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Abstract
The use of the algebraic method for solving word problems is a challenging topic for sec-
ondary school students. Students’ difficulties are usually associated with extracting the 
problem’s network of relationships between quantities and with formalizing these relation-
ships into algebraic language in a problem model. Both sources can coexist and interact; 
thus, it is usually not possible to determine which source of difficulty is more relevant. In 
addition, there are specific errors, such as the error by multiple referents for the unknown, 
which are directly linked to the wording of the problem text, and in which the same two 
sources of error coexist. In this work, we present the results of an experiment conducted 
with 255 secondary school students assessing the effect of two common difficulties on the 
accuracy of problem models and on the rate of multiple referents for the unknown. The 
first difficulty is the use of algebraic language in the construction of the problem model; 
the second is the use of the same expression to designate different quantities within the 
problem text. We used a 2 × 2 between-between design, with one factor related to the sym-
bolic language (algebraic or arithmetic) in which the problem model is constructed, and the 
other factor related to the actual language features of the text problem. Our results indicate 
that overall, the main source of difficulty for students is the use of algebraic language to 
formalize a problem model, representing a large effect size.
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1 Introduction

Word problem solving is an important topic in mathematics education at all educational 
levels. To solve these problems, the student must convert the information obtained after 
a comprehensive reading of the problem text into a set of mathematical relationships. 
Throughout elementary education, students solve word problems using arithmetic calcula-
tions, starting from known quantities to determine the unknown quantity. When they start 
secondary education, the students are introduced to the algebraic method, which implies 
assigning letters to unknown quantities and formulating equations. This transition involves 
significant difficulties (Filloy et al., 2008; Kieran, 2007) due to both the newness of this 
way of solving and its reliance on algebraic language.1

The research community has focused its attention on students’ difficulties when solv-
ing word problems linked to algebraic language, such as the error termed multiple refer-
ents of the unknown (hereinafter multiple referents) by Stacey and MacGregor (19971999). 
This error occurs when students assign the same letter to two different quantities. Another 
important line of research has studied the influence of students’ understanding of the 
problem text on their abilities to solve problems, an aspect shared with arithmetic solving 
(Boonen et al., 2013; Fuchs et al., 2015; Walkington et al., 2019). Indeed, the influence of 
reading comprehension impeding success in solving word problems has been supported 
by numerous studies over the years, and currently prevails as a relevant subject of study 
(Boonen et al., 2016; Daroczy et al., 2015). Natural language commonly employs words 
or phrases whose meanings vary within the same text, making it more difficult to connect 
different sentences (Fossard et al., 2012). This phenomenon is common in the text of word 
problems and, specifically, in age problems where the same expression designates different 
quantities in different sentences (Bloedy-Vinner, 1996; Boero et al., 2008).

Following the terminology of Bloedy-Vinner (1996), we refer to such expressions as 
expressions with evolving meaning. Consider the example below:

Example 1: Amaya is 9 years older than Andrea. In 3 years’ time, Amaya’s age will be 
twice Andrea’s age. How old are they?

In example 1, the expressions “Amaya’s age” and “Andrea’s age” refer to both the cur-
rent and future ages of the characters in different sentences. In the second sentence, the 
expressions “Amaya’s age” and “Andrea’s age” refer to “Amaya’s future age” and “Andrea’s 
future age,” and the meaning of the written expressions are updated by the expression “In 
3 years’ time.”

A common error when algebraically solving age problems consists of assigning the 
same letter to two different quantities that are expressed within the same set of words in the 
text (e.g., the same letter to Amaya’s age at present and in the future). This is a particular 
instance of multiple referents and has attracted interest from the research community (e.g., 

1 In this paper, arithmetic language means the set of symbols made up of the set of figures for numbers, 
the symbols for arithmetic operations between numbers, brackets, the equals sign, and signs for inequality. 
Its syntactic rules are those of arithmetic calculations. Algebraic language means the set of symbols which 
constitutes arithmetic language, together with letters to represent unknown quantities, with the same rules 
as in arithmetic language and with letters being handled as numbers. Equation means an equality between 
two expressions in algebraic language, which includes letters—handled just like numbers—to represent 
unknown quantities involved in relationships between quantities, and which is true only for some values of 
the unknown(s) (see Drouhard & Teppo, 2004).
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Bloedy-Vinner, 1996; Boero et  al., 2008; Filloy et  al., 2008, 2010; Molina et  al., 2017; 
Soneira et al., 2018) because it is common among secondary school students. It has been 
reported that the occurrence of this error increases when the problem text contains expres-
sions with evolving meaning (Bloedy-Vinner, 1996; Soneira et al., 2018). However, these 
authors claimed that the causes of this error are unclear and, at the very least, there are 
two possibilities. On one hand, the solver could believe both clauses, “Amaya is 9 years 
older than Andrea” and “Amaya’s age will be twice Andrea’s age,” refer to the same thing: 
Andrea’s age. This would be due to a dissociation between the first and second sentence 
as a consequence of not updating the meaning of the expressions for the characters’ ages 
through the expression “In 3 years’ time.” Here, the error would be related to the solver’s 
inability to identify the quantities and their relationships. On the other hand, the solver 
could correctly recognize both quantities as different, but wrongly preserve the syntax of 
the natural language (where both quantities are expressed by the same set of words) when 
translating the words into equations, thus assigning them the same letter. In this case, the 
error would be linked to a lack of command of the algebraic language. Hence, when ana-
lyzing students’ performances, it is usually not possible to specify the relative weight of the 
two sources of error, as both are involved and can act interconnectedly.

