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Low-Complexity Near-Optimal Decoding for
Analog Joint Source Channel Coding Using

Space-Filling Curves
O. Fresnedo, Member, IEEE, F. J. Vazquez-Araujo, Member, IEEE, L. Castedo, Member, IEEE,

and J. Garcia-Frias, Senior Member, IEEE,

Abstract—Analog Joint Source-Channel Coding (JSCC) is a
communication strategy that does not follow the separation
principle of conventional digital systems but approaches the
optimal distortion-cost tradeoff over AWGN channels. Con-
ventional Maximum Likelihood (ML) analog JSCC decoding
schemes suffer performance degradation at low Channel Signal
to Noise Ratio (CSNR) values, while Minimum Mean Square
Error (MMSE) decoding presents high complexity. In this letter
we propose an alternative two step decoding approach which
achieves the near-optimal performance of MMSE decoding at all
CSNR values while maintaining a low complexity comparable to
that of ML decoding. An additional advantage of the proposed
analog JSCC decoding approach is that it can also be used in
Multiple Input Multiple Output (MIMO) fading channels.

I. INTRODUCTION

Analog Joint Source Channel Coding (JSCC) has been
proposed as an alternative to conventional digital systems
based on the separation between source and channel coding
[1]. Analog JSCC has been shown [2]–[4] to approach
near-optimum performance for high data rates with very low
complexity and an almost negligible delay.

Maximum Likelihood (ML) decoding is the most widely
used decoding method for analog JSCC [5], [6]. Even though
its complexity is very low, it exhibits acceptable performance
when the Channel Signal to Noise Ratio (CSNR) is high [3],
[5]. However, peformance of ML decoding is rather poor when
the CSNR is low. This limitation can be overcome by resorting
to Minimum Mean Square Error (MMSE) decoding [7], a
method that exhibits an acceptable peformance at all CSNR
values. Nevertheless, the complexity of MMSE decoding is
significantly larger than that of ML decoding.

In this work, we propose a different decoding approach
to analog JSCC that exhibits a performance close to that
of MMSE decoding in all CSNR regimes while keeping
complexity at the same level as ML decoding. The proposed
technique is based on introducing a linear MMSE estimator
prior to ML decoding. A similar idea has been discussed in [8]
by Forney who showed that MMSE estimation is instrumental
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Fig. 1. Block diagram of a bandwidth compression N :1 analog JSCC system
over an AWGN channel.

for achieving the capacity of Additive White Gaussian Noise
(AWGN) channels but in the context of digital communica-
tions using lattice-type coding. In this work, MMSE estimation
is also helpful to approach the capacity of fading channels
using analog JSCC.

The remainder of this letter is organized as follows. Sec-
tion II reviews the basics of analog JSCC systems focusing
on the limitations of conventional ML and MMSE decoding
schemes. Section III describes the proposed low-complexity
two-step decoding approach and its application to AWGN,
Single Input Single Output (SISO) and Multiple Input Multiple
Output (MIMO) fading channels. Section IV presents the
results of computer experiments and Section V is devoted
to the conclusions.

II. ANALOG JOINT SOURCE-CHANNEL CODING

Figure 1 shows the block diagram of a discrete-time
analog JSCC transmission system over an AWGN channel.
The system performs an N :1 bandwidth compression, i.e.
N analog source symbols are packed into the source vector
x = (x1, x2, . . . , xN ) and compressed into one channel
symbol s.

Encoding in analog JSCC typically involves two steps: the
compression function Mδ(·) and the matching function Tα(·).
As explained in [5], Shannon-Kotel’nikov mappings can be
used to define compression functions Mδ(·) that map the N
source symbols into a single value θ̂. As an example, a par-
ticular type of parameterized space-filling continuous curves,
called spiral-like curves, can be used to encode the source
samples. These curves were proposed for the transmission
of Gaussian sources over AWGN channels by Chung and
Ramstad [2], [3], [5]. For the case of 2:1 compression (i.e.
N = 2) the mathematical expression for the two-dimensional
spiral is given by

zδ(θ) =

(
sign(θ)

δ

π
θ sin θ,

δ

π
θ cos θ

)
, (1)
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where δ is the distance between two neighboring spiral arms
and θ is the angle from the origin to the point z = (z1, z2)
on the curve. For a given spiral-like curve, the compression
function Mδ(·) provides the value θ̂ corresponding to the point
on the spiral that minimizes the distance to x, i.e.

