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Abstract

MONI (Rossi et al., 2022) can store a pangenomic dataset T in small space and later, given
a pattern P , quickly find the maximal exact matches (MEMs) of P with respect to T . In
this paper we consider its one-pass version (Boucher et al., 2021), whose query times are
dominated in our experiments by longest common extension (LCE) queries. We show how
a small modification lets us avoid most of these queries and thus significantly speeds up
MONI in practice while only slightly increasing its size.

1 Introduction

The FM-index [1] is one of the most successful compact data structures and DNA
alignment has been its “killer app”, with FM-based aligners such as Bowtie [2, 3] and
BWA [4] racking up tens of thousands of citations and seeing every day use in labs
and clinics worldwide. Standard FM-indexes can handle only a few human genomes
at once, however, and geneticists now realize that aligning against a only few stan-
dard references biases their research results and medical diagnoses [5]. Among other
concerns, this bias undermines personalized medicine particularly for people from eth-
nic groups — such as African, Central/South Asian, Indigenous, Latin American and
Middle Eastern populations — whose genotypes are not reflected well in the standard
references or even in public databases of genomes [6]. Countries such as China [7] and
Denmark [8] have assembled their own reference sequences, but it is not clear whether
and how we can do this fairly for multi-ethnic populations. Bioinformaticians and
data-structure designers have therefore been looking for ways to index models that
better capture the genetic diversity of whole species, especially humanity. The most
publicized approach so far is building and indexing pangenome graphs [9], but we
can also try scaling FM-indexes up to handle a dozen or so representative samples
genomes [10] or, more ambitiously, to handle even thousands of genomes at once.
Indexing thousands of genomes at once is technically challenging, of course, but it
should give us different functionality than pangenome graphs.

Mäkinen et al. [11, 12] initiated the study of indexing massive genomic datasets
with their index based on the run-length compressed Burrows-Wheeler Transform
(RLBWT), which stores such a pangenomic dataset T [1..n] in space proportional to
the number r of runs in the BWT of T and allows us to quickly count the number of
exact matches of any pattern P [1..m] in T . Policriti and Prezza [13] showed that, if
we augment Mäkinen et al.’s index with the entries of the suffix array (SA) sampled



at BWT run boundaries, then we can quickly locate one of P ’s matches in T . Gagie,
Navarro and Prezza [14] then showed how we can store that SA sample such that we
can quickly locate all of P ’s matches in T . (For the sake of brevity, we assume the
reader is familiar with the BWT, SA, etc.; otherwise, we refer them to Mäkinen et
al.’s [15] and Navarro’s [16] texts.) Gagie et al. called their data structure the r-index,
after its O(r) space bound; Nishimoto and Tabei [17] recently sped it up to answer
queries in optimal time when T is over a polylog(n)-sized alphabet, while still using
O(r) space. Boucher et al. [18, 19] showed how we can build an r-index efficiently in
practice using a technique they called prefix-free parsing (PFP).

Because approximate pattern matching is often more important in bioinformatics
than exact matching, Bannai, Gagie and I [20] designed a version of the r-index that
can efficiently find maximal exact matches (MEMs), which are commonly used for
approximate pattern matching in tools such as BWA-MEM [21]. Bannai et al.’s is not
a true r-index because it requires fast random access to T and we do not know how to
support that in worst-case O(r) space, but Gagie et al. [22, 23] showed how we can use
PFP to build a straight-line program (SLP) for T that gives us this random access
and in practice takes significantly less space than the r-index itself. The key idea
behind Bannai et al.’s index is to store the positions of r thresholds in the RLBWT,
one between each consecutive pair of runs of the same character, but they did not give
an algorithm for finding those thresholds. Rossi et al. [24] showed that we can choose
the thresholds based on the longest common prefix (LCP) array and build Bannai et
al.’s index efficiently with PFP. They implemented it in a tool called MONI (Finnish
for “multi”, as it indexes many genomes at once), and demonstrated its practicality
for pangenomic alignment.

By default, MONI makes two passes over P , one right-to-left and then the other
left-to-right. Boucher et al. [25] noted, however, that by using the SLP to support
longest common extension (LCE) queries instead of random access, MONI can run
in one pass. For long patterns, MONI in two-pass mode buffers a significant amount
of data during its first pass, so switching to one-pass mode reduces its workspace
and allows us to run more queries in parallel. We can also use one-pass MONI for
applications that are inherently online, such as recognizing and ejecting non-target
DNA strands from nanopore sequencers [26]. Even though one-pass MONI processes
most characters in P without LCE queries, the LCE queries it does compute still take
most of the query time [25]. We show in this paper that by precomputing and storing
two LCE values for each threshold, in practice we can avoid many of those queries
and thus significantly speed up one-pass MONI while increasing its size only slightly.