In this context, our study aims to determine whether the source of the different difficul-
ties when algebraically solving age word problems resides in inferring the network of rela-
tionships between quantities of the problem, or in the process of formalization into alge-
braic language. To accomplish this, we compared secondary-school students’ productions 
when performing tasks that required them to infer the network of relationships of a word 
problem and formalize it either in equations or by reasoning from hypothetical but concrete 
numbers. Our experimental design relied on the fact that the network of relationships pre-
sented in the text was the same in both tasks, while the language to be used to formalize 
that network differed (arithmetic or algebraic).

2  Theoretical framework

2.1  Word problem solving

In order to model the word problem comprehension-solution process, Nathan et al. (1992) 
refined the work of Reusser (1988) and considered three components: the text base, the 
situation model, and the problem model. The text base is a propositional network derived 
solely from the text. The solvers connect the proposed problem to their background knowl-
edge, giving rise to the situation model which describes the problem situation in everyday 
terms. Based on the latter, the solvers construct a problem model. The problem model is 
a formalization of the situation model, which includes the whole network of specific rela-
tionships between quantities and its representation in terms of computational and symbolic 
operations (Walkington et al., 2019).

The three components constrain each other in an iterative process, in which reading 
comprehension plays a salient role (Kintsch, 1998). Each piece of information is processed 
as soon as it is identified and then integrated with the rest of the text in working memory 
(Kintsch, 1998). It encompasses progressive integration cycles, where what happens at the 
end of the sentence has a singular relevance. Thus, this framework supports the idea that 
the use of expressions with evolving meaning increases the difficulty in connecting differ-
ent sentences (see example 1).



112 C. Soneira et al.

1 3

2.1.1  Algebraic method of solution

Given a word problem, the algebraic method of solution (hereinafter algebraic method) 
consists, essentially, of formalizing the relationships between quantities in a problem 
model by means of an equation or a system of equations, whose resolution leads to the 
solution to the problem. For analytical purposes, the process up until the writing of the 
equation(s) can be broken down into a sequence of steps (Filloy et al., 2008), which we 
illustrate by means of example 1:

Step 1. An analytical reading of the problem, by which a set of quantities and the 
relationships among them is inferred from the text. In example 1, the most usual 
analytical reading would result in a network made up of four relationships: Amaya’s 
current age equals nine plus Andrea’s current age; Amaya’s future age equals two 
times Andrea’s future age; Amaya’s future age equals three plus Amaya’s current 
age; and Andrea’s future age equals three plus Andrea’s current age.
Step 2. A letter is assigned to an unknown quantity—or several different letters to 
several unknown quantities. In example 1, we may assign x to Andrea’s current age.
Step 3. Algebraic expressions are assigned to the remaining unknown quantities. In 
example 1, Amaya’s current age can be expressed as x + 9, Andrea’s future age as 
x + 3, and Amaya’s future age both as (x + 9) + 3 and 2·(x + 3).
Step 4. An equation (or as many as the letters defined in step 2) is written based 
on equating two algebraic expressions that designate the same quantity (step 3). In 
example 1, a possible equation is 2·(x + 3) = (x + 9) + 3 equating the expressions for 
Amaya’s future age.

Regarding the Nathan et al. (1992) model, in step 1, the solvers construct the text 
base, the situation model, and form a network of relationships between quantities 
which can be inferred from the text base and the situation model. Steps 2 to 4 involve 
formalizing that network by means of equations in a problem model. In addition, it is 
common for secondary school students to begin writing the equation(s) without hav-
ing inferred the whole network of relationships. Specifically, students do not fully 
complete the construction (step 1) before moving on to assign letters to unknown 
quantities (step 2); they then simultaneously construct the equation(s) (step 4) and 
assign expressions to the remaining unknown quantities (step 3). For example, let 
us suppose that students had addressed Example 1 by following a sequence which 
would lead them to start the equation (x + 9) + 3 = . This equation would be com-
pleted after adding the expression 2·(x + 3), which had not been considered before-
hand. Accordingly, steps 3 and 4 have been collapsed into a single phase, and the 
solver would go back to the problem text to recover information about those relation-
ships not yet integrated (step 1). Another potential source of errors in steps 2, 3, and 
4 appears if the students disregard the algebraic language that requires a one-to-one 
correspondence between quantities and letters and the meaning remains invariable 
throughout the solving process. In contrast, natural language allows expressions with 
evolving meaning (Filloy et al., 2008; Soneira et al., 2018). Another cognitive chal-
lenge is that in algebra, letters can represent variables and unknowns. Unknowns 
stand for specific numbers, as in the case of word problem solving, and variables for 
variable numbers.
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2.1.2  Trial‑and‑error method

An alternative approach to the algebraic method is the trial-and-error method. Essen-
tially, this consists of inferring the whole network of relationships among the problem’s 
quantities and applying these relationships to a concrete—although hypothetical—value 
to assess whether a contradiction is obtained. Although the solvers do not use letters to 
construct a problem model, they do not know whether the hypothetical values are solu-
tions. The underlying logic of the tasks used in this study, apart from their utilization of 
hypothetical values in the formalization, followed the algebraic method to some extent 
and could be broken down into analogous sequential steps. We illustrate this below by 
means of example 1:

Step 1. An analytical reading is conducted as in the algebraic method, from which the 
same four relationships between quantities are inferred: Amaya’s current age equals 
nine plus Andrea’s current age; Amaya’s future age equals two times Andrea’s future 
age; Amaya’s future age equals three plus Amaya’s current age; and Andrea’s future 
age equals three plus Andrea’s current age. The relationships between quantities to 
be formalized in a problem model are the same as in the algebraic method. In addi-
tion, in this example—and in all the tasks in this study—all the relationships contain 
two unknown quantities and one known quantity. Thus, it is not possible to find the 
solution just by applying a sequence of arithmetic operations that begins only from 
known quantities and ends up determining the quantities that are asked for in the 
problem text.
Step 2. The solvers, instead of assigning a letter to an unknown quantity, give a con-
crete value to it, which works as a hypothetical solution. In example 1, for instance, 
the solvers could assign the value 11 to Andrea’s current age.
Step 3. The rest of the unknown quantities are computed. This step is feasible thanks 
to the replacement of an unknown quantity by a number in the second step. Thus, 
Amaya’s current age would be 20 (11 + 9), Andrea’s future age, 14 (11 + 3), and 
Amaya’s future age, 23 (20 + 3) and 28 (2·14).
Step 4. The solvers, instead of constructing an algebraic equation, compare the two 
numbers calculated for the same quantity, using the equals sign with the algebraic mean-
ing of equivalence. In example 1, those correspond to Amaya’s future age (23 and 28).

Since the compared values are different, the solvers would repeat the actions from 
step 2 to step 4, modifying the number assigned to Andrea’s current age. Completing 
steps 2 to 4 also implies representing the network of relationships between quantities in 
a problem model in arithmetic language inferred in step 1.

A key point is that, unlike in the algebraic method, secondary school students should 
deviate to a lesser extent from the sequential order of steps when they use a trial-and-
error strategy. This is because in this case starting step 4 without completing step 3 is 
unnatural. Indeed, this means that when performing pure arithmetic operations, the stu-
dent maintains all the operations indicated without calculating the result (i.e., maintain-
ing (11 + 9) + 3 instead of performing the sequence 11 + 9 = 20, 20 + 3 = 23). However, 
solvers may also identify relationships in the text whenever they are needed to conduct 
computations instead of inferring the complete network beforehand.

This issue is important because following the sequential order of steps in a specific 
manner may affect the cognitive demands of the task. In particular, strict compliance 
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with the sequence of steps within the algebraic method would reduce working mem-
ory load. In fact, in step 4, memory can be partially unloaded in the external represen-
tations constructed in step 3 (Koedinger & Nathan, 2004). This allows the solver to 
focus solely on identifying which mathematical relationship (only one per equation) 
should be used to construct an equation. However, as mentioned above, secondary 
school students usually begin step 4 before having completed the previous steps, and 
manage several mathematical relationships, as well as their representation, concur-
rently. This fact increases working memory load.

In addition, conducting the four steps within the trial-and-error method would 
imply a lower cognitive demand than within the algebraic method. Our analysis above 
shows that within the trial-and-error approach, there is a greater likelihood of pre-
cisely complying with the strict sequential order of the four steps. Therefore, the 
solver simply takes into account one relationship at each step and then removes it 
from working memory.

2.1.3  The role of natural language

When solving problems, the language features of word problems have also been 
reported to impact the level of perceived difficulty (e.g., Clinton & van den Broek, 
2012; Walkington et  al., 2019). In particular, the use of expressions with evolving 
meaning—one and the same expression designate different quantities within the same 
text—raises issues. As a universal rule, within arithmetic and algebraic languages, 
each symbol must have a unique referent. For instance, in example 1, if the letter x 
represents Amaya’s age at present, then x cannot be used to represent Amaya’s age 
in ten years’ time; either a different letter or x + 10 must be used. Yet, according to 
Kintsch (1998) because each sentence is processed in a different integration cycle, 
the readers may not take into account that “Amaya’s age” in the second sentence had 
already been processed but with a different meaning in the first sentence. As a con-
sequence, they would use the same letter to represent it, which is an error by multiple 
referents.

On the contrary, let us consider the following text framing the same problem model 
as in example 1, but in which expressions with evolving meaning are avoided by adding 
an explicit hint to avoid the error by multiple referents in each sentence (indicated in 
italics):

Example 2: At present, Amaya is 9 years older than Andrea. In 3 years’ time, Amaya’s 
future age will be twice Andrea’s future age. How old are they at present?

The information in the second sentence is self-sufficient when attaching referents to 
verbal expressions and the solvers do not need to update the meaning of any expression. 
In example 2, the addition of explicit information would make it less likely to believe 
that the relationship “twice” refers to the current ages and to commit the consequent 
error by multiple referents.
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3  Research purpose

Within the Nathan et al. (1992) model, solving a problem algebraically requires infer-
ring the network of relationships between quantities expressed in the problem text and 
subsequently formalizing the network into a problem model in algebraic language. 
Both aspects could be a source of difficulties and errors (Soneira et  al., 2018). In 
practice, knowing the significance of each source could improve teaching sequence 
design by focusing on either the processing of natural language to infer the network of 
relationships or on the formalization into algebraic language.