θ̂ =Mδ(x) = argmin
θ
‖x− zδ(θ)‖2. (2)

Next, an invertible function Tα(·) is used to transform the
channel symbols. In [2], [3], [5], Tα(θ̂) = θ̂α with α = 2 was
proposed. However, as shown in [7], system performance can
be significantly improved if α is optimized together with δ.
We have empirically determined through computer simulations
that using α = 1.3 provides a good overall performance for
2:1 analog JSCC systems over AWGN channels and a wide
range of CSNR and δ values.

Finally, the analog symbol obtained after this transformation
is normalized to ensure that the average transmitted power is
equal to one. Thus, the channel symbol s is given by

s =
Tα(Mδ(x))√

γ
, (3)

where γ is selected so that E[|s|2] = 1. When transmitting
over an AWGN channel, the received symbol is

y = s+ n, (4)

where n ∼ N (0, N0) is a real-valued zero-mean Gaussian
random variable that represents the channel noise and CSNR =
1/N0.

The aim of decoding is to obtain an estimation of the source
symbols, x, from the received symbols, y. The Maximum
Likelihood (ML) estimate x̂ML is the tuple (x̂1, x̂2, . . . , x̂N )
that belongs to the non-linear curve and maximizes the likeli-
hood function p(y|x), i.e.

x̂ML = argmax
x∈curve

p(y|x)

= {x|x ∈ curve and Tα(Mδ(x))/
√
γ = y}. (5)

Particularizing to the case N = 2, ML decoding is
equivalent to first applying the inverse function T−1α to the
observation y after de-normalization to find an estimate θ̃ of
the transmitted angle θ̂

θ̃ = T−1α (
√
γy) = sign(y)|√γy|−α (6)

and then obtaining x̂ML = (x̂1, x̂2) = zδ(θ̃). Notice that
the overall decoder complexity is extremely low since the
two decoding steps previously described only involve simple
mathematical operations.

In analog JSCC, system performance is measured in terms
of the Signal to Distortion Ratio (SDR) with respect to
the CSNR. The distortion is the Mean Square Error (MSE)
between decoded and source analog symbols, i.e.

MSE =
1

N
E{‖x− x̂‖2}. (7)

The optimal distortion-cost tradeoff is the minimum attainable
SDR for a given CSNR. In the literature, this theoretical
limit is known as the Optimum Performance Theoretically

Attainable (OPTA) and is calculated by equating the rate
distortion function to the channel capacity [9].

Analog JSCC over an AWGN channel with ML decoding is
analyzed in [2], [3], [5], where it is shown that its performance
is close to the OPTA limit for medium and high CSNRs but
it significantly degrades if we consider low CSNR values.
This unsatisfactory behavior motivates the consideration of
Minimum Mean Square Error (MMSE) decoding for analog
JSCC, which has been analyzed in [7]. Given an observation y,
MMSE decoding calculates the point x on an N-dimensional
space that minimizes the MSE with respect to y, i.e.

x̂MMSE = E [x|y] =
∫

x p(x|y)dx

=
1

p(y)

∫
x p(y|x)p(x)dx. (8)

When MMSE decoding is employed, system performance is
close to the theoretical OPTA limit in the whole CSNR region
[7]. Nevertheless, calculating x̂MMSE is not straightforward.
Indeed, since the conditional probability, p(y|x), involves the
mapping function Mδ(·) which is discontinuous and non-
linear, the integral in (8) can only be calculated numerically.
This implies discretizing the set of all possible source values,
x, using a uniform step. If L discrete-points are selected for
each source dimension, we have to calculate LN values for
p(y|x) and p(x) and then compute the integral in (8). Although
the discretized version of p(x) and the corresponding coded
values Tα(Mδ(x)) can be calculated once off-line and the
result stored at the decoder, for MMSE decoding to perform
close to the OPTA large values of L have to be chosen, which
negatively impacts the decoding complexity.

III. PROPOSED DECODING APPROACH

The reason why ML decoding performance degrades at
low CSNR is because it produces estimates of the source
symbols directly from the received symbols. When the channel
noise is high, received symbols are severely distorted and ML
estimates are far from the source symbols.