2 MONI

Bannai et al. defined a threshold between two consecutive runs BWT[s1..e1] and
BWT[s2..e2] of the same character, to be a position t with e1 < t ≤ s2 such that
LCE(e1, k) ≥ LCE(k, s2) for k < t, and LCE(e1, k) ≤ LCE(k, s2) for k ≥ t. (Rossi et
al.’s construction is based on the observation that we can set t to the position of a
minimum in LCP[e1 + 1..s2].) Bannai et al. showed how adding these thresholds to
an r-index lets us compute MEMs by computing the matching statistics MS[1..m] of



P with respect to T , where the ith matching statistics MS[i].pos and MS[i].len are
defined such that

T
[
MS[i].pos..MS[i].pos + MS[i].len− 1

]
= P [i..i+ MS[i].len− 1]

and P [i..i+ MS[i].len] does not occur in T . In other words, MS[i].pos is a pointer to
the starting position in T of a longest match for P [i..m] and MS[i].len is the length
of that match, where a longest match for P [i..m] is an occurrence in T of the longest
prefix of P [i..m] that occurs in T .

Suppose we have already computed MS[i+ 1].pos and the position j of T [MS[i+
1].pos−1] in the BWT. If BWT[j] = P [i], then MS[i].pos = MS[i+ 1].pos−1 and we
can continue once we compute the position LF(j) of T [MS[i].pos − 1] in the BWT.
Otherwise, let BWT[e] be the last occurrence of P [i] before BWT[j], and BWT[s]
be the first occurrence of P [i] after BWT[j]. By the definitions of the BWT and
thresholds, if BWT[j] is strictly above the threshold between BWT[e] and BWT[s],
then a prefix of T [SA[e]..n] is a longest match for P [i..m]; otherwise, a prefix of
T [SA[s]..n] is a longest match for P [i..m]. Since BWT[e] is the end of a run and
BWT[s] is the start of a run, we have SA[e] and SA[s] stored. Therefore, depending
on whether BWT[j] is above or below the threshold, either we can “jump up” from
BWT[j] to BWT[e] and set MS[i].pos = SA[e] (so the position of T [MS[i].pos − 1]
in the BWT is LF(e)), or we can “jump down” from BWT[j] to BWT[s] and set
MS[i].pos = SA[e] (so the position of T [MS[i].pos− 1] in the BWT is LF(s)).

By default, MONI makes a right-to-left pass over P to compute MS[1..m].pos,
and then a left-to-right pass over P to compute MS[1..m].len. If we use the SLP
to support LCE queries instead of random access, however, then we need only one
pass over P . To see why, suppose that when we compute MS[i].pos, we have already
computed MS[i + 1].len as well as MS[i + 1].pos. If we jump up from BWT[j] to
BWT[e], then

MS[i].len = min
(
LCE(MS[i+ 1].pos, SA[e]),MS[i+ 1].len

)
+ 1 ; (1)

if we jump down from BWT[j] to BWT[s], then

MS[i].len = min
(
LCE(MS[i+ 1].pos, SA[s]),MS[i+ 1].len

)
+ 1 . (2)

In fact, if we compute both LCE(MS[i+1].pos, SA[e]) and LCE(MS[i+1].pos, SA[s]),
then we need not check the threshold between BWT[e] and BWT[s] at all. MONI
stores the thresholds in order to use only one LCE query for each jump, because the
thresholds collectively do not take much space compared to the RLBWT and the SA
samples, and the LCE queries are slow compared to the LF-steps.

3 Augmented Thresholds

In practice, MONI’s jumps and resultant LCE queries tend to occur in bunches: if a
character P [i] is a sequencing error or a variation not in T , then we will probably jump
for P [i], find a short longest match, and then also jump for several more characters



of P in rapid succession, until the longest matches are finally long enough again
to reorient us in the BWT. Because the lengths of the longest matches can only
increment for each character of P we process, most of the comparisons in Equations 1
and 2 between the LCE values and the length of the current longest match will simply
return the length of the current match. This observation led us to wonder if all those
LCE queries are really necessary.

k SA[k] BWT[k] T [SA[k]..n]
...

...
...

...
1234 8765 A GAGACATCA...

e1 = 1235 1519 A GATACATTA...

1236 5450 C GATAGATTA...

j = 1237 1004 G GATATAGAA...

1238 4242 G GATCCAATA...

t = 1239 3110 G GATTACATA...

1240 1102 T GATTACTTA...

1241 1978 T GATTAGATA...

s2 = 1242 2505 A GATTATCAT...

