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Abstract

We consider a distributed framework where training and test samples drawn
from the same distribution are available, with the training instances spread
across disjoint nodes. In this setting, a novel learning algorithm based on
combining with different weights the outputs of classifiers trained at each
node is proposed. The weights depend on the distributional distance be-
tween each node and the test set in the feature space. Two different weight-
ing approaches are introduced, which are referred to as per-Node Weighting
(pNW) and per-Instance Weighting (pIW). While pNW assigns the same
weight to all test instances at each node, pIW allows distinct weights for test
instances differently represented at the node. By construction, our approach
is particularly useful to deal with unbalanced nodes. Our methods require
no communication between nodes, allowing for data privacy, independence
of the kind of trained classifier at each node and maximum training speedup.
In fact, our methods do not require retraining of the node’s classifiers if
available. Although a range of different combination rules are considered to
ensemble the single classifiers, theoretical support for the optimality of using
the sum rule is provided. Our experiments illustrate all of these properties
and show that pIW produces the highest classification accuracies compared
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with pNW and the standard unweighted approaches.

Keywords: distributed classification, distributional distances, classifiers
combination, imbalanced data set, classification accuracy

1. Introduction

Data is growing at an unprecedented pace. With the variety, speed and
volume of data flowing through networks and databases, it has become more
and more difficult to find patterns that lead to meaningful conclusions. At
the same time, organizations need to find ways to obtain some value from all
of this data. Unlocking the most value from large, varied sets of information
requires new approaches based on machine learning. However, traditional
machine learning techniques and, more specifically, data mining algorithms,
have been designed to run in a centralized computing environment, where all
data could fit in a single machine. But nowadays, in the current scenario,
where data size increases beyond capacity, these algorithms do not scale well
—memory demands and impracticable runtimes—, damaging performance
and efficiency. Thus, distributed learning has become essential.

The motivation for distributed learning is at least twofold. The most obvi-
ous reason is the volume of data available nowadays. Data generation, which
has been estimated at 2.5 exabytes of data per day [3], comes from every-
where: genomics, astronomy, CERN experiments, transaction records, posts
to social media sites (Twitter generates 500 million tweets/day, each about 3
kilobytes including metadata) or digital pictures and videos (YouTube cur-
rently has 300 hours of video being uploaded every minute). Second, data
is often shared across geographical and organizational boundaries, and it is
not economic or legal to gather it in a single location. For example, several
datasets concerning business information might be owned by separate orga-
nizations that have competitive reasons for keeping the data private. In ad-
dition, this data may be physically dispersed over many different geographic
locations. However, business organizations may be interested in enhancing
their own models by exchanging useful information about the data.

The machine learning community has been essentially focused on the de-
sign of distributed or parallel algorithms to deal with massive datasets [17].
Different from the traditional centralized algorithms where a single learner
has access to the full dataset, distributed learning algorithms have their foun-
dations in ensemble learning [9]. Ensemble learning consists of a hierarchy
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of multiple local learners operating on subsets of the full dataset, and one
or more ensemble learners combining the outputs of all the local learners.
Thus, the ensemble approach is almost directly applicable to a distributed
scenario since a classifier can be trained at each site, using the subset of
data stored in it, and then the classifiers can be eventually combined using
ensemble strategies. To combine the predictions of a set of classifiers, one of
the simplest ways consists of using decision rules [12]. These decision/fixed
rules are defined as functions that receive as inputs the outputs of the set of
learned classifiers and combine them to produce a unique output. Chan and
Stolfo [5] proposed several meta-learning strategies for integrating indepen-
dently learned classifiers by the same learner in a parallel and distributed
computing environment. Breiman [4] presented a procedure to build ensem-
bles of classifiers from small subsets of data, growing a predictor on each
subset and then pasting these predictors together. Lazarevic et al. [13] de-
veloped a general framework for distributed boosting to integrate efficiently
specialized classifiers learned over very large and distributed homogeneous
datasets that cannot be merged at a single location using the Mahalanobis
distance. Tsoumakas et al. [23] presented a framework for distributed stack-
ing of multiple classifiers. Their method was based on local learning and
model stacking using the average probability distribution of the local clas-
sifiers’ output according to the class as input to the second level classifier.
Similar to distributed learning, another common approach for scaling up
learning algorithms is parallel machine learning [25], which includes GPU
architecture and map reduce techniques.

Data can be distributed either horizontally or vertically. In horizontal
partitioning, the dataset is divided into several nodes that have the same
features as the original dataset, each containing a subset of the original sam-
ples. In vertical partitioning, the original dataset is divided into several nodes
that have the same number of instances as the original dataset, each contain-
ing a subset of the original set of features. This work is focused on horizontal
partitioning, since it constitutes the most suitable and natural approach for
most applications. In addition to the common learning scenario assumptions,
we assume the availability of a test set large enough to obtain distributional
information. In this distributed scenario, class probabilities can be shown
to be a weighted average of the individual class probabilities within each
node. These weights depend on the marginal probabilities of the instance
over each node and over the entire data set. This result motivates the study
of the use of distribution distances for improving classification performance.
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In this work, two different approaches to approximate these weights are pro-
posed. The first one is based on estimating the distance between feature
distributions between each node and the test set, while the second one con-
trols the contribution of each instance of the test set in order to minimize
these distributional distances. The resulting learning models exhibit interest-
ing properties including that they work with any local classifier and do not
require retraining the classifiers or sharing information between individual
nodes. The experimental results on several real and synthetic data sets re-
port benefits in terms of classification accuracy, particularly when the second
approach is considered. Besides, we assess a common problem in many real
world problems, the “class imbalance change” [10] in classification. In a non-
distributed framework, this problem appears when the class balance changes
between training and test data sets, due to sample selection bias or non-
stationarity of the environment [18]. In our case, unbalancedness happens
when the feature distributions differ between nodes. Distributed real-world
data sets are usually not symmetric, i.e. the distributions of data for dif-
ferent locations may not be the same. Imagine a group of epidemiologists
studying the spread of hepatitis-C in Europe. They are interested in detect-
ing any underlying relation of the emergence of hepatitis-C in Europe with
the weather and social patterns. They have access to some large hepatitis-C
country-specific databases and an environmental database at EEA (Euro-
pean Environment Agency). These patterns could change considerably from
one country to another (e.g. from Denmark to Italy). Besides, analyzing
the data from these distributed datasets using a traditional data mining al-
gorithm will require combining the databases at a single location, which is
quite impractical, or perhaps not possible due to memory reasons or to pri-
vacy issues. It will be shown that our model works particularly well in these
scenarios.

The remainder of this paper is organized as follows. Our distributed learn-
ing model is introduced and analyzed in detail in Section 2. Specifically, the
considered framework and the rationale of the proposal are discussed in Sec-
tions 2.1 and 2.2, respectively. A scheme of the methodology is outlined in
Section 2.3, and the key issues of the procedure involving the choice of the
distributional distance, the weighting criteria and the way of combining the
single classifier outputs are discussed in Sections 2.4, 2.5 and 2.6, respec-
tively. The results from an experimental study involving simulated and real
data sets are presented in Section 3, which is structured as follows. The
experimental design is described in Section 3.1. Different classification algo-
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rithms, combination strategies, and partition sizes have been considered in
both balanced and unbalanced scenarios. Some results from a pair of specific
experiments conducted to motivate our approach are shown in Section 3.2,
and the bulk of experimental results are analyzed in Section 3.3. Additional
results from our experiments are also provided in Appendix A. Lastly, com-
putational complexity is addressed in Section 4 and some concluding remarks
and proposals for future research are given in Section 5.

2. A novel distributed learning model

This section is devoted to formally establish the distributed classification
problem and describes in detail the learning model we propose.

2.1. Background

Consider a population Ξ characterized by pairs of measurements (x,C) ∈
X × C, where X denotes a domain of d-dimensional feature vectors and
C = {C1, . . . , Cm} is a set of m class labels. Denote by P (x,C) the joint prob-
ability function over X × C. In a standard classification context, a classifier
based on a training sample of n labeled objects Z = {(x1, C1), . . . , (xn, Cn)}
is used to predict the class of unlabeled features. In a horizontally dis-
tributed framework, the population Ξ spreads across p disjoint nodes, let us
say P ≡ {N1, . . . ,NP}, and the training data set brings together instances
from the different nodes, i.e. Z = ∪p

i=1Zi, with Zi formed by ni instances
belonging to Ni, with

∑p
i=1 ni = n.

In this paper we focus on a distributed environment where a set T of
t unlabeled instances is available and our target is to estimate their labels.
The availability of a whole set of unlabeled instances T enables us to gain
knowledge about the underlying distribution of X and to assess how well this
distribution is represented at each node. As we will see later, our learning
model relies on these distributional distances so that the availability of T is
a basic requirement.

In addition, our learning model is constructed under the standard assump-
tion that the training set Z and the test set T are independent and identically
distributed samples drawn from the population in study, and therefore fol-
lowing the probability model given by P (x,C). Note that this stationarity
assumption is the default assumption in many learning scenarios. No dis-
tributional or other assumptions are required on the data or how they are
distributed across nodes. In fact, data within each node could follow different
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distributions since no constraints on the fragmentation scheme are imposed.
In particular, our framework encompasses scenarios with unbalanced nodes
[19] or with data-driven partitions on the basis of heuristic rules stated to
obtain better classification rates [8].

We also impose the restriction that no communication between nodes is
required. Intelligent interaction between nodes, e.g. taking advantage of the
most informative data at each node, can improve the classification accuracy
[7]. Nevertheless, exchanging information between nodes is frequently unfea-
sible in real problems dealing with distributed data for different reasons such
as storage cost, communication cost or private and sensitive data, among
others [24].

2.2. An overview of our approach
A common approach in distributed learning [2] consists of building clas-

sifiers trained at each node Ni using Zi, i = 1, . . . , p, and then combining the
classifier outputs by means of a proper ensemble learning strategy [9]. In our
approach, we intend to take advantage of the availability of T to gain insight
into the marginal probability distribution of the feature vectors, and using
this knowledge to modulate the importance of each individual classifier in
the combination rule. Specifically, we wish to estimate the posteriori prob-
ability that the j-th instance in T , with observed feature vector xj, belongs
to the class Ck, for k = 1, . . . ,m and j = 1, . . . , t. Under the stationarity
assumption and given that P is a partition of Ξ, we have

P (Ck |xj )P (xj) =

p∑
i=1

P (Ck |xj,Ni )P (xj |Ni )P (Ni) , (1)

where P (xj) denotes the marginal density of xj, P (xj |Ni ) the density of xj

conditional on the i-th node, and P (Ni) the prior probability of an instance
is allocated to Ni.