Thus, in the context of age word problems, in this work, we conducted an experiment 
designed to answer the following research questions about tasks that require the construction 
of a problem model based on a problem text:

 (RQ1) Are there differences in the accuracy of the problem model depending on whether:

a. the task implies using the algebraic language or the arithmetic language—with 
hypothetical values—to formalize the relationships between quantities?

b. the problem text uses expressions with evolving meaning?

 (RQ2) Are there differences in the rate of errors by multiple referents depending on whether:

a. the task implies relying on the algebraic language or on the arithmetic language—
with hypothetical values—to construct a problem model?

b. the problem text uses expressions with evolving meaning?

Note that RQ2 is a particularization of RQ1 and that, as discussed previously, multiple 
referents are related to the use of expressions with evolving meaning.

We will answer the above questions by testing two hypotheses—H01 and H02—in the 
context of word age problems, followed by applying a modus tollens argument and inter-
preting the effects of the factors (see next section):

 (H01) There are no differences in the rate of problem model accuracy depending on any of 
the task variants described in RQ1.

 (H02) There are no differences in the rate of errors by multiple referents depending on any 
of the task variants described in RQ2.

4  Method

We used a between-between, 2-way design with two crossing factors: task and text explicit-
ness. The task factor had 2 levels: the equations task and the concrete value task. The text 
explicitness factor had 2 levels: with an explicit hint to a typical source of error (hereinafter 
more explicit text) and without an explicit hint to a typical source of error (hereinafter less 
explicit text).
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4.1  Participants

The sample consisted of 255 students, aged 15 to 16 years old, in their fourth year of secondary 
school (aimed towards higher scientific studies). The students were from nine classes in four 
different Spanish public high schools placed in middle class neighborhoods of the same city. All 
the students had been exposed to the same contents, evaluation criteria, and learning standards, 
stipulated by the Spanish region’s educational laws. In these high schools, each class had only 
one mathematics teacher and was made up of a mix of students of different academic abilities. 
Following the educational regulations for mathematics, individual and group work were applied 
in the class setting. Students had been solving problems algebraically for two school years and 
solving problems by means of just arithmetic calculations for at least nine years. According to 
their teachers, the average proficiency in mathematics of these nine classes was intermediate. In 
each high school, each class was randomly assigned to a different level of the task factor.

4.2  Instruments and procedure

We used a specific questionnaire composed of six tasks for each level of each factor. Each 
task contained a text made up of two parts: (1) a declarative section describing a network 
of relationships among quantities in an age problem setting and (2) a question about the 
relationships described in the declarative section. For the sake of exhaustiveness, we 
included six different networks of relationships. The declarative sections were exactly the 
same in each level of the task factor; thus, both texts only differed in the question section 
(see Tables 1 and 2).

Table 1  Problems proposed to less explicit text groups

Task factor

Equation(s) task Concrete value task

Melisa’s age is three times the age of her daughter 
Marta. In 12 years’ time, Melisa’s age will be only 
twice Marta’s age. Find the age of each person

Melisa’s age is three times the age of her daughter 
Marta. In 12 years’ time, Melisa’s age will be only 
twice Marta’s age. Is it possible for Marta’s age to 
be 6?

Anibal is 15, his sister is 12 and his mother is 40. 
How many years need to pass so that the chil-
dren’s ages, taken together, equal their mother’s 
age?

Anibal is 15, his sister is 12 and his mother is 40. 
Is it possible that 23 years have to pass so that the 
children’s ages, taken together, equal their mother’s 
age?

Amaya is 9 years older than Andrea. In 3 years’ 
time, Amaya’s age will be twice Andrea’s age. 
How old are they?

Amaya is 9 years older than Andrea. In 3 years’ time, 
Amaya’s age will be twice Andrea’s age. Is it pos-
sible for Andrea’s age to be 4?

One sister is 3 years older than the other sister, and 
their father is 43. In 7 years’ time their father’s 
age will be twice the sum of the sisters’ ages. 
How old is each sister?

One sister is 3 years older than the other sister, and 
their father is 43. In 7 years’ time their father’s age 
will be twice the sum of the sisters’ ages. Is it pos-
sible for the younger sister’s age to be 6?

A father is twice the age of his son. Seventeen years 
ago, the father was three times the age of his son. 
How old is each person?

A father is twice the age of his son. Seventeen years 
ago, the father was three times the age of his son. Is 
it possible for the son’s age to be 19?

Eight years ago, Ana’s age was four times Maria’s 
age. In 12 years’ time Ana’s age will only be 
twice Maria’s age. Find the age of each person

Eight years ago, Ana’s age was four times Maria’s 
age. In 12 years’ time Ana’s age will only be twice 
Maria’s age. Is it possible for Maria’s age to be 10?
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In the equation(s) task, the question asked for the value of an unknown quantity. The 
instructions were to write an equation or a system of equations whose solution provides the 
answer to the question, but the students were not asked to solve the equation(s). In the con-
crete value task, the question asked if a given concrete—although hypothetical—value ful-
filled the conditions of the declarative section. The instructions were to answer the question 
without using algebra, record all the arithmetic operations (even those mentally conducted) 
required to be sure of the correctness of the answer, and to also write a textual answer to 
the question. This implied constructing a problem model in arithmetic language without 
knowing whether the given value is a solution until the end of the process. This would 
correspond to steps 1 to 4 when using the trial-and-error strategy. Moreover, it was not pos-
sible to provide the correct answer without having represented a correct problem model.