1243 2022 A GATTATGAA...
...

...
...

...

Figure 1: Suppose we want to compute MS[i].len for some i such that P [i] = BWT[e1] =
BWT[s2], and the position j of T [MS[i + 1].pos − 1] in the BWT is between e1 + 1 and
t − 1. If MS[i + 1].len ≤ LCE(SA[e1], SA[t − 1]) then, since LCE(SA[e1], SA[t − 1]) ≤
LCE(SA[e1], SA[j]), by transitivity MS[i + 1].len ≤ LCE(SA[e1], SA[j]) and we can safely
set MS[i].len = MS[i + 1].len + 1.

Suppose that, at the threshold t between between two consecutive runs BWT[s1..e1]
and BWT[s2..e2] of the same character, we store LCE(SA[e1], SA[t−1]) and LCE(SA[t], SA[s2]).
Furthermore, suppose we later want to compute MS[i].len for some i such that
P [i] = BWT[e1] = BWT[s2] and the position j of T [MS[i + 1].pos − 1] in the BWT
is between e1 + 1 and s2 − 1. If j < t and

MS[i+ 1].len ≤ LCE(SA[e1], SA[t− 1]) ,

or j ≥ t and
MS[i+ 1].len ≤ LCE(SA[t], SA[s2])

then, as illustrated in Figure 1, we can safely set MS[i].len = MS[i + 1].len + 1
without using an LCE query. Algorithm 1 shows how these values are used to com-
pute MS[1..m] for a given pattern P [1..m] by storing the thresholds alongside these
“threshold LCEs”.

Threshold LCEs can be computed using LCE queries and SA samples, but their
relationship to thresholds allows us to compute both simultaneously. Recall that Rossi
et al. observed that we can set t to be the position of min(LCP[e1 + 1..s2]) using



Algorithm 1 Computes MS using a variation of one-pass MONI [25] which stores
augmented thresholds (thresholds and thr lce arrays)

1: j ← BWT.selectP [m](1)
2: MS[m]← (pos : SA[j], len : 1)
3: for i = m− 1 down to 1 do
4: if BWT[j] = P [i] then
5: MS[i]← (pos : MS[i+ 1].pos− 1, len : MS[i+ 1].len + 1)
6: else
7: c← BWT.rankP [i](j)
8: e1 ← BWT.selectP [i](c)
9: s2 ← BWT.selectP [i](c+ 1)

10: x← BWT.run of position(s2) . Position s2 belongs to the xth run
11: t← thresholds[x]
12: if j < t then . thr lcee stores LCE(SA[e1], SA[t− 1])
13: if MS[i+ 1].len ≤ thr lcee[x] then
14: MS[i].len← MS[i+ 1].len + 1
15: else
16: MS[i].len← min(MS[i+ 1].len,LCE(SA[e1],MS[i+ 1].pos) + 1
17: end if
18: MS[i].pos← SA[e1]
19: j ← LF(e1)
20: else . thr lces stores LCE(SA[t], SA[s2])
21: if MS[i+ 1].len ≤ thr lces[x] then
22: MS[i].len← MS[i+ 1].len + 1
23: else
24: MS[i].len← min(MS[i+ 1].len,LCE(SA[s2],MS[i+ 1].pos) + 1
25: end if
26: MS[i].pos← SA[s2]
27: j ← LF(s2)
28: end if
29: end if
30: end for

a range-minimum query (RMQ), which they support space-efficiently through PFP
and a range-minimum data structure over the LCP array [24]. We can also define
LCE queries as RMQs over the LCP array [27], such that LCE(SA[e1], SA[t − 1]) =
min(LCP[e1..t−1]) and LCE(SA[t], SA[s2]) = min(LCP[t+ 1..s2]). These minimums
can be computed alongside the thresholds by performing RMQs for the given ranges
as thresholds are found. This operation scans each run boundary and with only a
slight modification to the original MONI method builds both the thresholds and the
threshold LCEs (constituting augmented thresholds).



4 Experiments

We directly compare the time and memory for querying the augmented thresholds
approach against the unmodified one-pass MONI. To mitigate the size increase of
augmented thresholds, we explore techniques for space-efficiency. Any single threshold
LCE can be stored in O(lg n)-bits (since they inherit LCP bounds); however, many
values tend to be smaller than others [28] and in practice our LCE values represent
minimums over ranges of the LCP array. The second observation is the existence
of threshold LCEs which can be ignored: if t = s2 then for any position j (with
e1 < j < s2) we always have j < t so we jump up to e1 and the corresponding LCE
is never used, and similarly for t = e1 + 1 and always jumping down. Thus, we can
safely ignore these values, choosing to “zero” them or not store any value at all. For
thresholds, we note that they form increasing sub-sequences with respect to each of
the σ unique characters in the text; we compress the thresholds by storing them in σ
bitvectors as done in Ahmed et al.’s implementation [26].