Let ωji be the ratio defined by ωji =
P (xj |Ni )

P (xj)
, for i = 1, . . . , p. Then,

from (1) follows that

P (Ck |xj ) =

p∑
i=1

P (Ck |xj,Ni )ωjiP (Ni) . (2)

Equation (2) establishes that the posteriori probability of the class Ck given
an observed feature vector xj is a weighted average of the posteriori proba-
bilities within each node, with weights depending on the node size and the
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ratios ωji. By definition, ωji measures how well represented is the observed
feature vector xj in the i-th node. Whether the partition P has been set
evenly and uniformly at random, the feature vectors within each node fol-
low similar distributions and ωji will take values close to one for all j and i.
Otherwise, markedly unbalanced nodes will produce very different ωji.

The value of P (Ck |xj ) can be directly estimated from (2) as long as the
remaining involved probabilities are previously approximated. The posteriori
probability within each node, P (Ck |xj,Ni ), is estimated using the classifier
trained at Ni and whose output consists of a vector of m belief values. The
proportion of training data belonging to the i-th node can be taken as an
estimate of P (Ni). For the sake of simplicity and computational efficiency,
we will assume nodes of equal size so that the weight of a single prediction
is not affected by the nodes’ sizes. Lastly, the behavior in probability of the
feature vectors over Ξ and over each node Ni can be modeled with nonpara-
metric kernel densities based on the features forming T and Zi, respectively.
Nevertheless, this involves several difficulties. First, we could face the “curse
of dimensionality” problem since the dimension of the feature space may
be arbitrarily large. Moreover, we look for a learning model able to manage
different types of features, including mixtures of discrete and continuous vari-
ables. But even assuming an affordable dimension and continuous features,
(p + 1) kernel densities should be obtained, which substantially increases
the likelihood of estimation errors. In particular, small errors estimating
P (xj |Ni ) or P (xj) might produce arbitrarily large or small coefficients ωji,
thus leading to overweight or underweight the predictions in specific nodes.

To overcome these drawbacks, the computation of the (p+1) kernel densi-
ties is circumvented by directly estimating the coefficients ωij. Two different
approaches are proposed. In both cases, the aim is to measure the dissim-
ilarity di between the feature distributions on the i-th node and the global
population, hereafter denoted by FNi

and FX , respectively. A suitable dis-
tance between high-dimensional distributions is considered, and then specific
values for di, i = 1, . . . , p, are obtained using the empirical distributions based
on Zi and T . The first proposal consists in taking ωji = K ·d−1i , for all j and
i, and K being a constant. This way, all the instances in T receive the same
weight at each node, which decreases with the distance between FNi

and FX .
The second proposed approach is not simply based on the global distance
between empirical distributions. The weights ωji are determined in order to
maximize the matching between FNi

(xj) and FX (xj), for all xj ∈ T . Unlike
the prior approach, the test instances receive different weights ωji at the same
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node. The effective computation of the weights is formalized throughout an
optimization problem. A detailed description of the two proposed weighting
criteria is provided in Section 2.5.

2.3. Outline of the methodology

We propose a distributed learning methodology consisting of the following
four stages.

Step 1 Assess the distance between the probability distributions of X on
the i-th training node Ni and the global population Ξ using a suit-
able statistic to measure dissimilarity between high-dimensional distri-
butions. Denote by di the normalized distance obtained for the i-th
training node, i = 1, . . . , p.

Step 2 Based on a pre-selected classifier, obtain for each feature vector xj

of the test sample the classifier outputs Yj = {yj1, . . . ,yjp}, where yji

denotes the response generated by the classifier trained at the node Ni,
for i = 1, . . . , p and j = 1, . . . , t.

It is assumed that each classifier output consists of a vector of m mem-
bership or belief values, i.e. yji = (yji1, . . . , yjim), where yjik can be
interpreted as the amount of confidence or evidence in the assignment
of the feature xj to the k-th class, Ck, for k = 1, . . . ,m.

Step 3 Obtain weighted versions of the belief values Yω
j =

{
yω
j1, . . . ,y

ω
jp

}
,

with yω
ji = ωjiyji, where the weights ωji take into consideration the

distributional distances di. Two different criteria are proposed to de-
termine how the weights are constructed.

Step 4 Generate a unique decision for classifying the j-th instance in T ,
with observed feature xj, by combining the corresponding weighted
belief sets {ωj1yj1, . . . , ωjpyjp). Following Kittler et al. [12], several
fixed rules (decision rules) involving functions of the elements of Yω

j

are considered to produce the required unique output.

The key points of the proposed methodology involve: (i) the choice of
the distributional distance di, (ii) the weighting criteria on the belief values
regarding the distances di, and (iii) the selection of a decision rule. Each of
these issues is properly discussed below.
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2.4. Measuring dissimilarity between high-dimensional distributions

To assess the distance between the probability distributions of X over
an arbitrary node Ni and the population Ξ, we propose to use the so-called
energy statistic [21, 22]. Consider two independent samples X and X ′ gen-
erated from multivariate distributions FX and FX ′ , respectively. The energy
distance between X and X ′ is defined by

E (X ,X ′) = 2dX ,X ′ − dX ,X − dX ′,X ′ , (3)

with

dA,B =
1

rs

r∑
u=1

s∑
v=1

‖au − bv‖ ,

where ‖·‖ denotes the Euclidean norm andA ≡ (a1, . . . , ar) and B ≡ (b1, . . . , bs)
denote arbitrary data sets.

Under mild regularity conditions on the generating patterns, Székely and
Rizzo [21] established the consistency of the statistic (3) to check the equality
of the generating distributions FX and FX ′ . Hence E (X ,X ′) can be seen as
a measure of the distance between FX and FX ′ in such a way that the larger
value of the statistic, the more distant are the distributions. By construction,
E (X ,X ′) is based on comparing averages of interpoint distances evaluated
within and between samples, which means to move the multidimensional
problem to dimension one. Thus, the energy distance is particularly attrac-
tive to be applied in arbitrarily high dimension. It is also worthy to remark
that different types of interpoint distances could be used to construct E(·, ·),
thus providing versatility to deal with features taking nominal, categorical,
continuous and also mixed values. Also, the good analytical properties of
the energy distance will allow us to formalize in the next section a suitable
optimization problem designed to provide useful weights for the belief values.
Supported by these nice properties, we decided to evaluate the distributional
distance between each Ni and Ξ by means of the energy distance between
the i-th training sample and the test sample, i.e. by di = E (Zi, T ), for
i = 1, . . . , p.

2.5. Weighting the belief values generated by the single classifiers

From Step 2 of the proposed methodology, the outputs of the single clas-
sifiers Yj = {yj1, . . . ,yjp} are available for each feature vector xj of the test
sample. As mentioned, we assume that yji is a vector of levels of belief in the
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assignment of xj to each of the classes. Working with belief levels enables
us to analyze the performance of a range of efficient classifier combination
rules [12] in Step 4 of the proposed methodology. Step 3 consists in correct-
ing these belief values by introducing the distributional distances di. Two
different criteria are proposed.

One approach consists in assigning weights in inverse proportion to the
energy distance for the corresponding node, i.e. ωji = K · d−1i for all j,

where K =
(∑p

i=1 d
−1
i

)−1
, is a normalizing constant used to make the sum of

weights equal to one. This way, the belief values generated from each local
classifier receive a common weight for all instances in the test set, resulting
yω
j = K d−1i yj, for all j = 1, . . . , t. Hereafter this weighting approach will be

referred to per-Node Weighting and denoted by pNW.
In order to provide a finer grain approach where the belief degrees per

instance in the test set receive different weights, an alternative weighting
approach is proposed. The aim is to assign weights in order to minimize the
energy distance between each training sample and the test set. The procedure
can be understood as if, for each node Ni, a weighted resampling scheme of
the test set is carried out to overweight belief values associated to instances
better represented at the node than in the test sample. Features xj allocated
in low probability zones in the test set but belonging to high probability
zones in a specific node will receive high weights, and conversely instances
with low probability in the test set but high probability in the node will be
downweighted (see Figure 1). By assigning high weights to instances with low
representation in the test set but well-represented at the node, we ensure an
efficient use of the training samples. Notice that equation (2) in Section 2.2
leads to theoretical weights ωji = P (xj |Ni ) /P (xj), thus accounting for the
rationale of this approach. Unlike the per-node belief approach, under this
new weighting criterion each node produces a weight for each instance in
the test set. For this reason, this weighting approach will be referred as
per-Instance Weighting and denoted by pIW.

According to the definition of the energy distance in (3), the per-instance
weights for the set of test instances at the i-th node, ωi = (ω1i, . . . , ωti), are
obtained by minimizing the objective function E (ωi) given by

E (ωi) = 2DZi,T ω
T
i −DZi,Zi

− ωiDT ,T ω
T
i , (4)

where DA,B is the matrix whose (u, v)-element is DA,B(u, v) = ‖au − bv‖, for
arbitrary data sets A ≡ (a1, . . . , ar) and B ≡ (b1, . . . , bs).
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Figure 1: Graphical illustration of the per-Instance Weighting (pIW) criterion.

In practice, the minimization of E(ωi) is posed by means of the optimiza-
tion problem:

minimize
ωi

1

t
DNi,T ω

T
i − ωiDT ,T ω

T
i

subject to

p∑
i=1

ωi = 1, ωi � 0.

2.6. Combining the belief values generated by the single classifiers

Last step in the proposed methodology consists in combining the weighted
outputs of the single classifiers trained at each of the nodes, namely the vec-
tors of belief degrees yω

ji = ωjiyji = (ωjiyji1, . . . , ωjiyjim), whose k-th element
yωjik = ωjiyjik provides an estimate of the posteriori probability P (Ck |xj,Ni ),
for k = 1, . . . ,m. Having available continuous outputs in form of belief val-
ues allows us to consider different functions of these values, so-called decision
rules [17], to get a unique output. Kittler et al. [12] argue that the deci-
sion rules provide a useful approach to circumvent the complex problem of
inferring the posteriori probability function

P (xj is assigned to the class Ck |yj1, . . . ,yjp ) ,

which would allow us to determine the most likely class using the Bayesian
theory. Some alternative classifier combination approaches include tech-
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niques such as Stacked Generalization, Meta-Learning, Knowledge Probing
and Effective Stacking [17]. Nevertheless, these methods work training a
new classifier based on single outputs produced by each node, which requires
access to a common training set or sharing of private training information
among nodes, thus limiting their applicability and violating the condition of
no communication between nodes stated in Section 2.1. Supported by these
arguments, we propose to use some of the most popular decision rules to
generate the final assignment.

