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Abstract

In the last three decades some numerical formulations have been developed for solving
potential problems in electrical engineering applications. In the particular case of the
grounding analysis area, in recent years we have developed a general numerical approach
based on the Boundary Element Method for homogeneous and isotropic soil models,
which has been succesfully applied to the analysis of large grounding systems. This
numerical approach has been recently extended for the study of earthing grids embedded
i stratified soils, which enables to solve some frequent practical cases, such as the two-
layered soil models. Nevertheless, boundary element approaches imply a considerable
computational effort when applied to the grounding analysis buried in more stratified
soils or completely heterogeneous. The difficulty of the extremely high cost also arises
with the use of standard numerical techniques (Finite Differences or Finite Elements)
which require the discretization of the whole domain: the ground.

Since early nineties, several numerical methods where meshes are unnecessary (“mesh-
less methods”) have been proposed in several engineering applications. In this paper, we
briefly review some of these meshless techniques, and propose the use of a Moving Least
Square methodology with a point collocation scheme for solving problems in electrical en-
gineering. Furthermore, the use of enrichment procedure in these meshless formulations
is explored to improve results and decrease the computational cost required.
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1. INTRODUCTION

In last decades, the development of high efficient numerical methods, such as Finite
Elements (FE), Boundary Elements (BE), Finite Volumes (FV) or Finite Differences
(FD), and advances in computer sciences have allowed to spread the numerical simula-
tion in most of the fields in engineering applications. As a general rule, these numerical
methods are based on dividing the solution domain of the problem (or/and its bound-
ary) into a number of subdomains, where the integration process required to solve it is
performed. However, this mesh generation process (specially in 3D problems) frequently
becomes the bottle neck. Thus, in some practical applications such as problems with
moving boundaries, with discontinuities in the domain, or with a very complicated ge-
ometry, the discretization of the domain can involve more computing effort (in memory
storage and CPU time) than the integration and solving processes themselves. For this
reason, some numerical methods “free-of-meshes” have been proposed in last years.

The first meshless methods were derived from finite difference approaches in early
seventies'; and the first class of these “particle methods” (the Smooth Particle Hydro-
dynamics method, SPH) were developed in the computational physics field®®. However,
the application of SPH method in engineering problems have been recently performed
in order to solve problems in solid and fluid mechanics®?.

A different type of meshless methods (the Diffuse Element Method, DEM), was pro-
posed by NayrolesS in 1992. In this method, a basis function and a weighting function
are used to form a local approximation based on a set of arbitrary nodes. In 1994,
Belystchko et al. modify and refine this method, proposing the Element Free Galerkin
method (EFGM)™®, in which a moving-least squares (MLS) interpolation is used to
define the local approximation. On the other hand, Liu et al. have proposed a mesh-
less technique (the Reproducing Kernel Particle Method, RKPM) based on a convolu-
tion integral, which it is similar to SPH method, although several correction functions
and refinements are introduced in order to assure consistency near boundaries and for
nonuniform spacing”.

A class of meshless methods that can provide an efficient way to perform h-p adaptiv-
ity are those based on partitions of unity (hp-Clouds method'® and the Partition of Unity
Finite Element Method ). They introduced a partition of unity with a moving-least
square interpolation and the enhancement of the polynomial order of the approximation
through an extrinsic basis, which can be added locally to nodes'?.

On the other hand, Ofnate et al. !4 have proposed a method which combines the
moving least square approximation with a point-collocation approach to compute the
integral terms, in convective transport and fluid flow problems. This method completely
avoids the necessity of mesh generation, because no auxiliary grid is required. Further-
more, different techniques can be derived if the weighting function is “fixed” (Diffuse
Least Square method, DLS) or it depends on the point where the approximated value
is computed (Moving Least Square method, MLS).

On the basis of this MLS method, we have recently proposed a numerical approach
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to solve potential problems in electrical engineering applications'®'%, such as grounding

analysis, where the use of standard numerical methods (such as finite elements) are
precluded due to the complexity of the domain'”. In this paper, we review this MLS
interpolation with a point collocation approach for solving boundary value problems;
furthermore, the use of enrichment functions is analyzed for the solution of this kind of
problems.

