleza de cada sensor,
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se decidió tratar los datos de cada uno de ellos de forma independiente. De
este modo, se formó una rama independiente para cada uno de los conjuntos de
datos correspondientes a cada sensor, utilizando uno de los modelos comentados
en el párrafo anterior en cada una de dichas ramas. Así, se entrenan cuatro
modelos de forma simultánea, cada uno con los datos correspondientes a uno
de los sensores utilizados, pero empleando la misma configuración técnica.
Después, las salidas de cada una de estas ramas se concatenan, resultando en
un único valor final con la clasificación de los datos.

En resumen, la Tabla B.1 proporciona una visión general de los mejores resultados
logrados por cada algoritmo implementado para el conjunto de datos propuesto en
esta Tesis, según su mejor tamaño de ventana. Los algoritmos de deep learning
demostraron ser los más efectivos para obtener resultados favorables, destacando al
mismo tiempo el notable desempeño de los algoritmos más tradicionales basados
en árboles. Entre ellos, los casos que involucran a LSTM fueron los más exitosos,
demostrando ser la opción más adecuada para el conjunto de datos dado, entre todas
las opciones estudiadas.

Algorithm Window size (s) Accuracy
SVM 80 86.56% ±11.30%

DT 20 89.99% ±6.13%

MLP 40 86.85% ±6.12%

NB 80 83.27% ±7.78%

KNN 80 89.02% ±8.00%

RF 80 92.97% ±6.23%

XGB 70 92.23% ±7.30%

DS-CNN 90 90.70% ±7.29%

LSTM 90 93.52% ±5.59%

Bi-LSTM 90 93.09% ±5.10%

(DS-CNN)-LSTM 90 94.80% ± 4.09%

(DS-CNN)-(Bi-LSTM) 90 94.16% ±5.06%

Table B.1: Comparación de los mejores resultados obtenidos en el conjunto
de datos propuesto, con los métodos utilizados durante la Tesis y para el
tamaño de ventana que obtuvo el mejor rendimiento.

B.4 Conclusiones
El objetivo principal de esta Tesis era el de orientar la investigación actual en el
campo del reconocimiento de actividades humanas hacia entornos de la vida real.
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Dada la inexistencia de datos enfocados en este sentido, era fundamental recolectar
un nuevo conjunto de datos con el que poder iniciar dicho proceso. Además,
también era crucial tratar con datos provenientes de los sensores incluidos en los
smartphones de ahora, dado su popular uso en el mundo desarrollado actual. Por
ello, la primera contribución de esta Tesis se centró en este punto. El conjunto
de datos resultante contiene información de 19 individuos diferentes, cada uno con
diferentes peculiaridades físicas y formas de utilizar su smartphone personal y que
realizaron una serie de actividades con casi total libertad. En cuanto a los sensores,
se utilizaron el acelerómetro, el giroscopio, el magnetómetro y el GPS. De este modo,
se consiguió que la información recolectada tuviese suficiente variabilidad y fuera lo
bastante realista para poder transferir los futuros hallazgos hacia problemáticas del
mundo real.

Sin embargo, al tratarse de una recolección de datos muy diferente a todas las
realizadas hasta el momento en este ámbito, aparecieron una serie de imprevistos.
Primero, no todos los individuos que participaron en el estudio disponían de todos
los sensores necesarios en su smartphone. Esto hace que en algunos casos no se pueda
disponer de los datos provenientes de algunos pocos individuos. En segundo lugar,
la frecuencia de muestreo no es siempre la misma para cada sensor. Aún habiendo
fijado el máximo valor permitido por Android en este aspecto, existen algunos casos
en los que dicha frecuencia cambia, lo que obliga a destinar un esfuerzo mayor
al procesamiento de los datos. Por último lugar, el conjunto de datos resultante
presenta cierto desbalanceo hacia una de las cuatro actividades estudiadas. Aunque
la cantidad de patrones en el resto de acciones es más que suficiente para llevar a
cabo una correcta clasificación de los datos, es algo que hay que considerar en los
desarrollos que se hagan sobre dichos datos.