Following Kittler et al. [12], where a common theoretical framework for
different decision rules is provided, we have considered in our experiments
the set of rules presented below. In all cases, we assume that the belief values
have been normalized so that P (Ck |xj,Ni ) = yωjik/

∑m
l=1 y

ω
jil, for all j and i.

• Product rule. The instance with observed feature vector xj is assigned
to the class Ck if

p∏
i=1

yωjik = max
1≤l≤m

p∏
i=1

yωjil.

Note that, under this rule, a class with a zero or very small belief
value from only one node will receive a zero or very small combined
belief degree, even if the rest of nodes provide high belief degrees to
the mentioned class. Hence, this rule will exhibit a bad performance if
for example a class is not represented in a particular node.

• Sum rule. The instance with observed feature xj is assigned to the
class Ck if

p∑
i=1

yωjik = max
1≤l≤m

p∑
i=1

yωjil.

The theoretical support for the sum rule lies on assuming that the pos-
teriori probabilities do not deviate greatly from the prior probabilities
[12], that is P (Ck |xj,Ni ) = P (Ck) + εjk, with εjk taking very small
values for all k and j. Kittler et al. [12] have shown that the sum rule
is less sensitive to the estimate errors than the product rule.

• Max rule. The instance with observed feature xj is assigned to the class
Ck if

max
1≤i≤p

yωjik = max
1≤l≤m

max
1≤i≤p

yωjil.
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The class obtaining the highest belief degree over all the nodes is se-
lected as combined output. It can be shown that this rule approximates
the sum rule under the assumption of equal prior probabilities for the
classes.

• Min rule. The instance with observed feature xj is assigned to the class
Ck if

min
1≤i≤p

yωjik = max
1≤l≤m

p

min
i=1

yωjil.

Assuming as before that classes are a priori equiprobable, the min rule
approximates the product rule.

• Majority vote rule. The instance with observed feature xj is assigned
to the class Ck if

p∑
i=1

∆jik = max
1≤l≤m

p∑
i=1

∆jil,

where ∆jil = 1 if yωjil = max1≤u≤m yωjiu and ∆jil = 0 otherwise. There-
fore, the combined output consists in selecting the class receiving the
largest number of votes from the single classifiers. Under the equiprob-
ability assumption for the prior probabilities, this rule matches the sum
rule when the belief values are discretized by using the ∆jil values.

2.7. Some remarks

Some remarks concerning the proposed methodology are highlighted be-
low.

Remark 1. The estimated distributional distance di between a particular
node Ni and Ξ could be small (large) even though a few test instances are
bad (well) represented at Ni. In any case, all the classifier outputs obtained
at Ni will receive the same weight when the pNW criterion is used. This is
an unsuitable consequence of taking weights based on the global distance di
such as pNW does. On the contrary, the pIW criterion checks the point-to-
point distribution matching, thus being sensitive to local deviations. Note
that if a feature vector xj is badly represented at a specific node, then it
must be well represented at another node because P is a partition of the
feature domain. In sum, the pIW criterion is expected to outperform the
pNW one, and the improvement would be more substantial with unbalanced
nodes. In our experimental evaluation in Section 3.3, both weighting criteria
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are examined and compared with a standard approach without weighting the
single belief values (an unweighted approach denoted by UW). A scheme of
the three distributed approaches is shown in Figure 2.

Figure 2: Distributed approaches schemes.

Remark 2. In a non-distributed classification context with different distribu-
tions for the training and test sets (sample selection bias problem), Huang
et al. [11] proposed to use the unlabeled data to reweight the training data
in such a way that the means of the training and test features in a repro-
ducing kernel Hilbert space are close. Although in a different context, this
is a similar idea to the pIW approach and it is worthy to emphasize the
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main differences. In our work, the reweighting process is applied to the test
data because the nodes cannot be retrained in our distributed scenario. On
the other hand, a key assumption in [11] is that the conditional probability
of C|x is the same for the training and test populations so that the bias is
only exhibited by the feature distributions. In our framework, stationarity
is assumed and therefore the bias can only be present between nodes. Nev-
ertheless, it is not necessary to require that the conditional probabilities of
C|x remain unchanged across the nodes, which would be a very restrictive
constraint.

Remark 3. As already mentioned, Kittler et al.[12] pointed out some nice
properties of the sum rule to combine the single classifier outputs. Beyond
these properties, equation (2) provides theoretical support to use this crite-
rion since the posteriori probabilities are expressed as a weighted sum of the
single classifier outputs within each node.

Remark 4. The proposed learning model is not restricted to the use of a par-
ticular classification model at each node. The unique requirement is that the
classifier outcome consists of a vector of belief values or posteriori probabili-
ties of the classes for a given feature vector. Thus, artificial neural network,
logistic regression, support vector machines, Bayesian classifiers, and Ran-
dom Forest could be used among others.

3. Experiments

An empirical study addressed to motivate and evaluate the performance
of the proposed learning models has been carried out. A description of the
experimental procedure and an overview and discussion of the main results
are presented in this section.

3.1. Experimental setup

The main characteristics of the experiments are detailed below.

Classifiers. To study the interaction between the distributed learning mod-
els and the classifier type, five classification algorithms are considered, namely
Random Forest (RF), a support vector machine with RBF Kernel (SVM),
the Fisher’s linear discriminant (LDA), the classifier based on multinomial
logistic regression (Mult), and the XGBoost (eXtreme Gradient Boosting) al-
gorithm (XGB), a fast implementation of the gradient boosting using decision
trees. All of them were executed by using different R packages, randomForest
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[14] for RF, e1071 [16] for SVM, xgboost[6] for XGB, and MASS and nnet

[26] for LDA and Mult, respectively. The default parameters are taken in
all cases since our concern is not to determine the most efficient inputs but
comparing the models under homogeneous conditions. All classifiers provide
the options to output belief values in addition to classes

Data sets. Seven data sets are used to analyze the coupling between the
proposed method and the underlying classification problem. Five databases
(Spambase, KDD Cup 99, Connect-4, Covertype, and Higgs) contain real
data and are available from the UCI Machine Learning Repository [15]. The
other two databases (Simul-C2 and Simul-C8) consist of synthetic data gen-
erated from simulated classification scenarios. The main characteristics of
these data sets are summarized in Table 1, including the total number of
instances, the dimension d of the feature space, and the number m of classes
forming C.

Table 1: Data sets characteristics

Dataset # Instances # Features # Classes
Spambase 4,601 57 2
KDD Cup 99 825,050 41 5
Connect-4 67,557 42 3
Covertype 581,012 54 7
Higgs 100,000 28 2
Simul-C2 5 2
Simul-C8 3 8

To get a quick understanding on the nature of these data sets, a very
brief description of each one is provided below.

• Spambase. Data set based on the properties of diverse “spam” con-
cept. It includes 4,601 instances corresponding to e-mail messages,
1,813 of which are spam. From the original e-mail messages, 57 at-
tributes were computed, most of them indicating whether a particular
word or character frequently occurred in the e-mail.

• KDD Cup 99. Benchmark data set in the intrusion detection field,
which contains 5 million instances featured by 41 attributes and 39
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types of distinct attacks, grouped into four classes of attack (DoS,
Probe, R2L and U2R) and one class of non-attack (normal pattern)
[1]. In our study, a smaller subset with 494,021 instances is used as
training sample (10% of the original training set). For the test set, we
used a subset of 331,029 patterns including new attacks that are not
present in the training set. Around 20% of the two datasets are normal
patterns (no attacks). The percentages of class labels for the training
and test sets are shown in Table 2. As can be seen, the percentage of
attacks in both data sets is very high, overcoming 80%, where most of
the attacks belong to type DoS. Furthermore, it is a very unbalanced
data set, with some classes (such as U2R and R2L) formed by very few
instances. Due to these characteristics, KDD Cup 99 becomes a real
challenge for the classification task.

Table 2: Distribution (in percentage) of normal activities and kinds of attacks in KDD
Cup 99 data set.

Type Training set Test set
Normal 19.69 19.48
DoS 79.24 73.90
Probe 0.83 1.34
R2L 0.23 5.21
U2R 0.01 0.07

• Connect-4. This data set contains all legal 8-ply positions in the
game of Connect-4 in which neither player has won yet, and where the
next move is not forced. The dataset contains 67,557 instances repre-
sented by 42 attributes indicating whether a particular board position
is occupied by the first player, the second player or it is black. The
outcome class indicates if the attributes lead to a win, loss, or draw for
the first player.

• Covertype. It contains the forest cover type for 30 x 30 meter cells
obtained from US Forest Service (USFS) Region 2 Resource Informa-
tion System (RIS). The database has 581,012 instances. The feature
vectors are measurements of 54 cartographic variables used to predict
the forest cover type (seven types are available).
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• Higgs. The Higgs boson data set was generated using Monte Carlo
simulations of physics events. The feature vectors include: 21 attributes
with kinematic properties measured by the particle detectors in the ac-
celerator, and 7 attributes with high-level features derived by physicists
from the first 21 attributes. The target is to determine whether or not
an event corresponds to the Higgs boson. In our study, a subset of
100,000 instances of the original database is considered.

• Simul-C2. Consider a square grid of size 3 in dimension 5 and, cen-
tered at each grid node, a 5-dimensional Gaussian distribution with
uncorrelated components of equal variance 0.052. Each Gaussian is as-
signed to one of m = 2 possible classes at random. In this scenario, an
identical number of data are drawn out from each Gaussian to form our
first synthetic data set. Figure 3 provides an intuition on the structure
of Simul-C2 in dimension 2. This scenario lets us have an exact knowl-
edge of the complexity of the classification task in order to derive some
insight into the results.

1 2 3

111

222

333

Figure 3: Plot of a simulated trial from a 2-dimensional version of Simul-C2 scenario.
Color identifies the class.

• Simul-C8. Synthetic data set generated in a similar way as Simul-C2,
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but now with 3-dimensional Gaussian distributions randomly assigned
to m = 8 classes.

Sample size. At each experimental trial, the sizes of both the training
sample Z and the test sample T are fixed to 500, i.e. n = t = 500. The
training sample is then equidistributed between the nodes so that ni = 500/p,
for all i = 1, . . . , p.