2. MOVING LEAST SQUARES APPROXIMATION

The Moving Least Squares methodology is an effective numerical technique for the
approximation of a function by using a set of disordered data. It comnsists of a local
weighted least square fitting, valid on a small neighbourhood of a point and based on
the information provided by its n closest points (subdomain €2;,). The local character of
the approximation comes from a “moving” weighting function which takes its maximum
value at this point and vanishes outside a surrounding region'*4.

In order to define properly the approximation at every point, it is necessary that
all subdomains €2, cover all the interpolation domain. Hereby, these subdomains must
overlap, and the common areas have to include enough nodal points in order to ensure
the convergence of the method!®. The selection of the nodal points included in the
subdomain of a given nodal point can be performed by using a effective technique based
on the “four-quadrants” criterial®.

If €, is the interpolation domain of a function u(z), it can be approximated by

12

u(e) 2 i(2) = 3 pile)or = o (@) (1)
=1

where @ = [a1,a9,...,a,;,]" is a set of unknown coefficients, p(z) contains a base of
interpolating functions (monomial terms, generally) which order is m. These base in-
terpolating functions can be normalized within each subdomain (), by dividing for the
maximum distance d between each point ¢ of the domain and the surrounding points;
thus, it is possible to define normalized coordinates (¢ = [¢,n,(]) within a subdomain
Q. as,

fla) = | T (2)

On the other hand, function u(z) can be sampled in the n points belonging to €2, as,
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where u”

" are the values of unknown function evaluated in nodal points of €2, (ui]’ =
u(x;), j=1,....n), u; = a(zx;) are their approximated values, and p; contains the
normalized base interpolating functions evaluated in &; (where §; = £(z;)).

The approximation defined in (3) can also be understood as a generalization of the
finite element interpolation, since this approach is obtained if the number of subdomain
points n is chosen equal to order m of the polinomials base'®. In general, if n > m, S
is a rectangular matrix and the approximation cannot fit all the u;? values. However,
approximated values 4(z) can be determined by minimizing the weighted sum of the
square differences between the exact value u” and the approximation u(x;) at each
nodal point «; belonging to the domain of node z;. The weighting function is usually
built in such a way that it equals unity in point #; and vanishes outside domain €.

In the Moving Least Square approach, this functional can be written as

n

J(@) =Y wilzj ) (u] — ilz;))” (4)

j=1

where wy (2, ) is the weighting function computed in «;, which shape and span depend
on z,. It must be pointed out that z, represents an arbitrary position and can be
replaced for a generic coordinate z.

Now the minimization of functional (4) allows to obtain!*!8:

o=A"Yz)B(z)u" A(z) = PW (z)P' B(z) = PW (z) (5)

being auxiliar matrices P and W (z):

P=[pl€) ... p(6,)]  W(w)=diag[w(z;.2)]. i=l..n (6

Now, the substitution of (5) in (1) allows to obtain an approximation to function
u(z) in Q, in the form,

i(z) = p'(¢(x))A” (z)B(z)u". (7)

From this expression, we can define “shape functions” (N'(z) in €;,) in a similar way
as in finite elements:

N'(z) =p'(((z))C(z);  C(z) = A '(z)B(=). (8)

It is important to remark that the local values of the approximating function do not
fit the nodal unknown values (u(x;) # ujb) due to the least-squares character of the
approximation. It must be pointed out that if n = m the FEM type approximation is
recovered and no effect of weighting is presented'®. Besides, if the weighting function is
constant and equals the unity, the standard least square method is reproduced.
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3. ENRICHMENT OF MLS APPROXIMATIONS

The enrichment of a Finite Element numerical formulation is an effectiveness tech-
nique to avoid a high refinement of the mesh in some problems in computational mechan-
ics. In general, the enrichment process consists of introducing some information about
the solution of the problem in the trial functions (e.g. its behaviour near singularities or
discontinuities in the domain). In finite element approaches, these enriched techniques
were developed in mid-seventies and succesfully applied to different problems'?.