Intuitively, it should be possible to improve the source
symbols ML estimates if the received symbols are previously
filtered to reduce the distortion that the channel introduces
into the transmitted symbols. For this reason, we propose to
place an MMSE filter prior to ML decoding with the aim
of minimizing the MSE between the transmitted and filtered
symbols. In the case of an AWGN channel, the linear MMSE
estimate of the transmitted symbols s is given by

ŝ =
y

1 +N0
.

Then, ML decoding is applied to the linear filter output ŝ and
an estimate of the transmitted source symbols is obtained. This
two-step decoding strategy resembles the one used in coded-
modulated digital systems that makes use of separate detection
and decoding stages.

Notice that when transmitting over AWGN channels, the
complexity of MMSE filtering is minimum since it simply
consists on the multiplication of the channel symbols times a
number that depends on N0. For high CSNRs, this number is
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close to one and the influence of the MMSE filter is small.
However, for low CSNR values the impact of this filtering is
significant.

A. SISO fading channels

The proposed two step analog JSCC decoding approach is
particularly attractive when considering Single-Input-Single-
Output (SISO) fading channels. If a channel symbol s is to
be transmitted over a SISO flat-fading channel, the received
symbol y is given by

y = hs+ n (9)

where h and n represent the fading channel response and
the channel AWGN, respectively. In the case of Rayleigh
fading channels, both h and n are modeled as complex-
valued zero-mean circularly-symmetric Gaussian independent
and identically distributed (i.i.d.) random variables. The fading
channel response is normalized (i.e. E[|h|2] = 1) so that the
average CSNR be 1/N0.

It is important to note that MMSE analog JSCC decoding is
particularly cumbersome when transmitting over fading chan-
nels. Although we can pre-calculate the discretized version of
p(x) and Tα(Mδ(x)) off-line, notice that the latter depends on
the code parameters α and δ. As previously mentioned, these
code parameters have to be optimized for each CSNR value.
When transmitting over a fading channel, the CSNR changes
at each channel realization. For analog JSCC to perform close
to the OPTA, code parameters α and δ have to be continuously
adapted to the actual CSNR, which requires many discretized
versions of Tα(Mδ(x)) to be available at the decoder. This
causes a significant increase on decoding complexity and
storage requirements at the receiver.

In SISO fading channels, the linear MMSE estimate of the
transmitted symbol s is given by

ŝ =
h∗y

|h|2 +N0
, (10)

where the super-index ∗ represents complex conjugation.
Again, MMSE estimates of the channel symbol, ŝ, are cal-
culated and subsequently used to obtain estimates of source
symbols by ML decoding.

In flat-fading channels, filtering is again a simple scaling
and the complexity of this operation is minimum. Notice,
however, that the scale factor depends not only on the channel
noise variance but also on the channel response. The role of
MMSE filtering is particularly important in fading channels
where poor channel realizations often cause the CSNR to have
small values.

B. MIMO fading channels

The proposed two step analog JSCC decoding approach
can also be used when transmitting over Multiple Input
Multiple Output (MIMO) fading channels with nT transmit
and nR ≥ nT receive antennas. In this case, we assume
the source symbols are spatially multiplexed over the nT
transmit antennas. At each transmit antenna, i, a set of N
analog source symbols is encoded into a channel symbol

si, i = 1, · · · , nT using the encoding procedure described
in Section II. It is worth noticing that combining analog
JSCC with MIMO transmission provides an overall bandwidth
compression ratio NnT :1 which can be significantly larger
than that obtained with SISO transmissions. At the same
time, notice the extremely high complexity of direct MMSE
decoding, as defined by (8), which requires the discretization
of an NnT -dimensional space. If we use L points to discretize
each dimension, the total number of points will be LNnT

which makes MMSE decoding impractical even for moderate
values of N and nT .

When transmitting a channel symbol vector over a fre-
quency flat MIMO fading channel, modeled by an nR × nT
channel matrix H whose entries hij are random variables, the
observed symbol vector at the MIMO channel output can be
expressed as

y =
1
√
nT

Hs+ n (11)

where s, y and n are the vectors that represent the channel
symbols, the received symbols and the AWGN, respectively.
In addition to complex-valued zero-mean circularly-symmetric
and Gaussian, the noise is spatially white. Notice that channel
symbols are normalized by nT to ensure unit transmitted
power. We also assume a normalized MIMO channel where
E[|hij |2] = 1. This way the average CSNR is 1/N0.