Balancedness. Since no constraints on the fragmentation scheme are im-
posed, it is interesting to check the behavior of our learning model with
balanced and unbalanced nodes, i.e. nodes exhibiting similar or different dis-
tributions, respectively. The balanced scenarios are recreated by allocating
instances to each node at random and without replacement while maintain-
ing the class proportions. The unbalanced scenarios are set up as follows.
First, one node with the same class proportions as the entire training set is
formed. For the rest of nodes, the class proportions are perturbed by multi-
plying each one of them by a random number uniformly generated between
0.3 and 1.7, and then normalizing. In consecutive nodes, the overall class
proportions are updated on the basis of the number of remaining training
instances, and sampling without replacement is always carried out.

Partition size. To assess the classification accuracy as data fragmentation
increases, the training set was randomly split into 2, 4, 7, 11 and 15 nodes.
The unique randomization restrictions are imposed by the class proportions
at each node, which depend on whether a balanced or unbalanced scenario
is considered.

Decision Rules. The belief values generated by the classifiers at each node
are combined according to the five decision rules enumerated in Section 2.6,
namely the Product, Sum, Max, Min and Majority rules.

3.2. Some motivating experiments

By construction, the proposed learning models take into account the dis-
tances between the probability distributions of the features in the population
and within each node. The heuristic is that, in general, smaller distributional
distances between training and test sets tend to produce better classification
results. Indeed, the key issue is how these distances should be jointly used to
attain this improvement. Beyond this issue, a pair of motivating experiments
designed to provide empirical support for this heuristic have been carried out.
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T h e first e x p eri m e nt c o nsist e d i n c h e c ki n g f or t h e e xist e n c e of n e g ati v e c or-
r el ati o n b et w e e n distri b uti o n al dist a n c e a n d cl assi fi c ati o n a c c ur a c y. I n t h e
s e c o n d o n e, a distri b ut e d s c e n ari o is c o nsi d er e d, a n d t h e n t h e pr o p orti o n of
ti m es t h at t h e n o d e wit h t h e s m all est distri b uti o n al dist a n c e pr o d u c es t h e
b est cl assi fi c ati o n a c c ur a c y is m e as ur e d.

F or t h es e s p e ci fi c e x p eri m e nts, t h e S p a m b as e d at a s et is us e d a n d t h e
wit hi n- n o d e distri b uti o ns ar e g e n er at e d a c c or di n g t o t h e u n b al a n ci n g a p-
pr o a c h d es cri b e d i n S e cti o n 3. 1. T h e n u m b er of n o d es is s et t o p = 5 a n d
a tr ai ni n g s a m pl e of si z e n i = 2 0 0 is us e d at e a c h n o d e t o tr ai n a R a n d o m
F or est cl assi fi er.

C o nsi d eri n g t est s a m pl es wit h t h e s a m e si z e, t = 2 0 0, t h e first e x p er-
i m e nt c o nsist e d i n m e as uri n g t h e distri b uti o n al dist a n c es b et w e e n tr ai ni n g
a n d t est s a m pl es usi n g t h e e n er g y dist a n c e d i i ntr o d u c e d i n S e cti o n 2. 4, a n d
si m ult a n e o usl y c o m p uti n g t h e pr o p orti o n of t est d at a c orr e ctl y cl assi fi e d at
e a c h n o d e. T his pr o c ess w as p erf or m e d f or a l ar g e n u m b er of tri als, a n d t h e
o ut p uts ar e pl ott e d i n Fi g ur e 4. A cl e ar n e g ati v e c orr el ati o n b et w e e n dis-
tri b uti o n al dist a n c e a n d cl assi fi c ati o n a c c ur a c y is o bs er v e d, t h us s u p p orti n g
t h e ar g u m e nt t h at l ess dist a nt n o d es t e n d t o pr o d u c e b ett er cl assi fi c ati o n
a c c ur a c y.

●
●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●
●
●  ●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●●

●

●

●

●
●

●

● ●
● ●

●

●

●

●

●

●
●●

●
●

●

●
●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

● ●

●

●

● ●● ●

●

●● ●

●

●
●

●

●

● ●●
●

●● ●

●

●

●
●

●

●
●

●

●

●

●

●
●●●

●
●● ●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●● ●

●

●

●

●
●

● ●
●

● ●
●

●

●

●
●●●

●
●

●
●

●●
●

●

● ●●

●
●

●
●

●● ●

●

●●

●
●●

●

●

●●

●

●
●

●

●

●

●●

●

●●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●
●●

●
●●  ● ●

●
●

●●●

●

●

●

●

●

● ●●●
●●

●
●

●

●

●●  ●

●
●●

●

●
●
●
●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

● ●
●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

● ●
● ●●  ●

●

●

●

●

●●●
●

● ●

●

● ●

●
●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●
●

● ●●

●
●

●●

●  ●

●

●

●

● ●

●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
● ●●

●
●

●
●  ●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●● ●

●●
●

●

●
●

●

●
●

●
●

●
●

●

●
● ●

● ●

●
●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●
●●

●

●  ●
●

●●

●

●

●●

●

●

●

●

●

●
●

●●  ●● ●●●●
●

● ●

●

●
● ● ●●

●

●
●
●

●

●
●

● ●
●

●
●

●

●

●●

●

●

●

●
●

●

●

● ●

●●
●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●
●
●● ●●

●

● ●

●

●

●

●
●●

●

●●

●
●

●

●

●●

●

●

●

●
●

●●  ●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●● ●

●

●

●

●●

●

● ● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●
●
●
●●
●

●● ●
●

● ●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●
●●

● ●

● ●

●

● ●

●
●
●

●
●

●● ●
●

● ●
●● ●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●●

●

●  ●
●●

●

●●  ●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●  ● ●
●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●●

●

● ●

●

●

●
●

●●
●

●

●
●

●

●

●

●●●

●

●
●

●

●●
●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●●●
●●

●

●

●
● ●

●

●

●

●
● ●

● ●

● ●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●

●●

●

●

●

●●

●●

●
●

●

●●

●  ●

●
●

●●

●
●●

●
●

●

●
●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●
●

●

●●
●

●
●

●
●● ●

●

● ●
●

●
● ●●

●
●
●

●

●
●● ●

●

●

●

●  ●

●

●

●

●●

●

●
●
● ●● ● ●

●
●●

●

●

●

●
●

●

●●
●

●

●●
●●● ●

●

●

●

●
●

●

●

●

● ●
●

●

●●●

●

●
●

●●  ● ● ●  ●●●
●

●

●

●

●

● ●

●

●● ●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
● ●

●

●

●

●

●  ●

●

●

●
●● ●● ●●

●●

●

●

● ● ●
●● ●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●  ● ● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●● ●
●●

●  ● ●●

●

●●
●●

●

●●
●

●
●

●

● ●

●
●

●
●

●

●

●
●

●
● ●●

● ●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●●●
●

●
●

●
●

●
●

●

●

●● ●
●
●

●

●●  ●
●

●

●

●

●●
●

●  ●●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●  ●
●

●

●

●●
●

●

●● ●●●● ●
●●●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●
●●●
●

●

●

●
●

●●

●

●

●

●

●

●● ● ●
●

●● ●● ●●
●

●
●

●

●

●

●

●●●
●
●

●

●

●

●
●

●
●
●

●

●

●

●

●● ●● ●●

●
●

●

●

●●

●
●

●

●●
●

●

●●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●●●

●

●
● ●

●

●
●●

●
●●

●

●

●

● ●

●

●
●

●

● ●

●
●●

●
●●

●

●

●●
●

●

●●

●

● ● ●
●

●●

●

●

●
● ● ●

●

●●●

●

●
●

●

●

●

● ●

●

●

●
●

●
● ●

● ●●
●

●●

●

●

●

●

●●

●

●

●

●

● ●●

●  ●

●
●  ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●●
●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

● ●
●

●

●

●●
●

● ●●

●●

●
●

●

●
●

●
●

●

●●

●

● ●

●●
●
●

●

●
●

●

●

●

●

●●
●

● ●

●
●  ●

●

●
●

●
●

●

●

●

●
●

●

●
● ●

● ●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

● ●
●● ●  ●●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●● ●●
●

●
● ● ●

●

●●

●

●

●

●
●

●

●●
●●● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●● ●

●

●
● ●

●
●

●

●

●
●

●

●
●

●

●●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●
●●

● ●
●

●

●
●

●

●

●

●● ●●
●

●

●

●

●

●

●●
●

● ●

●● ●

●

●
● ●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●●

●
●

●
●

●

●●
● ●

●● ●●●  ●

●● ●

●

● ●

●

●
●

●

● ●

●

●

● ●

●

●
●●

●

●

●●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●●

●

●
●

● ●

●

●
●

●
●

●

●

●●
●

●

● ●●●
●

●●

●

●

●

●  ●
● ●

●
●

●

●

●
●

●●
●

● ●
● ● ●

●

●

●
●

●●●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●● ●
●●

●

●

●●

●

●

●
●

●

●
●● ●●

●

●

●
●

●● ●

●

●
●

●  ●● ●●●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●● ●

●

●●
●●

●

●
●

● ●●
●

●

●

●

●

●

●
●● ●

●
●

●

● ●
●

●
●

●

●

●●● ●
● ●

●

●

●

●

●

●●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●●  ●
●

●
●

●● ●
●● ●

●
●

●

●

● ●●

●

●
●

●

●
●

●

●
●

●
●●
●● ●

●

●

● ●

●

●

●
●● ●

●

●

●

●  ●

●

●●
●
●

●
●

●
●
●

●

●●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●
● ●

●

●
●

●

● ●●●
●

●
●
●●

●
● ●

●

● ●
●●

●

●

● ●
●

●
●●

●

●

●●●● ●
●

●● ●  ●

●

●

●

●●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
●●

●●●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
● ●

●

●

●

● ●●
●
●

●
●

●●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●● ●

●●

●

●

●
●●  ●

●

●

●
●
●

●

●

● ●

●

●

●

●

●

● ●
●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●
●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●
●●