Recently, it was found out that it is possible to incorporate information about the
solution in applications of meshless methods is simpler and easier than in finite elements
formulations'®'9. The enrichment of meshless methods may be carried out extrinsically
—i.e. adding a set of enrichment functions to the trial functions— or intrinsically, that
is the enhancement functions are included in the MLS interpolation basis.

In extrinsic enrichment of MLS meshless approximations, a function —or a set of
functions— closely related to the solution of the problem is included in the polynomial
interpolation, as for example:

ny

i(z) =p'(@)a+ Y (kF(@)) (9)
j=1

where 4(z) is the approximation to function u(z), p(z) is a complete polynomial basis
in the spatial coordinates, e is the vector of unknowns associated to the basis, ns is the
number of enrichment functions added Fj(z), and k; (j = 1,ny) are global unknowns
associated with functions F;. Now coefficients e can be obtained in a similar way to
those in (1) by using a MLS methodology. However, additional terms arise from the
inclusion of the enrichment functions. Therefore, the MLS functional J in (4) must be
rewritten in terms of the new approximation (9). If the minimization process of this
new functional is performed'?, the final expression for @ results in

n nf nf
i(z) =Y Ni(z) luh = > (ki (xj))] + > (kFj(z)) (10)
i=1 j=1 j=1

where shape functions N;(z) (i = 1,n) are identical to previously defined in (8).
Another type of extrinsic enrichment in meshless methods, simpler and computation-
ally faster than (10), can be obtained by using partition of unity methods!'?. In this case,
the approximation is modified by adding a basis of enrichment functions extrinsically
to the existing MLS approximation. These new functions can be polynomials of higher
order than the MLS interpolants basis, or functions contained in the exact solution of
the problem, which are smoothly added to the MLS approximation by multiplying it by
a partition of unity'*!8. Since shape functions in MLS approximations are partitions of

unity, this extrinsic enrichment procedure frequently takes the form

n "f(j)
i(x) =Y Ny(=) |ul + > kijFj(z) (11)
i=1 i=1
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where nf (i) is the number of enrichment functions of nodal point i (in general, nf can
be different for each nodal point), and k;; are the unknowns associated to the basis of
enrichment functions.

The partition of unity method provides a good tool for local enrichment. Thus, since
the consistency is assured by the partition of unity N (z) formed by using the basis of
MLS interpolants, the enrichment of the approximation may be performed locally by
adding extrinsically functions of a new basis. Obviously, it should be remarked that
this enrichment must be added to each node belonging to the domain of influence into
the region to be enhanced'?.

Intrinsic enrichment of meshless methods consists of including special functions in the
complete polynomial basis of the MLS interpolation. In contrast to the extrinsic proce-
dures, this method involves no additional unknowns. However, since the size of the basis
increases, additional computational effort is required to obtain shape functions N (z) in
(8) —due to the inversion of matrix A(z)—, and some problems of ill-conditioning can
arise. Furthermore, when this enrichment is used at any node of the domain it must
be used at all nodal points. Since it is not possible to delete functions from the basis
because it produces discontinuities in the approximation, a special technique must be
used to mix nodal points with different basis functions!2.

In this paper, we will consider the extrinsic enrichment technique based on partition
of unity method for MLS meshless methods. Although the number of degrees of freedom
increases with its use (if a nodal point i is enriched, then the total number of unknowns
to obtain for it is nf (i) + 1, instead of one), this enhancement procedure can be applied
locally in different parts of the approximation, and it is also quite easy to implement in
a meshless code.