Con todo, la comunidad científica dispone actualmente de un conjunto de datos
formado en un entorno de la vida real. Aún teniendo en cuenta las problemáticas
descritas en el anterior párrafo, éstas podrían ser algo habitual en el resto de
conjuntos de datos futuros que podrían surgir siguiendo una orientación similar. Por
lo tanto, aunque requieran un esfuerzo de investigación mayor, podrían resultar en
hallazgos valiosos para el desarrollo de HAR en esa dirección. De este modo, los
investigadores pueden aprovechar dicha información y realizar sus propios desarrollos,
optimizándolos y pudiéndolos enfocar con éxito en escenarios más realistas.

Siguiendo esta pauta, se llevó a cabo una comparación exhaustiva de múltiples
algoritmos de inteligencia artificial, con numerosas combinaciones de hiperparámetros
y características, así como diferentes tamaños de ventana. En cuanto a los
hiperparámetros, se consiguió mucha información sobre qué casos favorecían más la
clasificación según el algoritmo, aunque con cierta arbitrariedad según el parámetro
estudiado. Con respecto a las características, se realizaron experimentos con dos
conjuntos: las clásicas, basadas en estadísticas (incluyendo la media y la desviación
típica), y otro grupo que se relaciona más con los aspectos distintivos de las señales
recopiladas. Desafortunadamente, los resultados no fueron del todo concluyentes,
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por lo que no queda claro cuál sería el caso más adecuado para este conjunto de datos.
Por último, se pudo afirmar que los tamaños de ventana más grandes (alrededor de
un minuto) influían positivamente en la clasificación final.

En cualquier caso, todos los experimentos realizados sobre dicho conjunto de
datos validaron la posibilidad de llevar a cabo la orientación propuesta en esta Tesis.
La clasificación de las actividades estudiadas es superior al 90% en la mayoría de los
casos, llegando hasta un 94.80% en el mejor caso encontrado. En este sentido, los
algoritmos que mejor funcionaron fueron los basados en deep learning, con el modelo
híbrido resultante de unir redes de neuronas convolucionales y redes de neuronas
recurrentes basadas en la técnica de Long Short-Term Memory. También cabe
destacar el rendimiento de los modelos basados en árboles, especialmente Random
Forest, que obtuvieron resultados muy cercanos a los arrojados por los algoritmos
de deep learning. De todas formas, en prácticamente todos los casos, la máxima
precisión se alcanzó con los tamaños de ventana más grandes utilizados en esta Tesis
(entre 60 y 90 segundos). Con tamaños de ventana más pequeños, los sistemas de
inteligencia artificial implementados no fueron tan hábiles a la hora de discernir
las características distintivas de las actividades de larga duración aquí estudiadas.
Además, cabe destacar el hecho de que los algoritmos basados en LSTM hayan
arrojado los mejores resultados. Estas redes son famosas por su eficacia en el manejo
de series temporales de datos, lo que, junto con el comportamiento observado con
diferentes tamaños de ventana, demuestra la importancia de abordar adecuadamente
la temporalidad de los datos a la hora de clasificar este tipo de acciones. Esto, a
su vez, constituye uno de los retos más comunes en HAR. Aún así, todavía existe
potencial para mejorar los resultados. Al fin y al cabo, los desarrollos llevados a
cabo en esta Tesis, aunque diversos, conforman solamente una parte de la gran
variabilidad que podría surgir a lo largo de los años.

Finalmente, también cabe destacar que, durante los años de desarrollo de
esta Tesis, han aparecido más trabajos que han hecho uso de los datos aquí
publicados [Hnoohom et al., 2020, Hu et al., 2023], también con buenos resultados.
Al mismo tiempo, también están empezando a surgir otros conjuntos de datos con
la misma orientación buscada aquí [Quan et al., 2022]. Teniendo en cuenta toda
la investigación realizada durante esta Tesis, sumado a los últimos puntos aquí
dispuestos, no cabe duda de que el proyecto ha sido un éxito. Con los posibles
avances que vayan surgiendo en los próximos años, es muy posible que se pueda
transferir directamente, por fin, todo el conocimiento adquirido en HAR en los
últimos años hacia el mundo real.