In both levels, the tasks involved constructing a problem model based on the network of 
relationships between quantities expressed in the declarative section of the text, which was 
exactly the same in both levels. Thus, if the students were not able to infer these relation-
ships, there would be little difference between both levels of the task factor. In addition, the 
task factor assesses the weight of the difficulties in constructing a problem model when the 
task implies representing the unknown quantities with letters (algebraic language) instead 
of hypothetical values (arithmetic language).

Concerning the text explicitness factor, in the less explicit text level, the texts were 
problems taken from textbooks corresponding to two previous school years (13–14 years 
old) and contained expressions with evolving meanings (Table 1). In the more explicit text 
level, each text expressed exactly the same network of relationships between quantities 

Table 2  Problems proposed to more explicit text groups

Task factor

Equation(s) task Concrete value task

Melisa’s current age is three times the current age of her 
daughter Marta. In 12 years’ time, Melisa’s future age 
will be only twice Marta’s future age. Find the current 
age of each person

Melisa’s current age is three times the current age of 
her daughter Marta. In 12 years’ time, Melisa’s future 
age will be only twice Marta’s future age. Is it pos-
sible for Marta’s current age to be 6?

At present, Anibal is 15, his sister is 12 and his mother is 
40. How many years need to pass so that the children’ 
future ages, taken together, equal their mother’s future 
age?

At present, Anibal is 15, his sister is 12 and his mother 
is 40. Is it possible that 23 years have to pass so that 
the children’s future ages, taken together, equal their 
mother’s future age?

At present, Amaya is 9 years older than Andrea. In 
3 years’ time, Amaya’s future age will be twice 
Andrea’s future age. How old are they at present?

At present, Amaya is 9 years older than Andrea. In 
3 years’ time, Amaya’s future age will be twice 
Andrea’s future age. Is it possible for Andrea’s current 
age to be 4?

At present, one sister is 3 years older than the other sis-
ter, and their father is 43. In 7 years’ time their father’s 
future age will be twice the sum of the sisters’ future 
ages. How old is each sister at present?

At present, one sister is 3 years older than the other 
sister, and their father is 43. In 7 years’ time their 
father’s future age will be twice the sum of the sisters’ 
future ages. Is it possible for the younger sister’s cur-
rent age to be 6?

At present, a father is twice the age of his son. Seventeen 
years ago, the father’s past age was three times the 
past age of his son. How old is each one at present?

At present, a father is twice the age of his son. Seven-
teen years ago, the father’s past age was three times 
the past age of his son. Is it possible for the son’s 
current age to be 19?

Eight years ago, Ana’s past age was four times Maria’s 
past age. In 12 years’ time Ana’s future age will be 
only twice Maria’s future age. Find the current age of 
each person

Eight years ago, Ana’s past age was four times Maria’s 
past age. In 12 years’ time Ana’s future age will only 
be twice Maria’s future age. Is it possible for María’s 
current age to be 10?
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as a corresponding text in the less explicit text level, though these still contained all the 
necessary words to make explicit that the characters’ ages were updated in each sentence. 
Hence, the problem model could be constructed without connecting the meaning of the 
same expressions in different sentences (Table 2).

Each subgroup dealt with just one text explicitness level and task level. In each second-
ary school, the students’ classes were randomly assigned to one of the experimental groups 
beforehand and each group completed the corresponding task in a different classroom. In 
the end, there were 63 students in the more explicit text and equation(s) task subgroup, 54 in 
the less explicit text and equation(s) task subgroup, 52 in the less explicit text and concrete 
value task subgroup, and 86 in the more explicit text and concrete value task subgroup.

The questionnaires were administered by one of the authors, who explained the cor-
responding task and illustrated it with an example. Once all the participants asserted that 
they understood the task, each task was shown on a screen at the front of the classroom for 
3 min, before being replaced by the next task.

4.3  Codification and statistical analyses

We defined two variables for each problem and student:

• RelRatioproblem (relationship ratio): this is defined as the number of correctly repre-
sented relationships divided by the total number of relationships in the problem.

• MRPproblem (multiple referent presence): this receives a value of 1 if there is at least one 
multiple referents, and 0 otherwise.

We defined the variable RelRatio as the arithmetic mean of RelRatioproblem of the six 
problems for each participant. Similarly, we defined MRP from MRPproblem. The RelRa-
tio variable assesses the accuracy of the problem model (RQ1), and MRP measures the 
incidence of multiple referents (RQ2). In particular, H01 and H02 can be reformulated by 
saying that, apart from variability due to randomness, there is no effect on RelRatio or on 
MRP, respectively, for either the task or text explicitness factors. A task was considered 
unanswered if (i) it was blank, (ii) it showed just some letters or numbers without showing 
relationships, or (iii) it included only text fragments. Regarding RelRatioproblem, the unan-
swered problems were codified as 0. Regarding MRPproblem, we computed the arithmetic 
means taking into account only the answered problems, because an unanswered task was 
neither correct nor was there any empirical evidence of an error by multiple referents.

To code the students’ production, we employed tree diagrams representing the generated 
equations or the arithmetic calculation (Figs. 1 and 2, respectively). We started from the 

Fig. 1  Tree-diagram corresponding to the answer in Fig. 3
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lower level, placing there either known quantities and letters assigned to a quantity (equa-
tion task) or the concrete value to be assessed (concrete value task). Then, we ascended in 
order to make sense of the output.