4. STATEMENT OF THE DISCRETIZED EQUATIONS OF A BVP

In previous sections we have presented the MLS interpolation and the different kind of
enrichments that can be performed. In this section we review how obtain the discretized
equations of a boundary value problem. Thus, if 4 and B are two differential operators,
Q2 the domain of our problem and T its boundary (I' = T'; UT,), a scalar BVP can be
written as,

Aw)=b in Q (12)

with boundary conditions,
B(u) =t in Ty
u — uP - 0 in Fu

(13)

where u is the solution, b and ¢ represent the actions over €2 and along the boundary
I't, and uy is the prescribed value of u along I'y,.
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Application of the weighted-residuals method allows to obtain a variational form of
the above problem, in terms of the trial approximation function @ of the unknown u, as

W, [A(u)—b]dQ—i—/Ft W, [B(u)—t}df+/ru W, li—upldl = 0, j=1,..n, (14)

which must hold for all members of the set of n), functions W;, Wj and Wj of a suitable
class of test functions defined on Q, I'; and I',,*.

Now, the different selection of test functions in the general variational form (14) allows
to derive different numerical formulations. In order to take advantage of the meshless
character of the approximation, we can use a point-collocation approach (Wj =W; =

—
-~

W = é;, where é; is Dirac delta)'*18. Other authors®78%10 have proposed other integral
methods, but require some kind of auxiliar grid to evaluate the resulting integrals. With
a point-collocation scheme, the following set of equations is obtained:

[B(Aﬂj - t]' = 0, j = 1, < Np n Ft (15)
II,ALJ - UP — 0, j — 1, ...,np iIl Fu

Now, if we do not perform any enrichment, given a set of n, shape functions defined
on 2, approximation « to the solution v can be discretized as,

TI,p
a=Y Njul'=N'4", (16)
i=1

being n, the total scattered points of the solution domain, and where N' can be built
by using the previous MLS methodology. Finally, we obtain the following system of
linear equations:

Ku'=f (17)

where coefficient matrix K is sparse but not necessary symmetric (K;; = [A(N;)]; +
[B(N;)];), f is also known (contains the contributions from terms b and ¢ and prescribed
values u,), and u” contains the unknown values of the function evaluated in nodal points.

Obviously, as it has been explained in the previous section, if enrichment functions are
used to define the MLS interpolation, then it will be necessary to use more collocation-
points in (15) in order to obtain all the unknowns.
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Fig. 1.1D numerical example: Comparison of results obtained by using different MLS
formulations.

5. NUMERICAL EXAMPLES

In this section we present a very significant numerical test of the MLS approach
applied to the solution of a 1D boundary value problem. This test (also used in finite
element analysis?’) allows to obtain sharp or smooth functions, depending on the choice
of different parameters. Thus, it will be compared results obtained by using a standard
MLS and an enriched MLS approach (applied in the whole domain or in a local zone of
the domain), when quadratic interpolating is used.

The differential equation considered is:

——2—|—u:_(m), 0<z<1, w(0)=0 u(l)=1 (18)

being

201 _ 8Y(x —
fla)= 2P =B @ =B ) atan(p(x — 8)) + atan(pB)]  (19)

1+ p*(z — 8)]

The analytical solution is given by:

u(z) = (1 - z)[atan(p(x — 8)) + atan(pd) (20)
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Figs. 2. and 3.- 1D numerical example: Comparison of results obtained by using
different MLS meshless formulations.
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For a given set of n), trial functions NV; defined on the domain, and for the enrichment
function atan(x), the approximation u to the solution u can be written in the form:

'p
Without enrichment functions: u = Nju,,}f
i=1
"'p
With enrichment functions: a=> N (ult + a1 Fi(z)).
i=1
Total enrichment: Fi(z) = atan(x), 0<x<1.
Fi(z) =0, 0<az <
Local enrichment: Fi(z) = atan(x), z¢ <z <uxy;
Fi(z)=0, z;<z<1.

being n, the total number of nodal points of the solution domain. The weighting
function used is the truncated gaussian'* with o = 0.25 and k& = 1.1. Parameters p and
B are given by p = 50.0 and 8 = 0.4; these values produce a sharp function very difficult
to approximate.