B.5 Trabajo futuro
Aunque todo el trabajo realizado durante el desarrollo de esta Tesis fuese finalmente
exitoso, es cierto que fueron apareciendo algunos imprevistos que hubo que ir
resolviendo. No importa cuán eficiente y satisfactoria sea la solución aportada, que
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siempre habrá margen de mejora. Por ello, a continuación se enumeran algunas
ideas que podrían ser profundizadas y mejoradas en líneas de investigación futuras:

• Diferentes maneras de procesar los datos. Dada la problemática de la
inconsistencia de la frecuencia de muestreo de cada sensor en el conjunto
de datos aportado, las soluciones en este sentido pueden ser muy diversas.
Durante el desarrollo de esta Tesis, se llevó a cabo una solución experimental
con la que corregir dicho problema y poder continuar con la implementación
de los modelos. Aunque el resultado se considera satisfactorio, es probable que
con diferentes aproximaciones el resultado sea más positivo que el propuesto
aquí. Por otro lado, aunque durante el desarrollo de la Tesis se estudiaron
múltiples tamaños de ventana, no dejaron de ser ad hoc a dichas soluciones
propuestas. Por estos motivos, una exploración más en profundidad en estos
temas podría resultar en un mejor rendimiento de los modelos finales que
realicen la clasificación de los datos procesados previamente.

• Nuevos conjuntos de características. Todas las características calculadas en
los trabajos realizados durante el desarrollo de esta Tesis se centraron en
el dominio del tiempo, dadas las problemáticas de los datos comentadas
anteriormente. En caso de resolver dichos problemas con éxito, es posible que
otras características más centradas en el dominio de la frecuencia pudiesen
ser positivas para mejorar los resultados. De hecho, numerosos estudios en
HAR aplicaron dichas características en sus trabajos, con buen desenlace
[Seto et al., 2015, Sousa et al., 2017]. Por lo tanto, es factible pensar que
funcionarán de manera similar con la orientación propuesta en esta Tesis.

• Otros algoritmos y configuraciones. A día de hoy, los algoritmos de inteligencia
artificial disponibles son muy numerosos y diferentes. Además, la combinatoria
de todos los hiperparámetros que influyen en su rendimiento suele ser muy
amplia. Asimismo, dependiendo de la arquitectura del modelo final y de los
modelos híbridos que resultan de combinarlos entre sí, los resultados pueden
ser muy diferentes. Aunque en esta Tesis se considera que se ha hecho una
selección acertada de todas estas cuestiones, no deja de ser algo limitado con
mucho margen de mejora. Es posible que otro tipo de configuraciones resulten
en una clasificación más precisa de los datos. De hecho, la aplicación de
modelos basados en la arquitectura Transformer [Vaswani et al., 2017] podría
ser beneficiosa, considerando sus recientes excelentes resultados en numerosas
áreas relacionadas con la inteligencia artificial.

• Nuevos datos. Como ya se comentó anteriormente, las actividades estudiadas
en el conjunto de datos recolectado son bastante genéricas. Por ello, una vez
demostrado su potencial y vista la viabilidad de la nueva orientación aquí
propuesta, quizá sea momento de hilar más fino y estudiar nuevas actividades.
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De esta manera, la idea consistiría en elaborar nuevos conjuntos de datos en
los que se estudien actividades más concretas. Dichas acciones podrían ser
similares a las estudiadas en otros trabajos anteriores en HAR, como levantar
la mano, ponerse de pie o subir escaleras. La diferencia radicaría en la manera
de recolectar los datos, que debería ser con la mayor libertad y flexibilidad
posible para acercarla tanto como sea factible al mundo real. De este modo, la
aplicabilidad final de los sistemas que podrían resultar de dichos trabajos sería
mucho más práctica y directa.

• Probar los modelos desarrollados en distintos conjuntos de datos de la vida real.
Siguiendo la línea del punto anterior, el uso de nuevos datos podría aportar
información adicional valiosa. A medida que se disponga de nuevos conjuntos
de datos recogidos en escenarios del mundo real, los modelos desarrollados
a lo largo de esta Tesis podrían ser analizados en contextos distintos a los
estudiados aquí. De este modo, se podría seguir avanzando en esta línea de
investigación, reafirmando potencialmente las conclusiones de este trabajo y
agilizando la transferencia de todos los resultados obtenidos.
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