● ●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●● ●

●

●
●●

●

●
●● ●

●

●● ●●

●

●  ●●
●

●

●

●

●

●
●

●●
● ●

●

●● ●●

●

●●

●

●

●
●

● ●

●

●
●

●
● ● ●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

● ●●

●

●

●● ●● ●
●

●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●● ●●
●●● ●

●
●

● ●
●

●

● ●

●● ●
●

●

●

●

●

●

●

● ●
●

●

●
●● ●

●

●

●
●● ●

●

●
● ●

●

●

● ●

●

● ●●
●
●
●

●●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●●

●
●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

● ●

●● ●● ●
● ●● ●● ●●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●
● ●

●

●
●●

●
●

●
●

●
●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

● ●●

●

●
● ●●●
●

●

● ●●●
●  ●
●

●●●

●

●
●

●

● ●●●●
●

●

●

●

●
●

●

●
● ●

●

●● ●

●

●

●
● ●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●
● ●●●

●

●

●

●

●

●

●●
●●

●

●

●●●

●

●

●

●
●

●

●

●

●●
●

● ●
●
●●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

● ●●
●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

● ●● ● ●●

●

●
●

●
●●

●
● ●

●

● ●

●

●

● ●

●
●
● ●

●
●
● ●●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●
● ● ●●

●
●

●

●
●●

●

●●
●

●

●

●
●●

●

●●

●●

●

●●
●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●●

●

●

●●● ●
●

●

●

●

●
●
● ●●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●
●

●

●

●
● ●

●
●●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●  ● ●

●

●
●

●
●●

●●
●●

●

●

●
●

●

●

●

●● ●● ● ●

●

●● ●
●

●

●
●

●

●

●●

● ●●●
●

●

●

●● ●

●

●
●

●

●●
●● ●

●

●

●

●

●

●

●

● ●

●

●

●

● ●● ●
●

● ●● ●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●●

●

●

●

●

●
● ● ●

●
●
●

●
●

●

●●

●

● ●
●●

●

●

●

●

●

●

●
●

● ●
●●

●● ●

●

●
●●

●

●

●

●

●
●

●

●

●

●●
● ●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●● ●
● ● ● ●

● ●
●

●

● ●
●
●

●● ● ●

●
● ●●

●
●

●

●

●
●

●

●
● ●●● ●●

●●
● ●

●

● ●

●
●

●
●

●●

●

●●
●

●

●

●

●

●

● ●
●

●● ●

●

● ●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

● ● ●

●

● ●

●

●
●

●
●

●
●

●
●

●●
●●

●
●●

● ●
●

●

●

●
● ●

●

●● ●

●

●
●●

●

●●●

●

●

●

●
● ●

● ●●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●

● ●

●

●

●
●

● ●

●

●●●●●
● ●●

●

● ●
●●

●
●●●

●

●

●

●●
●

●
●
● ●●

●

●

●

●

● ●●●
●

●

●

● ●
●●

●

●
●

●

●

●

●
●

●

● ●●●
●

● ●
●●

●

●
●● ●

●
●
●
● ●

●●
●●

●
●

●

●

●

●
●

●
● ●●

●
●

●

●
●●●

●

● ●
●

● ●
●

●

●●

●

●

●
●●

●

●
● ●

●●

● ● ●
● ●

●

●
●●

●

●●
●

●
●

●

● ●●
●

●

●
●● ●

●
●

●●●
●

●  ●● ●

●

●

●
●

●

●

●
●●

●

●

●

●

● ●

●

●●
●

●

●

●
●

●

●

● ●
●

●

●

●
● ●●

●

●

●

●●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●●
●●

●

●●● ●

●

●
● ●

●

●

●
●

●
●

●

●

●
●

●
●

●●●

●

●
●

●●●
●● ●●

●

●

●

● ●
●

●

●●
●●

●●●

●

●
●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
● ●●

●
●●

●

●

●
●

●

●  ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

● ●

●

● ●
●

●
●● ●●

●
●

●●●
●

●

●●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
● ●●

●

●● ●

●

●

●●●

●

●

●

● ●
●

●
●●

●

●

● ●

●
● ●●

● ●

●●
●●●●●

●●
●●

●

●●● ●
●

●●●
●●

●●●

●

●

●

●●

●

●
●●●
●

●●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●● ●●
●

●●●
●●

●

●

●
● ●●

●
●  ●

●

●

●
●●● ●

●

●

●
●

● ●

●

●

●
●
●
●

●●
●

●

●

●

●

●

●● ●●

●

●

●
●

● ●●
●

●

●
● ●●

●

●
●

●

●

● ●

●

●
●

●

●●

●
●

●

● ●
●

●

●
●
● ●

●

●

●

● ●●●
●

●
●

● ●●

●

●
● ●

●●●●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●●●
●

●
●

● ●

●
●

●

●●

●

●

●

●

●
●

● ●

●

●

●
●

●●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●
●

● ●
●● ●

●

●

●

●●
●
●

●●●

●

●

●
●

●

●
●

●

●
● ●

● ●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●●
●  ●

●

●

●

●
●

●
●
● ●●

●
●●

● ●

●

●

●

● ●

● ●●●
●

●

●

●●

●●

●
●●●

●

● ●

●
●

●

●

●●
● ●

●● ●
● ●

●
● ● ●

●

●●

●

●
●

●
●

●
●

● ●●

●

● ●●●
●

● ●

●
● ●
●●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●● ●●

● ●
●

●
●●●

●●
●  ●

●

●

● ●
●

●
●●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●
● ●
● ●

●●

●●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●
●●

●
● ●●

●
●

●

●●

●

●

●
●

● ●●● ●
●

●

●

●

●

●
●

●
●●

●

●

●●
●

●
●

●

●

●● ●

●●

●

●

●
●

● ●
●

● ●

●

●

● ●●

●

●
●

●

●

●

●
●  ●●

●

●● ●

●

●

●●

●

●

●●●
●● ●

●
●

●

● ●●
●

●

●

●

●

●

●● ●
●● ●●

●
●●

● ●●● ●

●

●

● ●
● ●

●
●●

●

●

●●
●

●
●

●● ●
●●

● ●

●

●
●●

●

●

●●

●

● ●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●● ●

●

●
●

●
●● ●

●● ●

●

●
●

●●●

●
●

●●

●

●

●

● ●
●

●
●●

●

●
●

●●
●
●

●

●
●

●
●●

●

● ●
● ● ●

●
●

●
●

●●

●

●
●●
●

●
●

●

●
●●

●
●

●

●
●●

●

●

●
●●

●

●● ●

●

●
●

● ●
●

●

●

●

● ●

●

●
● ●

●

●

●

● ●

●

●

●

●
●
●

●

●

● ●

●
●

●

●●
●

●

●

●
●●

●

● ●
●●

●

● ●

●

●● ●●●●● ●
●

●

●

● ●
●
●

●

●
●●

●
● ●

●

●●

●

●

●
●

●

●
●

●  ●

●

●●
●

● ●

●

●
●  ●

●

●

●

●
● ●●

● ●

●
●

●

●

●●

●

● ●● ●

●

●
●

●
●

●●
●

●
●

●

●●
●

●

●
● ● ●●

●

● ● ●
●  ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●●

● ●

●

●

●

●
● ●

●

●

●

●

●

●● ●
●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●
●●●

●

●
●

●

●●

●

●●

●
●

●●●

●

●

●

● ● ●

●

● ●●● ●
●

● ●●

●●
●

●

●● ●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

● ●

●● ●

●
●

●● ● ●

●

●

●●
●

●
●

●
●

●

●●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●● ●
●

●

●
●

● ●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●●

●

●

●●●
●●

●

●
●● ●

●
●

● ●●

●

●

●
●

●● ●

●

● ●
●

●●●●
● ● ●●

●
●

● ●

●

●

●

●

●

● ●●
● ●

●

● ●

●

●
●

●

●

●

●●

●●●●

●

●● ●●
●

● ●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

● ●●

●●

●
●

●
●●

●

●
● ● ●

●

●

●●

●

● ●
●

●

●
●●● ● ●

●
●●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●
● ●

●●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●● ●● ●●●

●
●
●

●● ●
●

●

●●
●

●

●●

●●

●●
●

● ●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●
●

●

●

● ●

●

●

●

●

●

● ●●
●

●

●●

●

●

●

●

●

● ● ●●

●

●● ●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●  ●●
●

●

● ●
●

●

●

●
●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

●

●
●●

● ●

●

●
●

●● ●●

●

●
●

●
●

●

●
●

●

●
●

●

●

● ●●●● ●●
●●●

●

●

●

●

●

●●
●

● ●

●
●

●

●● ● ●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●
● ●●

●

●

●

●

●

●

●● ●● ●●
●

●

●

●

●● ●

●

●
●

●
●

●

●

●●●
●

● ●

●
●

●

●
●

●
●● ●●

●
●

●

●

●● ●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●
●

●
●

●
●●

●

●

●

●

●

●●

●

●
●●

●

●●
●●

●

●

●

● ● ●●
●

● ●● ●

●

●

●●
●

●
●

●

●● ●
●●

●

●●
● ●

●

●

●●

●

●

●
●

●

● ●

●

●
● ●

●

●
●●

●

● ●
●

● ●

●

●

●
●●

●

●

●

● ●●
●● ●●

●●
●

●

●
●●

●

● ●

●

● ●●●●
●

●

●
●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●
● ●●

●
●

● ●●

●

●
●

● ●
●

●

●
●

●● ●●
●

●●

●

●

●

● ● ●
●

●●
●

●
●

●●
●

●

●●
●

●

●

●
●

●

●

● ●●●
●

●

●

● ● ● ●

●

● ●●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

● ●
●
●●●
●●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●● ●

●
● ● ●●

●

●

●
● ●● ● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●
●

●

●
●●

●
●

● ●
● ●

●

●●
● ●●●

●
●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●

●

●●
● ●

●●

●

●●

●

●
●

●●
●●

●

●
●

●

● ●
●● ●

●

●

●
● ●

●

●

●

● ●
●

●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●
●

● ●
●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●●
●

●

●

●

●●●

●

●

●
●

● ●

●

●
●

●

●

●

●●
●

●

●

● ●

● ●● ●

●

●

●

●

●● ● ●●
●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●●●
● ●

● ●

●

●

●●
●
●

●

●● ●

●

●
●

●
●

●

●●
● ●
●

● ●

●

● ●

●

●

●
●

●
●

●
● ●● ●●

●

●

●

●

●

● ●

●

●

●

●
● ●●

●

●
●●

●

●
●

●
●

●

●● ●

●
●

●

●
●

●

● ●

●

●
●

●

●●●

● ●

●

● ●●

●

●
●

●

●

● ●●
●
●

●

●
●

●

●
●

●
●

●
●

●

●●
●

●
● ●

● ●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●
● ●●

●

●

●●
●
●●●

●

●

●

●

●
●●

● ●●

●

●

●

● ●

●

●
● ●

●

●

●

●

●●
● ●

●

●
●●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●●

●
●●

●● ●● ●●●

●

●● ●
●

●

●

●

● ●

●

●

●
●
●

●

●
●

●●●
●

●

●

●

●

●
●●

● ●
● ●●●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●

●
●

● ●●

●

●
●● ● ●●●

●

●

● ● ●

●

●
●

●● ●
●

●

●●
●

●
●

● ●

●
●●

●
●

●

●●

●

●
● ●
●●●

●

●

●

●

●

● ●●●

●
●

●

●

●

●

● ● ●
●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●●●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●● ●●●●