In figure 1 we compare the approximations obtained by using or not enrichment
functions for different number of scattered nodal points (30 and 50), when subdomains
of 3 points are considered (i.e., a finite element approach). As it is shown, in both cases,
the use of an appropriate local enrichment allows to obtain a great improvement in the
results with only a small increase in the number of collocation points. In this example,
the computational cost is very similar when standard MLS and local enrichment MLS
are used; while is much higher if the enrichment is performed in the whole domain.

In the same way as in figure 1, the advantages of the use of local enrichment functions
in MLS interpolations are shown in figure 2. In these tests, the subdomain of each point
are formed by 5 nodes, and the total number of scattered nodal points is 30 and 50.

The comparison of results obtained by using MLS interpolants with subdomains of 7
nodal points are shown in figure 3. In this case, as the size of subdomains increases, the
enrichment solution improves considerably. It can also be noticed that the application
of enrichment functions in local parts of the domain improves the approximation, in
some cases, more than if it is performed in the whole domain.

In the light of these 1D test examples it can be concluded that approximations
obtained by using meshless methods can be substantialy improved if certain zones of
the domain are enhanced with suitable enrichment functions. In the next section, we
will try to apply these ideas to potential problems in electrical engineering applications.

10
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6. APPLICATION TO GROUNDING ANALYSIS

6.1. Mathematical model of the problem

A grounding system is an essential installation in electrical substations. A safe earth-
ing electrode must guarantee the integrity of equipments and the continuity of the ser-
vice under fault conditions providing means to carry and dissipate electrical currents
into the ground—, and safeguard that persons in the surroundings of the installation
are not exposed to dangerous electrical shocks. In order to achieve these goals, the
equivalent electrical resistance of the grounding must be low enough to assure that fault
currents dissipate mainly through the electrode into the earth, and maximum potencial
differences between close points on the earth surface are kept under certain tolerances.

The physical phenomena that underlyes the dissipation of fault currents into the
earth can be modelled by means of Maxwell’s Electromagnetic Theory'?. If the analysis
is constrained to the electrokinetic steady-state response, and the inner resistivity of
the grounding electrode is neglected, the 3D problem associated to an electrical current
derivation to earth can be written as

dive = 0, o = —vqgradV in FE; (21)
olng=0in T'p; V=Vp inI; V-—0, if |g|— oo;
where E is the earth, 4 its conductivity tensor, I'p the earth surface, np its normal
exterior unit field and I' the electrode surface. Thus, when the electrode attains a
voltage Vp (Ground Potential Rise or GPR) relative to a distant grounding point, the
solution to (21) gives potential V and current density o at an arbitrary point . On the
other hand, since V' and o are proportional to the GPR, it can be assumed that Vp =1
without any restriction.

In last years, authors have developed a high efficient numerical approach based on
the Boundary Element Method to analyze grounding systems of electrical substations
embedded in uniform and stratified soils'”?!. However, the application of these tech-
niques based on boundary elements in the cases of heterogeneous or multi-layer soils
implies a considerable computational effort. On the other hand, the specific geometry
of earthing systems in practice (a grid of interconnected buried conductors) precludes
the use of standard numerical techniques, since the obtention of sufficiently accurate
results would imply unacceptable computing efforts because the discretization of the
domain (the earth) is required!”. For these reasons, we have turned our attention to
investigate the applicability of numerical formulations based on meshless methods'® for
the solution of this kind of problems. In accordance with this, we present two exam-
ples. The first one is a 1D potential problem. In this test, we will study the solution
by using MLS interpolants with enrichment functions, as a first stage of a project that
is being developed in order to apply these techniques to 3D potential problems. In
the second example, we analyze the fault current dissipation into the earth through a
toroidal grounding electrode by using a MLS meshless method with no enhancement.

11
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6.2. A 1D Numerical Test

As a first test to study the performance of the standard and the enriched MLS
interpolations applied to a potential problem, we will consider the following boundary
value problem:

1 d av
——(r’— =0, 1<r<L; V@A)=1, V(L)=0, (22)
r2dr dr
: : L _ 1 (L _
which analytical solution is given by V (r) = T—1 (r 1).