Regarding the equation(s) task (Fig. 1), in the link nodes, we found algebraic expressions 
representing relationships between quantities coming from lower-level nodes. The highest 
nodes—those where equations were expressed—involved assigning two different algebraic 
expressions to the same quantity. Therefore, these nodes did not correspond to any relation-
ships between quantities. Starting from a set of leaf nodes, we checked the validity of alge-
braic expressions which appeared in each link node derived from that set. If the expression 
represented in a link node was correct, the process continued checking the higher-level link 
nodes. Otherwise, we stopped the process in that subtree and considered that the expres-
sions in the higher-order nodes derived from the incorrect one were also incorrect.

Regarding the answers to the concrete value task (Fig. 2), the procedure and analysis were 
analogous, though in this case the order in which the computations were conducted facili-
tated structuring the mathematical operations hierarchically. This procedure resulted in com-
plete agreement between three coders. Below, we illustrate the codification procedure with 
examples from experimental subjects corresponding to the less explicit text level of the tasks 
(Figs. 3 and 4). Each example includes the tree diagram we used (Figs. 1 and 2, respectively).

In Fig.  3—codified by Fig.  1—the first equation (x = y + 9) correctly represents the 
additive relationship between the current ages of the protagonists (highest node on the 

Fig. 2  Tree-diagram corresponding to the answer in Fig. 4

Fig. 3  Student’s answer to the less explicit text and equation(s) task in Table 1
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left-hand side tree of Fig.  1). The second equation correctly identifies the additive rela-
tionship between Amaya’s present and future ages (3 + x) (highest node on the right-hand 
side tree of Fig. 1). However, we interpreted that the student used the letter y to represent 
both Andrea’s current and future ages (lowest nodes of both trees in Fig.  1). Therefore, 
we assigned a value of 1 to the MRPproblem variable. As a consequence of the previous 
student’s action, the relationship between Andrea’s current and future ages was not repre-
sented, which could be done by means of y + 3. Moreover, according to the syntactic rules 
of algebraic language, the multiplicative expression in Fig. 1 relates Amaya’s future age 
and Andrea’s current age (second level node on the right-hand side of Fig. 1). Thus, as just 
two of the four relationships have been correctly expressed, RelRatioproblem was 0.5.

Similarly, Fig.  4—codified by Fig.  2—shows an example of the resolution for the 
corresponding task in the concrete value level of the task factor. The solver multiplied 
Andrea’s current age by 2, but not her future age (left side branch of the tree of Fig. 2). 
The absence of references to Andrea’s future age led us to affirm that the solver considered 
that the value 4 (lowest nodes in Fig. 2) referred to both Andrea’s current and future ages 
(MRPproblem = 1). On the other hand, the student only expressed one correct relationship 
(4 + 9 = 13). Consequently, RelRatioproblem was 0.25.

Data were analyzed with the R software (Version 4.1.1). We based the statistical analy-
sis on the recommendations and R-functions given by Wilcox (2017a2017b) to select the 
most suitable version of analysis of variance (ANOVA) type procedures and effect sizes 
depending on the specific sample distribution features. As it is not possible to know before-
hand the sample distribution features, we remit the reader to the “Results” section for the 
details. We took a p-value of 0.05 as a decision criterion in every case.

5  Results

All the students quickly stated they understood the corresponding task and, generally, they 
seemed focused on the task during the experiment. On the basis of the students’ responses, in-
class behavior, and the characteristics of the sample classes (see the “Participants” section), 
there was no reason to suspect that there were class differences affecting the experiment.

Fig. 4  Student’s answer to the less explicit text and concrete value task in Table 1

Note. Edad Amaya means Amaya’s age; Edad Andrea means Andrea’s age
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5.1  RelRatio variable

Concerning the descriptive statistics, we obtained M = 0.27, SD = 0.24 for the group 
equation(s) and less explicit, M = 0.33, SD = 0.24 for equation(s) and more explicit, 
M = 0.64, SD = 0.30 for concrete value and less explicit, and M = 0.73, SD = 0.27 for con-
crete value and more explicit (Fig. 5).

Fig. 5  RelRatio scores grouped by task and text explicitness

Table 3  Results of the robust two-way analysis of variance

Ψa = estimator of the difference between factor level means calculated by the R-function bbmcppb because 
it controls type 1 errors—with the Rom’s method—and provides confidence intervals; CI, confidence 
interval; ξb = measure of the effect size calculated by the R-function ESmainMCP for the main effects and 
esImcp for the interaction effects. The R- function bbmcppb performs multiple comparisons for a between-
between ANOVA design with a percentile bootstrap method, while ESmainMCP and esImcp compute the 
corresponding effect size for main effects and interactions, respectively, so the names of the R-functions 
allude to what they compute (see Wilcox, 2017a, for details)
* p < 0.05. ***p < 0.001

Variable

Factor RelRatio MRP

Ψa 95% CI ξb Ψa 95% CI ξb

Task factor  − 0.96*** [− 1.09, − 0.80] 0.78 -0.92*** [0.72, 1.10] 0.65
Text explicitness factor  − 0.17* [− 0.30, − 0.007] 0.02 0.40*** [0.18, 0.60] 0.19
Interaction  − 0.002 [− 0.10, 0.18] – 0.29* [0.08, 0.47] 0.36
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Regarding testing H01, we could assume homogeneity of variances, but the qq-
norm plots indicated severe deviations from normality for the concrete value and less 
explicit text subgroup and the concrete value and more explicit text subgroup. Moreo-
ver, we had unequal sample sizes and distinct skewed distributions for the equation(s) 
(s = 0.78) and concrete value (s =  − 0.91) groups, in addition to outliers in the concrete 
value groups. For this reason, we used a robust version of a 2-way ANOVA based on 
trimmed means and bootstrapping—this offers advantage over no trimming and the 
median (Wilcox, 2017b), and a percentile bootstrap method appears to be effective 
(Wilcox, 2017a). This revealed that both the task and the text explicitness factors had 
a statistical effect, while the factors did not interact (Table 3), leading us to reject H01.