●

● ●●
●

●● ●●●

●

●

●●

●●

●

●

●●●

●

●●
●●

● ●

●
●

●

●●● ●

●
●

●● ●
●● ●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●● ●

●

●
●●

●

●

●

●●
●

●

●
●●

●

●

●●● ●

●

●

●

●

●

●●

●●●●
●

●
●

● ● ●●●

●

●
●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

● ●●●

●

●
● ●●

●

●

●
●

●

● ●

●

●

● ● ●●

●

●

● ●●

●
●●

●
● ●

●
●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●● ● ●
●● ●●

●

●
●

●
●

●

●

●●

●
●

●
●●●
●●

●
●

●

●

●
●

● ●●● ●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●
●

●

●● ● ●● ●

●

●

●● ●

●

● ●●● ●

●

●
●● ●●

●

●

●●

●

●

●

● ●●

●
●●

●
●

●
●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●
● ●

●

●

●
●

●
●

●●

●

●
●

●
● ●

●
●

●

●

● ●● ●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●
●

● ●

●

●●● ●

●

●

●

●

●

●

●

●● ●● ●

●

●●
●●●

●

●

●

●

●
● ●●

●

●

●
●● ●●
●

●
●

●
●●

●

●

●
●● ●

●

●

●●

●

● ●

●

●

●

●
●

●

● ●●

●
●

● ●
● ●

●

●

●

●●

●
●●●

●

●

●
●

●
●

●

●●● ●
●●

●

●● ●
●●

●● ●●● ●

●

●●
●●

●

●●

●

● ●

●
●

●●
●

●

● ● ●

●

● ●

●

●

●

●

●
●

● ●
●

●
●

●

●
●

●
●

●
●

●

●
●

● ● ●●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

● ●
● ●●

●

●

●

● ●●

●

●●
● ●

●● ● ● ●●
●

● ●● ●
●

● ●

●

●

●

●

●

●

●
●

●●
●●● ●

●

●

●● ●●

●

●
●● ●

●

● ● ●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●●
●

●

●

●

●

●

●● ● ●

●

●

●

●

●
●

●
●

●

●

●●
●

● ●
●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

● ● ●

●

●
●

●
●●● ●●  ●

●

●●

●

●

●

●● ●●

●

●● ●
●

●●●
●

●

●

●

●

●

●
● ●●

●

●

●

● ●

●

● ●

●

● ●

●

● ●
●●

●

●

●●

●

●

●

●

●●
● ●● ●●● ●

●●

●

●

●
●

●

●

●

●

●●

●

●

● ●●
●●

●

●

●

●

●

●

●
●  ●●

●●●

●

●

●

●

● ● ●

●
●

●

●

●● ●●

●

●

●

●●
●●

●

●

●●

●

●●● ●● ●●
●●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●

●

●

●●● ● ●
● ●

●
● ● ●●

●●

●●

●

●

●● ●●

●

●

●

●
●

●●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●● ●

●

●

●
●

●

●●

●

● ●

●

●
●

●●● ● ●●
●

●

●

●●

●
●

●

●
● ●

●

●●●

●

●
●

●
●●

●

●

●

●
●●

●

●
● ●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●●

● ●

●

●
●

●●

●

● ●

●

●

●

●

●
●

●
●●●

●

● ●● ●●

●

●

● ●
●

●

●

●

●●●

●

● ●
●●

●

●
●●

●

●
●

●
●

● ●
●●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●
●

●
● ●

●

●
●

●

●●
●●

●
●

●

●
●

●●

●

● ●
● ●

● ●

●

●
●

●
●●

●
●●●

● ●

●

●

● ●
●

●
●● ●●

●
●

●

●

●

●●
● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●
● ●●●

●

●

●●

●●

●●●
●

●

●
●

●
● ●

●
●

●

●

●

●

●

●
●● ●
●

●

●

●
●

●
●
●

●

●

●

●
● ● ●

●

●●● ●
●●

●
●

●

●

●● ● ●
●

●
●●

●
●

●

●

●●
●

●● ●
●

●

●
●

●

●
●

●
●●●

●
● ●

●

●

●

●

●

●●
● ●

●

●

●

● ●

●

●●
● ●

●

●
● ●●

●

●
●

● ● ●
●● ●●

●

●

●
●

●

●

●

●
●●

●

●

●●

●
●

●

●
●

●
●

●

● ●
● ●

●●
● ● ●●

●

●

●●

●

●

●

●
●

●

● ● ●
●

●

●
●●

●

●

●

●

● ●● ●

●

● ●
● ●

●

● ●
●

●

●
●

●

●
●

●
● ●● ●

●
● ●

●

●

●

●●● ● ●
●●

●

●
●

●

●

●

●

●
●

●● ●

●

●●●● ●●
●

●
●

●

●

●

●

●

●●●●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●
● ●● ●

●
● ● ●

●

●

●

●
●●●

●
● ●

●● ●

●

●●

●

●
●● ● ●

●
● ●●●●

●

●
●

●

●

●●
●●

●

● ●

●

●

●

●

●
● ●

●

●
●

●

●●
●●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●●

●

●

● ●●
●

●

●● ●

●

●●
●

●
●

●
●

●

●

●
●

●●

●●
●

●

●●

●

●

●●●

●

● ●● ●

●
● ●● ●

●

●●●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

● ●

●
●

●

●●
●

●●

●

●
●

●

●

●

●

● ● ●●
●● ●

●
●

●

●

●
●

●

●●
● ●●

●

●

●

●

●

●

●

●

●●
●●

●

●● ●●●
●

●

●

●
●

●●

●

● ●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

● ●● ●● ●
●

● ●

●

●
● ●

●

●
●

●
●

● ●
●● ●

●●

●

●

●

●
●

●

●

●

●

●
● ●

●
●● ●●

●

● ●

●

●

●
●

●

●● ●● ●●

●

●●●
● ●

●

●

● ●

●●

●

●

● ●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●
● ●

●

●

●●

●

● ●●
●

●

●
●● ●● ●

●

● ●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●
●●●
●

●
●

●
●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●● ●●
●● ●

●

●●
●● ●● ●●

●

●

●●
●

●

●

●
●

●● ●● ●●
●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●
● ●

●

● ●●
●● ●●
●

●

● ●●● ●●●

●

●

●

●● ●●

●

●

●

●

● ●

●

●● ●

●

●

● ●●
●

●

●
●

●●●
●●

● ● ●

●
●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●
●●●●

●

●

●●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

● ●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●● ●● ●

●
● ●

● ●
●

●

●

●

● ●●

●

●● ●

●

●● ●●●● ● ●●
●

●

●

● ●●
● ●●

●

●

●

●

●
●●● ●●

●

●

●

●

●
●

●●

●

●

●

● ●● ●
●●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●
●

● ●●
●

●

●●●

●

●

●

●●

●

●

●

●

● ●●●
●●

●

●

●

●
●

●

●
●

●
●

●

● ●● ●
●

●

●

● ●

●

●

●●
●

●
●

●
●

● ●

●

● ●● ●

●
●

●●
●

●●

●

● ● ●
●

●

●● ●

●

●
●

●

●

●●

● ●●●

●

●
● ●

●

●
●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

● ●● ●
●
●
●

●

●●
●

●
●

●●

●
● ●

●

●●

● ●

●

● ● ●

●

●●●

●

●

●

●●●●

●

●

●
●●

●

●

●
●

●
● ●

●●
●●

●
●●

●

●

●● ●

●

●

●
● ●

●

●

●

●
●●

●

●
●

●

●

●
●●

●

●

●

●●●
●
●●

●
●

●

●

●

●●

●

●

●
●

● ●
●

●● ●

●

●

● ●
●

● ● ●●●
●

●
●

●●●●
●● ●

●

●

●●●

●

●

●

● ●
●

●

●

●
●●

●

●● ●

●

●

●
● ●

●

●●
● ● ●

●

●● ●● ●
●●● ● ●●

●

●

●● ●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●●● ●

●●
●

●

●
●●

●

●

●●
● ●

●

●

●
●

●

●
●

●

●●

●

●

●

● ● ●●

●

● ●●

●

●●● ●

●

●

●
● ● ●

●

●

●

●

●

●
●●

●
● ●

●

●

●

●

●

● ●●
●

●●

●

●

●
●

● ●● ● ●● ●

●

●

●
●

●

●
●

●
●●

●●

●

●

●

●● ●
● ●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●
● ●●

●

●
●

●●●

●
●

●

●●

●

●

●

● ●● ● ●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●● ●●

●

●●

●

●
●●● ●●

●

● ●

●
●

●

●

● ●●●● ●

●

●

●

●

●● ●● ●

●
●

● ●●

●

●
●

●

●

●

●

● ●
●

● ●●● ●
●

●

●
●

●

●

●●
●

●

●

●

● ● ●
●

●●
●

●

●

●

●●●
● ●●

●

●

●

●

●
●

●●●

●

●

●● ●●

●

●●

● ● ●

●

●

● ●●●
●
●

● ● ●

●

● ● ● ●

●

●
●●

●

●

●● ●● ●
●●

●
●

●
●

● ● ●

●

●
●●

●●●●
●

●

●
● ●

● ●

●

●
●●

●

●

●● ●
●

● ●● ●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

● ●
●

●

●

●
● ●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●●
●
● ● ● ●

●

●

●

●

●

●

●●●

●

●●
●●●

●●●
●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●● ●  ●

●

●

●

●
●

●
●

●

●●● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

● ●

●●●

● ●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●●

●
●● ●

●
●●

●
●

●

●
●● ●●

●

●

●●

●

● ●
●

●
●●● ●

●

●
●

●●
●

●
●

●
●

●
● ●

●

●

●
●

●

●

●

●

●● ●●

●●

●

●

●
●● ●

●

●●● ●
● ●

●

●
●

●
● ●●●● ●

●

●
● ●

●

●

● ●

●

● ●●● ●
●

● ●● ●●

●

●

●● ●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●
● ●

● ●

●

●

● ●

●

●

●
●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

● ● ●●
●●●

●

●● ●

●

●

●
●

● ●
●

●
● ●
●

●
● ●

● ●●
●●

●●

●

●

● ●

●
●

●

●

●
●

●● ●● ●●●
●

●●

●

● ●● ● ●

●

●●

● ●

●

●
●

●
●

●
●

● ●
●

●

●

● ●

●

●

●

●

●

●
●●

● ● ●
●●

●
●●● ●●● ●

●

●
●

●●
●

●

●
●
● ●

●
●

●
●

●
●

●● ●

●
●●

●
●
●
●
● ● ●● ●● ●●

● ●

●

●

●

● ●●●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●●
●●●

●

●

● ●
● ●

●

●

●
● ●●

●

●
● ●●●

●

●

●

●
●●

●
●●
●

●

● ●●
●● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●
●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