Thus, for the enrichment function 1/r and for a given set of n, trial functions N;

defined on the domain, the approximation V to the solution V can be written in the
form:

'p
Without enrichment functions: V=> Nyull.
i=1

"p
With enrichment functions: V=> N;(ull + ai i F1(r)).
i=1

Total enrichment: Fi(r)y=1/r, 1<r<L.
Fi(r)=0, 1<r<rg;

Local enrichment: Fi(r)=1/r, ro<r <ry;
Fi(r)=0, r <r<L.

being n, the total number of nodal points of the solution domain. The weighting
function used!® is the truncated gaussian with o = 0.25 and k& = 1.1, and the total
length of the domain L is 100.

In figure 4, it can be shown the comparison of the approximations obtained by using
MLS interpolants with or without enrichment functions, and with a different number
of scattered nodal points (10 and 30) and the number of points of the subdomains (5
and 7 nodes). In this case, the use of enhanced approaches allows to obtain very good
results, specilly in those cases in which a local enrichment is performed. As it is shown, in
comparison with standard MLS, an appropriate local enhancement successfully improves
the approximation only adding a few collocation points and, therefore, with a minimal
increase in the computational cost.

6.3. Analysis of a toroidal grounding electrode

The example presented in this paper comnsists of a toroidal electrode horizontally
buried to a depth of 7 m. The interior diameter of the ring is 20 m and the electrode
diameter is 3 m. Characteristics of the soil model used in this example are shown in
figure 5, and the relationship between the scalar conductivities of each part of the soil
are: 79 = 4 1 and y3 = 2 v1. Due to the axial symmetry of the problem, solution

12
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Fig. 4.- Comparison of results obtained by using different MLS approaches for the 1D

numerical test.
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Fig. 5.- Distribution of nodal points used in the numerical resolution and scheme of
the geometry of the problem.

can be obtained by using a 2D model. A MLS meshless method with a point collocation
scheme has been used (in this example, no enrichment procedure has been carried out),
and the distribution of nodal points (3019) has been obtained by means of the program
GEN4U (figure 5)*. The base interpolating functions are linear and all subdomains
contain at least five points. Figure 6 shows the contour lines and the potential distri-
bution around the torodial electrode considering a non-homogeneous soil model. These
numerical results agree significantly with those obtained by using a very dense point
distribution. Nowadays, in the actual stage of the development of the project, we are
working to include extrinsic enrichment techniques to this kind of problems in order
to improve the results, and decrease the actual computational cost. Furthermore, with
these enhancement methods we hope to solve problems with a different distribution and
number of electrodes of the grounding system.

7. CONCLUSIONS

In this paper, a Moving Least Squares interpolation method with a point collocation
approach has been presented for the analysis of potential problems in electrical engi-
neering applications. The approximations to the solution can be improved by using a
total or partial enrichment in the basis functions of the MLS interpolants.

In this kind of problems, in which the use of standard numerical methods is precluded
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Fig. 6.- Contour lines and potential distribution intro the ground around a toroidal
electrode during a fault current derivation.

due to large computing efforts required in the discretization process, the meshless char-
acter of these MLS approximations may represent an important improvement in their
computational analysis. In the grounding analysis, since we know some information
related to the type of the function of the solution, the use of enrichment functions in
the MLS interpolation can also be very profitable. In this paper, we have presented
some examples in 1D cases. The good performance can be noticed in the tests carried
out. Furthermore, it has been verified that very interesting advantages can be obtained,
specially if local enrichment is used.

The next step will be the comparison between standard and enriched MLS meshless
methods in 2D problems. The standard MLS approach has already been developed, and
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it has been applied to the solution of a toroidal grounding system. Results obtained
for different point distributions, even with a stratified soil model, are very promising
and require a reasonable computational cost. Moreover, further analysis related with
mathematical and numerical aspects must be done to assess the practical feasibility of
this approach.
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