5.2  MRP variable

The descriptive statistics came out as M = 0.69, SD = 0.33 for the group equation(s) 
and less explicit, M = 0.45, SD = 0.34 for equation(s) and more explicit, M = 0.22, 
SD = 0.25 for concrete value and less explicit, and M = 0.13, SD = 0.15 for concrete 
value and more explicit (Fig. 6).

Concerning testing H02, all four subgroups were heavily tailed, and the qq-norm 
plots indicated severe deviations from normality for all the subgroups. Moreover, we 
were dealing with unequal sample sizes, differing skewness between the equation(s) 
(s =  − 0.08) and concrete value (s = 1.15) subgroups, and outliers in the more explicit 
text subgroups. Hence, following Wilcox (2017a2017b), we used a robust version of a 

Fig. 6  MRP scores grouped by task and text explicitness
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2-way ANOVA based on trimmed means and bootstrapping. We found that both fac-
tors had an effect and that they interacted (Table 3). Thus, we rejected H02.

Regarding the interpretation of the interaction, the boxplot suggests that the text 
explicitness factor had an effect within the equation(s) task, but not within the concrete 
value task (Fig. 3). This was confirmed by using trimmed means with bootstrapping, 
whose values were (Yt = 3.89, p < 0.001, CI = [0.162, 0.508], r = 0.47)—Yt denoting 
the statistical estimator and r the effect size—and (Yt = 1.14, p = 0.26, CI = [− 0.041, 
0.15]), respectively.

6  Discussion and conclusions

In this section, we will answer our research questions, provide some plausible explanations 
for the results, and discuss their implications. We start with the first research question (RQ1). 
Given a task in which secondary school students must construct a problem model corre-
sponding to a problem text, RQ1 asks whether there are differences in the accuracy of the 
problem model depending on two task factors (RQ1a, RQ1b). We base the answer on the 
results for the RelRatio variable as it measures the degree of accuracy of the problem model.

We did not find evidence of an interaction between factors, so the effect of the text explic-
itness factor was analogous in both task conditions. Furthermore, although we obtained a 
statistical effect, the effect size of the text explicitness factor was so small (ξ = 0.02) that it 
would lack practical importance. Thus, the presence of expressions whose meaning evolves 
as one moves through the sentences, increasing the difficulty with connecting information 
provided in different sentences, has very limited impact on the accuracy of the problem 
model constructed by solvers (RQ1b). In addition, the averages for RelRatio in the concrete 
value task groups were acceptable (M = 0.64 for less explicit text; M = 0.73, for more explicit 
text), while in the subgroups which performed the equation(s) task, the averages were low 
(M = 0.27 for less explicit text and M = 0.33 for more explicit text). Indeed, the main effect 
of the task factor was very large (ξ = 0.78), so we rejected H01.

Summarizing our answer to RQ1a, we conclude that there are differences in prob-
lem model accuracy depending on whether a problem model is constructed in arithmetic 
or algebraic language. It is also important to note that the declarative section of the text 
expressing the relationships between quantities to be formalized in the problem models is 
the same in both task levels. Hence, we interpret the large effect of the task factor as the 
weight of the difficulties in problem model accuracy derived from the student being asked 
to use letters instead of hypothetical concrete values when formalizing the relationships 
between quantities. This would provide statistical support for some descriptive results 
concerning the differences in the student’s capacity to solve word problems depending on 
the approach—algebraic or arithmetic—they use, as proposed by Stacey and MacGregor 
(1999) and Filloy et al. (2008).

Concerning the plausible explanations for the preceding results about the accuracy 
of the problem model, the use of algebraic language would increase the task’s cognitive 
demand. This is because working memory must store, in addition to the relationships 
between quantities, the algebraic symbols which represent them, and the structural rules 
of natural and algebraic languages involved in the translation process. However, once the 
solver gains command of algebraic language and the translation process, all these elements 
can be managed as a single operation in working memory, so as not to overload it (Chen 
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et al., 2017; Sweller et al., 2019). In addition, when trying to find equations to represent 
word problems, secondary school students seldom follow the steps sequentially. They usu-
ally start writing an equation (step 4) without having inferred all the algebraic relationships 
involved in the latter (Filloy et al., 2008; Soneira et al., 2018). As previously stated, when 
this happens, the construction of the equation implies a higher loading of working mem-
ory. This could lead to an overload which causes the omission of necessary relationships 
between the quantities of the problem, resulting in an incorrect problem model.

On the contrary, when using concrete—although merely hypothetical—values, it is less 
likely that the solver will jump to step 4 before having completed the previous ones. This is 
because relationships between concrete values are not likely to be left without computing 
the result of the operations. Moreover, even if the solver skips some of the steps, the rela-
tionships are successively unloaded from working memory right after each computation 
is conducted. In this case, as Sweller (1988) asserts, when the sequential order of steps is 
not followed, an increase in working-memory load would be observed with the equation(s) 
task rather than the concrete value task.