● ● ●

●

●

●● ●●

●

●●

●●

●
●

●
●●

●

●
●●

●

● ●●

●

●
●● ●●

●

●●

●

●●
●●

●

● ●

●

●

●
●

●
●

● ●
● ●

●

● ●
●

●●●
●

●

●

●
●
●

●

●
●

●●

●
●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

●●
● ●●

● ● ●

●

● ●●

●

●●

●

●

●

●

●●

●

●

●

●●
● ●●●●●

●

●
●

●
●

●● ●●●

●

● ●
●

●
●

●
●

● ●

●

●
●

●
●

●

●

●
●

●

●

●
●

● ●●●● ● ●
●

●

●

●

●

●

●

●

●●

● ●

●

●
●

● ●
●●

●●

●

●● ●
●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●
●

●●
● ●

●

●●

●

●●
●

●

●
● ●

● ●
●

●
●

●
●●

●

●
●●

●

●

●

● ●
● ●
●● ●

●

●

●

●●●

●

●●●

●

●
● ● ●

●

●

●

●

● ●

●

●●

●

● ●

●

●●

●

●

●

● ●●

●

●

0. 0 0. 5 1. 0 1. 5

0.
3 

0.
4 

0.
5 

0.
6 

0.
7 

0.
8 

0.
9

Di st a n c e b et w e e n tr ai n a n d t e st s et s

Cl
as

sif
i
er

 
ac

c
ur

ac
y

Fi g ur e 4: C orr el ati o n b et w e e n di stri b uti o n al di st a n c e a n d cl a s si fi er a c c ur a c y.

I n t h e s e c o n d e x p eri m e nt, t h e t est s a m pl e si z e is n ot c o nst a nt at all
tri als, t a ki n g v al u es m o vi n g fr o m 2 0 0 t o 3 2 0 0. N oti c e t h at t h e distri b uti o n al
dist a n c e b e c o m es m or e a c c ur at el y a p pr o xi m at e d as t est s a m pl e si z e i n cr e as es,
a n d t h er ef or e t h e cl assi fi c ati o n a c c ur a c y s h o ul d b e als o hi g h er. I n a fi v e n o d e

2 0



distributed scenario, the expected proportion of times that a node picked at
random produces the best classifier is 0.2. Table 3 shows the proportion of
times that the node with the smallest distributional distance produced the
highest classification accuracy in our experiment, denoted by pmin(di). It is
observed that the node with the smallest distributional distance becomes the
best one in an increasing proportion with the test sample size, always above
the baseline proportion 0.2, until it is approximately doubled.

Table 3: Proportion of times that the smallest distributional distance leads to the best
classifier node (pmin(di)) against the test sample size (t).

t 200 1200 2200 3200
pmin(di) 0.28 0.35 0.37 0.37

In sum, these first experiments empirically illustrate the interest in dis-
tributed learning models regarding distributional distances between training
nodes and test samples. We propose models taking into consideration this
principle, but in addition, they take advantage of combining efficiently the
classifiers produced by each node instead of simply selecting one of them.

3.3. Results

The accuracy of the two weighting criteria (pNW and pIW) described in
Section 2.5 was checked on all the combinations of parameters involved in
our experimental setup, namely classifiers, data sets, partition sizes, decision
rules, and balanced and unbalanced scenarios (Section 3.1). For comparison
purposes, accuracy results based on a standard unweighted distributed model
(UW) and a non-distributed model (ND) were also obtained. The ND model
uses the entire data set Z to train a unique classifier. Hence, ND is expected
to achieve the highest classification accuracy, and its results can be taken
as an upper reference level. Besides the classification accuracy, values of
precision and recall were also evaluated. Since very similar conclusions are
obtained, for the sake of clarity in the presentation, the results based on
precision and recall are provided in Appendix A.

For each combination of parameters, the experiment was replicated N =
300 times and average classification accuracy values were obtained for each
learning model. In order to examine how the learning models interact with
the different parameters, the average results were aggregated in different
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ways. For example, Table 4 shows the average accuracy attained with each
classifier. It is observed that the weighted models interact better with SVM,
LDA and Mult than with Random Forest and XGBoost in the unbalanced
setting (see Figure 5). In particular, the most significant improvement rates
due to the pIW model in the unbalanced setup are observed for Mult and
SVM. In the latter case, this may be connected with the fact that SVM
with Gaussian kernel and energy distance are based on Euclidean inter-point
distances.

Table 4: Average classification accuracy values conditional on classifier type. Rows un-
der the last sub-table (MEAN) show the averages over all trials, including balanced and
unbalanced scenarios. The lack of results for ND in the first two sub-tables is due to the
ND model assumes non-distributed data, i.e. no partitions (balanced or unbalanced) are
considered.

Classifier

Model RF SVM XGB LDA Mult

BALANCED
pNW 0.7087 0.5852 0.6923 0.5768 0.6084
pIW 0.7173 0.5908 0.7016 0.5826 0.6168
UW 0.7131 0.5881 0.6964 0.5769 0.6066

UNBALANCED
pNW 0.6935 0.5804 0.6843 0.5727 0.6035
pIW 0.7059 0.5921 0.6977 0.5863 0.6186
UW 0.6996 0.5784 0.6909 0.5749 0.6022

MEAN
pNW 0.7011 0.5828 0.6883 0.5747 0.6060
pIW 0.7116 0.5915 0.6997 0.5845 0.6177
UW 0.7063 0.5832 0.6937 0.5759 0.6044
ND 0.7566 0.6719 0.7398 0.6315 0.6423

The average results aggregated by decision rule are reported in Table 5
and graphically represented using bar charts in Figure 6. Regardless of
whether the partitioning is balanced or not, the SUM rule produces the best
average results with the three distributed models. This result is consistent
with the experimental findings in Kittler et al. [12] and with our theoretical
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Figure 5: Accuracy-based interaction plot to check the joint effect of classifier, learning
model and scenario.

arguments in Section 2 (Remark 3 in Section 2.7).
Table 5 and Figure 6 also allow to compare the average accuracy attained

with the different models. Except for the MIN and PROD rules, the highest
accuracy values are obtained with the per-Instance Weighting. Nevertheless,
the MIN rule fairly produces the worst results and no differences between
weighting approaches are observed with the PROD rule. Therefore, it is
concluded that the per-Instance Weighting approach fairly leads to the best
results.

Overall, pNW performs worse than UW on average. This behavior is
somewhat surprising in the light of the results showed in the motivating
experiments of Section 3.2. We guess that this may be caused by the joint
effect of two circumstances, namely the global character of the per-Node
weights (see Remark 1 in Section 2.7) and the noise increase generated by
the variability of these weights (Figure 4 illustrates this variability).

The average accuracies aggregated by partition size are shown in Figure 7.
Significant degradation of accuracy with the number of nodes is evident for
all combinations of decision rule and learning model in balanced and un-
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Table 5: Average classification accuracy values conditional on the decision rules.

Decision rule

Model MAJ MAX MIN PROD SUM Mean

BALANCED
pNW 0.6442 0.6252 0.6184 0.6347 0.6491 0.6343
pIW 0.6582 0.6461 0.6066 0.6345 0.6639 0.6418
UW 0.6456 0.6283 0.6205 0.6347 0.6519 0.6362
Mean 0.6493 0.6332 0.6152 0.6346 0.6549 0.6374

UNBALANCED
pNW 0.6407 0.6191 0.5977 0.6276 0.6493 0.6269
pIW 0.6652 0.6513 0.5823 0.6275 0.6743 0.6401
UW 0.6454 0.6189 0.6008 0.6277 0.6531 0.6292
Mean 0.6504 0.6297 0.5936 0.6276 0.6589 0.6321

ND — — — — — 0.6884

balanced scenarios. For all the models, the MIN rule degrades faster with
fragmentation, although it is very competitive with UW and pNW for a small
number of nodes. As the best-performing pIW approach is considered, the
MIN rule is substantial and uniformly the worst decision rule. SUM, MAJ
and MAX exhibit similar performance, with SUM having a slight edge. The
good behavior of pIW deserves particular attention. Note that, except for
the MIN rule, the pIW approach always produces the highest percentages of
correct classification for all the levels of fragmentation regardless of the used
rule.

All our results allow to conclude that the favorable effects of the weighting
approaches are more important in unbalanced scenarios. In particular, the
amount of accuracy improvement produced by the per-Instance Weighting
model is clearly stronger when unbalancing.

Figure 8 shows separately the average results for each data set and pro-
vides additional insight into the behavior of the proposed models. Concerning
the KDD Cup 99 data set, it is noticeable the good performance showed by
the per-Node Weighting approach in unbalanced scenarios. In fact, pNW
and pIW behave very similarly and fairly outperform the Unweighted model.
Since KKD Cup 99 exhibits concept drift, this result illustrates that our dis-
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Figure 6: Average classification accuracy values aggregated by decision rules. The hori-
zontal red line indicates the average accuracy for the ND model.

tributed approaches work well for various types of differences in distribution
between nodes and population, no matter how these differences occur. In
other words, the effectiveness of our proposal is not restricted to the case of
distributional differences caused by a non-uniform partition of the data.

The pIW model reports lower accuracy with Spambase, while it performs
slightly better than the other distributed models in Connect-4, Covertype
and Higgs, the most complex scenarios in terms of classification. In these
cases, the non-distributed model only reaches an accuracy around 0.6, and
the distributed approaches are reasonably close to this proportion for all
partition sizes. An atypical behavior is observed for Connect-4 since the
classification accuracy does not monotonically decrease with the number of
partitions. So, in this particular case, it looks more likely that the local
scenarios generated by splitting the data lead to an easier classification task.