For MIMO channels, the linear MMSE spatial filter that
minimizes the MSE between the channel symbol vector s and
the estimated symbol vector ŝ = Wy is given by

WMMSE =
(
HHH+ nTN0InT

)−1
HH (12)

The MMSE filter WMMSE can be interpreted as an spatial
filter that diagonalizes (equalizes) the MIMO channel. Equiva-
lently, the role of WMMSE is to transform the MIMO channel
into a series of parallel SISO channels where interferences
among components in ŝ have been minimized. Thus, compo-
nents in ŝ are appropriate inputs to ML decoders that produce
an estimate of the source symbol vector.

IV. RESULTS

In this section we present the results of several computer
experiments carried out to illustrate the performance of the
proposed analog JSCC decoding approach. We consider the
transmission of Gaussian source samples over three types of
channels: AWGN, SISO Rayleigh fading and MIMO spatially
white Rayleigh fading. Performance is measured in terms
of SDR with respect to CSNR and the obtained results are
shown in Figures 2 to 4. The proposed decoding approach is
compared to that of ML and MMSE decoding when possible.
The OPTA theoretical limit is also plotted as a benchmark. For
a generic N:1 MIMO fading nT × nR channel, the OPTA is
obtained by equating the SDR to the chanel ergodic capacity,
i.e.
1

N
log

(
1

MSE

)
=

1

nT
EH

[
log det

(
InR

+
CSNR
nT

HHH

)]
,

where EH [·] represents expectation with respect to H. It is
straightforward to particularize this equation to obtain the
OPTA of a SISO AWGN and a SISO fading channel.
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Let us discuss the obtained results in detail. When con-
sidering an AWGN channel (see Figure 2) the proposed
analog JSCC decoding approach performs simlarly to MMSE
decoding and both lie within 1.5 dB from the OPTA limit
at all CSNR values. Figure 2 also shows how the proposed
decoding approach outperforms ML decoding at low CSNR
values (i.e. below 15 dB).

Similar results were obtained when considering a SISO
Rayleigh fading channel as can be seen from Figure 3. The
proposed decoding approach and MMSE decoding perform
identically and both lie within 2 dB from the OPTA limit at all
CSNR values. ML decoding also approaches the OPTA limit
for CSNR values above 25 dB, but for lower CSNR values it
suffers a significant performance degradation with respect to
the proposed scheme and to MMSE decoding.

Finally, Figure 4 shows the ability of the proposed analog
JSCC decoding method to approach the OPTA limit when
transmitting over 2×2 and 4×4 MIMO Rayleigh fading chan-
nels. No curves for ML and MMSE decoding are presented
since these decoding methods are unfeasible over MIMO
channels. Notice that the asymptotic high CSNR performance
of the proposed decoding method is 3 dB below the OPTA
limit for the 2× 2 MIMO Rayleigh channel. The distance to
the OPTA limit in the high CSNR regime increases (up to 4
dB) when considering a MIMO channel with a larger number
of antennas (4× 4).
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Fig. 2. Performance of the 2:1 analog JSCC system described in the text
when an AWGN channel is considered.

V. CONCLUSIONS

We have proposed a low-complexity and near-optimal ap-
proach to analog JSCC decoding that overcomes the limi-
tations of ML and MMSE decoding methods employed in
previous work. The proposed approach is based on the idea
of MMSE filtering the received symbols prior to their ML
decoding. Computer simulations show that this method per-
forms similarly to MMSE decoding and approaches the OPTA
limit at all CSNR values. At the same time, it exhibits very
low complexity, similar to that of ML decoding. Another
advantage of the proposed method is that it can be applied to
MIMO channels where conventional ML and MMSE decoding
are unfeasible. Computer simulations show the ability of the
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Fig. 3. Performance of the 2:1 analog JSCC system described in the text
when a SISO Rayleigh fading channel is considered.
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Fig. 4. Performance of the 2:1 analog JSCC system described in the text
when 2× 2 and 4× 4 MIMO Rayleigh fading channels are considered.

proposed approach to perform close to the OPTA limit when
considering MIMO spatially white Rayleigh fading channels.
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