The second research question (RQ2) asks about the effect of students’ inability to con-
nect information provided in different sentences by means of expressions with evolving 
meaning (RQ2b), and the command of the algebraic language (RQ2a), in the rate of mul-
tiple referents. To answer RQ2, we use the MRP variable. Overall, the analysis showed a 
significant interaction between factors, so we rejected H02. Text explicitness had a particu-
larly moderate to large effect within the equation(s) task (r = 0.47), but no effect within the 
concrete value task. Hence, the use of expressions with evolving meaning itself does not 
increase the difficulty of connecting information provided in different sentences. In fact, 
when students are asked to base reasoning in hypothetical values, the presence of those 
expressions does not increase the rate of multiple referents. Our outcomes aid in clarifying 
the results from Bloedy-Vinner (1996) and Soneira et al. (2018) concerning the source of 
the error by multiple referents when the problem text includes expressions with evolving 
meaning.

Furthermore, according to the criteria for the explanatory measures of effect sizes (Wil-
cox, 2017a, 2017b), the task factor had a large effect (ξ = 0.65), while the text explicitness 
factor had a moderate to large effect and only when the task implied using the algebraic 
language. Although the error by multiple referents is directly linked to the use of expres-
sions with evolving meaning, the presence of these expressions only had effect when alge-
braic language was used. We know that the goal of the reader affects the reading process 
(Kintsch, 1998) and that the goal of posing equations is specific to the equation(s) task. 
Thus, it seems that the difficulties in using the algebraic language interfere with the regular 
verbal processing of expressions with evolving meaning, which otherwise would be cor-
rectly processed. This fact, together with the large effect of the task factor, reveals greater 
difficulties related to finding the equations than those related to understanding the problem 
text. In addition, as RQ2 can be seen as a particular case of RQ1, the plausible explana-
tions for RQ1 would also apply to RQ2.

Letters—in algebraic language—can represent any varying quantity (e.g., Amaya’s 
age at any time), but when solving word problems once a letter is attached to a specific 
unknown quantity, the meaning remains invariable; otherwise, multiple referents will 
arise. This is another fundamental issue of the algebraic method which could contribute 
to explaining our results in the equation(s) tasks. Also, the low scores in the equation(s) 
tasks correspond with prior research about the algebraic method (e.g., Filloy et al., 2008; 
Koedinger & Nathan, 2004; Stacey & MacGregor, 1999). In summary, our results suggest 
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that students are fairly able to infer the relationships between quantities, but face difficul-
ties coordinating these inferences when required to use letters to formalize relationships 
between unknown quantities.

Our results solidify certain implications in regard to the teaching process. The idea is to 
reduce the cognitive demands in the early stages of the learning process until the student 
achieves expertise in the algebraic method. Based on our results, word problems contain-
ing expressions with evolving meaning, combined with algebraic problem solving, increase 
problem model inaccuracy, and the rate of multiple referents. Nevertheless, in school 
algebra, solving word problems through algebra is a learning objective and non-artificial 
language in the problems’ texts includes expressions with evolving meaning. Despite the 
greater challenge posed to students, these expressions should not ultimately be removed 
from the instructional design.

However, through instructional design, the cognitive demand can be regulated during 
the initial phases of the teaching process. Specifically, instruction can focus on students’ 
application of the algebraic method to word problems relying on scaffolding. In particular, 
students must finish assigning algebraic expressions to all the unknown quantities in the 
problem before beginning to construct the equation. This could be imposed by means of 
a simple computer program. By doing so, working memory load is reduced, because only 
one relationship between quantities needs to be stored at each step. For example, in steps 2 
and 3, the algebraic representations serve for unloading the working memory and step 4 is 
reduced to simply determining which ones represent the same quantity.

In addition, our study suggests that, in the context of the algebraic method, trial-and-
error method could be used as an auxiliary tool to trigger the inference of the network of 
relationships between quantities in the case of difficulties constructing a problem model in 
algebraic language. This practice involves the assertions from Filloy et al. (2001). Trial-
and-error method could also be utilized in the final years of primary school and the early 
years of secondary school as a means of introducing the logic of the algebraic method 
through familiar mathematical language. In particular, we could consider a teaching 
sequence that begins with an introduction to the logic of the algebraic method, followed 
by the scaffolding process mentioned in the previous paragraph, and finally the free use of 
the algebraic method. Teachers could also use concrete value tasks to identify students who 
have difficulties inferring relationships between quantities in problem texts.

Regarding the limitations of this study and possible future research, two remarks should 
be made. First, we found that when tackling the equation(s) task, students produced less 
accurate problem models and made more errors of multiple referents when the problem 
text contained expressions with evolving meaning. However, we do not know each indi-
vidual student’s thought process, nor do we know what specific way of posing the equa-
tions triggers these phenomena. This could be addressed through qualitative comparisons 
between the students’ behavior when performing the equation(s) and the concrete value 
tasks. Second, we only considered age problems and a relevant but specific type of error 
linked to the features of text wording in our study. Future studies should delve into whether 
our results are restricted to this case, or if they are transferable to problem texts with other 
characteristics. Further studies might also attempt to overcome the limitations concerning 
the assignment of subjects to the experimental conditions. In our case, as usually happens 
in educational research, whole class groups were assigned to the different experimental 
conditions, though future designs should advocate for random assignment of individuals to 
avoid possible biases.
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