In addition to knowing the exact underlying distributions, the analysis
of simulated data is free of limitations to generate nodes maintaining the re-
quired regularity and provides insight into the level of difficulty. The results
for our simulated data sets, Simul-C2 and Simul-C8, are particularly inter-

25



Number of nodes

Ac
cu

ra
cy

0.55

0.60

0.65

5 10 15

UW

UNBALANCED

pNW

UNBALANCED

5 10 15

pIW

UNBALANCED

UW

BALANCED

5 10 15

pNW

BALANCED

0.55

0.60

0.65

pIW

BALANCED

MAJ MAX MIN PROD SUM

Figure 7: Average accuracy as function of the partition size. The horizontal red lines
indicate the average accuracy for the ND model.

esting. In both cases, pIW clearly draws the best results, and the differences
are more substantial in the unbalanced setting. In the scenario with only
two classes, degradation with the number of nodes is almost prevented in the
balanced setting, and the results end up surpassing the non-distributed ap-
proach in Simul-C2. In the non-distributed approach, a linear classifier will
have bad performance in this scenario, since the classification frontier is non
linear. When distributed, different local models work better. In Simul-C8,
degradation of pIW with the fragmentation is more marked, but still less
severe than in the case of pNW and UW.
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Figure 8: Average accuracy as function of the partition size for each data set. The
horizontal blue lines indicate the average accuracy for the ND model.

4. Computational Cost

In addition to the cost of training each classifier, our approach requires
calculating the distributional distance between each node and the test set,
and the pIW model requires each node to calculate the weights that minimize
this distance.

The cost of training the classifiers depends on the chosen method, but the
improvement is equivalent to reducing the training sample by the number of
nodes, e.g. if a given classifier trains in O(n3) then the complexity will be
reduced to O(n3/p3). Similarly, calculating the energy statistic has compu-
tational complexity O((n/p)2 + t2 + (n/p)t), given n the training size, p the
number of nodes that the training set is fragmented into and t the test size.
Even though it can be considered a constant factor, we introduce the number
of nodes p to highlight the strong computational benefits of this distributed
approach.

Finding the individual weights for the pIW approach has the complexity
of solving the related quadratic programming problem, and is the usually

27



dominating complexity: Experimentally, this quadratic programming com-
plexity is between O(t2) and O(t3). The influence of the training test size on
the quadratic programming complexity is linear: O(n/p).

Assuming the underlying classifiers test in constant time, the complexity
of classifying a given test set goes from O(t) to a worst case of O(t3 + n) for
the pIW version.

5. Conclusions and future work

In a distributed classification framework, we have proposed two weighted
approaches that combine local classifiers trained at each node to improve
overall classification accuracy. The two approaches assume the availability
of a test set and are based on the distance between the distributions of the
feature vectors of each node and the test set. The first approach, per-Node
Weighting, assigns the same weight at each node to all test instances, while
the per-Instance Weighting approach achieves finer granularity by allowing
distinct weights for each test instance at each node.

Under the general assumption that both the test set and the entire train-
ing set are i.i.d. samples from the population in study, we have motivated
the proposed weighting criteria and provided theoretical support for the op-
timality of combining the classifier outcomes using a weighted sum. Our
framework makes no assumptions about the structure or distribution of the
data across the nodes. In fact, by construction, our classification models are
particularly useful to deal with heterogeneity of data among the nodes, which
usually happens in real-world distributed data sets. In addition, our tech-
nique requires no communication between nodes, preserving data privacy,
allowing combination of different classifier models and maximizing computa-
tional efficiency.

Our experimental study involving synthetic and real data sets has illus-
trated the good performance of the proposed models compared to standard
classifier combination rules. Overall, the per-Instance Weighting approach
achieves the best results. As expected, the improvement is more substantial
when treating with unbalanced nodes, under all tested classifiers an parti-
tion sizes. Our experiments also illustrate that the sum rule outperforms
other alternative decision rules. The per-Node Weighting approach does not
achieve improvement over the standard approaches but on the most extreme
cases when the individual nodes training sets differ the most.
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There are several topics related to our approach to be considered further.
It is interesting to check by the usefulness of our approach to select one or a
small subset of nodes to perform the classification and evaluating whether a
significant degradation in accuracy is observed. Other future research direc-
tion involves the study of a linear-time approximation of the pIW approach.
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ods for distributed machine learning. Progress in Artificial Intelligence,
2(1):1–11, 2013.

[18] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer,
and Neil D Lawrence. Dataset shift in machine learning. The MIT
Press, 2009.
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Francisco Herrera. A review of distributed data models for learning.
Hybrid Artificial Intelligent Systems, page 88, 2017.

[20] Marina Sokolova and Guy Lapalme. A systematic analysis of perfor-
mance measures for classification tasks. Information Processing & Man-
agement, 45(4):427–437, 2009.
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Appendix A.

The same numerical analysis performed in Section 3.3 with the accuracy
values has been carried out for recall and precision values, two alternative
performance measures. The attained results are shown in this Appendix. In
the case of binary classification, recall measures the effectiveness of a classifier
to identify correctly classified positive instances (sensitivity), while precision
evaluates the class agreement of the instance labels with the positive labels
given by the classifier. One possible way to extend these concepts to the
multi-class classification task is to obtain the averages of these measures
calculated over all the classes {C1, . . . , Cm}. This generalization approach is
known by macro-averaging [20]. This way, we have

Precision =
1

m

m∑
i=1

tpi
tpi + fpi

,

Recall =
1

m

m∑
i=1

tpi
tpi + fni

,

with m the number of classes in the dataset, and tpi denoting the number
of true positive for Ci, and fpi and fni the false positive and false negative
counts, respectively.

The results attained for these alternative criteria are displayed below,
using the same scheme of tables and figures as in Section 3.3 for accuracy. It
can be seen that very similar results are also obtained, thus supporting the
main conclusions of our work.
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Table A.6: Average recall values conditional on classifier type.

Classifier

Model RF SVM XGB LDA Mult

BALANCED
pNW 0.7154 0.5912 0.6991 0.5788 0.6128
pIW 0.7240 0.5968 0.7079 0.5846 0.6211
UW 0.7197 0.5935 0.7031 0.5788 0.6109

UNBALANCED
pNW 0.7029 0.5890 0.6926 0.5777 0.6093
pIW 0.7154 0.6008 0.7063 0.5915 0.6247
UW 0.7094 0.5869 0.6998 0.5797 0.6078

MEAN
pNW 0.7091 0.5901 0.6959 0.5783 0.6110
pIW 0.7197 0.5988 0.7071 0.5880 0.6229
UW 0.7146 0.5902 0.7015 0.5792 0.6094
ND 0.7676 0.6794 0.7477 0.6418 0.6515

Table A.7: Average recall values conditional on the decision rules.

Decision rule

Model MAJ MAX MIN PROD SUM Mean

BALANCED
pNW 0.6505 0.6291 0.6237 0.6401 0.6539 0.6395
pIW 0.6633 0.6506 0.6119 0.6399 0.6687 0.6469
UW 0.6507 0.6323 0.6262 0.6402 0.6567 0.6412
Mean 0.6548 0.6374 0.6206 0.6401 0.6598 0.6425

UNBALANCED
pNW 0.6493 0.6245 0.6060 0.6353 0.6564 0.6343
pIW 0.6733 0.6582 0.5895 0.6351 0.6826 0.6478
UW 0.6527 0.6257 0.6086 0.6353 0.6613 0.6367
Mean 0.6584 0.6362 0.6014 0.6353 0.6668 0.6396

ND — — — — — 0.6976
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Figure A.9: Recall-based interaction plot to check the joint effect of classifier, learning
model and scenario.
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Figure A.10: Average recall values aggregated by decision rules. The horizontal red line
indicates the average recall for the ND model.
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Figure A.11: Average recall as function of the partition size. The horizontal red lines
indicate the average recall for the ND model.

36



Number of nodes

R
ec

al
l

0.4
0.5
0.6
0.7
0.8
0.9

5 10 15

Connect−4
UNBALANCED

Covertype
UNBALANCED

5 10 15

Higgs
UNBALANCED

KDD Cup 99
UNBALANCED

5 10 15

Spambase
UNBALANCED

Simul−C2
UNBALANCED

5 10 15

Simul−C8
UNBALANCED

Connect−4
BALANCED

5 10 15

Covertype
BALANCED

Higgs
BALANCED

5 10 15

KDD Cup 99
BALANCED

Spambase
BALANCED

5 10 15

Simul−C2
BALANCED

0.4
0.5
0.6
0.7
0.8
0.9

Simul−C8
BALANCED

UW pNW pIW ND

Figure A.12: Average recall as function of the partition size for each data set. The
horizontal blue lines indicate the average recall for the ND model.
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Table A.8: Average precision values conditional on classifier type.

Classifier

Model RF SVM XGB LDA Mult

BALANCED
pNW 0.7016 0.5631 0.6896 0.5833 0.6118
pIW 0.7113 0.5723 0.6989 0.5895 0.6200
UW 0.7060 0.5665 0.6935 0.5818 0.6103

UNBALANCED
pNW 0.6875 0.5577 0.6827 0.5815 0.6098
pIW 0.7001 0.5760 0.6956 0.5948 0.6249
UW 0.6929 0.5569 0.6879 0.5819 0.6090

MEAN
pNW 0.6945 0.5604 0.6862 0.5824 0.6108
pIW 0.7057 0.5741 0.6973 0.5922 0.6224
UW 0.6994 0.5617 0.6907 0.5819 0.6097
ND 0.7516 0.6586 0.7392 0.6405 0.6496

Table A.9: Average precision values conditional on the decision rules.

Decision rule

Model MAJ MAX MIN PROD SUM Mean

BALANCED
pNW 0.6392 0.6239 0.6145 0.6282 0.6436 0.6299
pIW 0.6550 0.6459 0.6030 0.6280 0.6601 0.6384
UW 0.6408 0.6266 0.6166 0.6283 0.6459 0.6316
Mean 0.6450 0.6321 0.6113 0.6282 0.6499 0.6333

UNBALANCED
pNW 0.6378 0.6193 0.5945 0.6226 0.6451 0.6238
pIW 0.6637 0.6531 0.5799 0.6224 0.6724 0.6383
UW 0.6420 0.6178 0.5985 0.6226 0.6477 0.6257
Mean 0.6478 0.6300 0.5910 0.6225 0.6551 0.6293

ND — — — — — 0.6879
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Figure A.13: Precision-based interaction plot to check the joint effect of classifier, learning
model and scenario.
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Figure A.14: Average precision values aggregated by decision rules. The horizontal red
line indicates the average precision for the ND model.
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Figure A.15: Average precision as function of the partition size. The horizontal red lines
indicate the average precision for the ND model.
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Figure A.16: Average precision as function of the partition size for each data set. The
horizontal blue lines indicate the average precision for the ND model.
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