We focus on selected variants of augmented thresholds which differ in storing the
threshold LCEs and compare against the unmodified approach:

• PHONI: Standard version of one-pass MONI described as PHONIstd in original
paper [25].

• Aug-Full: One-pass MONI modified with augmented thresholds described pre-
viously, using O(lg n)-bits per threshold LCE stored.

• Aug-1: As above, but caps the size to one byte per threshold LCE. In the event
of an overflow, we default to performing a single LCE query.

• Aug-BV-Full: Stores a bitvector marking which threshold LCEs are used/non-
zero, storing just these values with O(lg n)-bits for each.

• Aug-BV-1: As above, but ignores storing values greater than one byte (default
to LCE query).

• Aug-DAC: Stores threshold LCEs using a directly addressable code (DAC) with
escaping, as described and tested on the LCP array by Brisaboa et al. [29].

• Aug-BV-DAC: Same as Aug-BV-Full, but substituting in a DAC to store defined
values.

Our C++ code is available at https://github.com/drnatebrown/aug_phoni and is
based on the original one-pass MONI code at https://github.com/koeppl/phoni.
All experiments were executed single threaded on a server with an Intel(R) Xeon(R)
Bronze 3204 CPU and 512 GiB RAM.

To compare against PHONI and its existing results, we re-ran Boucher et al.’s
query experiments using the same dataset consisting of chromosome 19 haplotypes
(chr19), building the data structures for concatenations of 16, 32, 64, 128, 256, 512,
and 1000 sequences of chr19 and querying them with 10 different chr19 sequences.
To support random access and LCE queries efficiently we construct SLPs; both the
SLP compressed text of the original one-pass MONI experiments (SLPcomp), and the
naive uncompressed version of Gagie et al. (SLPplain) [23] that sacrifices space for
speed. The datasets and SLP sizes are reported in Table 1. The average query times
(computing MS for a single pattern) is shown in Figure 2 where results for both SLP



types are accentuated. Similarly, Figure 3 shows the disk sizes for all variants and
both SLP types.

# n/106 r/104 n/r SLPcomp [MB] SLPplain [MB]
16 946.01 3240.02 29.20 36.10 70.54
32 1892.01 3282.51 57.64 37.80 74.75
64 3784.01 3334.06 113.50 39.48 79.84
128 7568.01 3405.40 222.24 42.11 88.89
256 15136.04 3561.98 424.93 47.43 102.52
512 30272.08 3923.60 771.54 58.00 131.09
1,000 59125.12 4592.68 1287.38 80.63 186.98

Table 1: Table summarizing the datasets and sizes of SLPs built over them. The first
column describes the number of concatenated sequences of chr19 representing the text T ,
where n represents the length of T and r the number of runs.
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Figure 2: The average query time to compute MS using 10 distinct chr19 sequences as
patterns, using 16, 32, 64, 128, 256, 512, and 1000 sequences of chr19 as the text T .
Data structures shown are as described above. Solid lines use SLPcomp, dashed lines using
SLPplain (focus of right plot).
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Figure 3: The disk size in GB for each data structure built on 16, 32, 64, 128, 256, 512, and
1000 sequences of chr19. Solid lines use SLPcomp (focus of left plot), dashed lines using
SLPplain (focus of right plot). PHONI using SLPcomp is included on right to visualize the size
difference of SLP choices.

5 Conclusion

With respect to query times, we can see that any variants using augmented thresholds
are always faster than PHONI, and with respect to size, always larger. Introducing
the SLPplain clearly benefits all methods by speeding up LCE queries, and although
it can be over twice as large as SLPcomp when compared directly against each other
(Table 1), the difference is much smaller when comparing the total sizes of the data
structures shown in Figure 3. This LCE speedup reduces the gap between query times
compared to PHONI, since it spends a larger percentage of execution on them; however,
the LCE queries skipped by augmented thresholds still result in faster execution.

We highlight some standout variants when compared to PHONI for the largest
text size (1000 sequences of chr19). Aug-DAC is in the fastest class for both SLPs:
48.37% faster and 22.89% larger for SLPcomp, and 22.92% faster and 19.97% larger for
SLPplain; significant improvement compared to the original PHONI method (SLPcomp)
and a direct time/space tradeoff for the introduced SLPplain. Aug-1 is in the smallest
class: 40.22% faster and only 14.60% larger for SLPcomp, while 19.95% faster and
12.66% larger for SLPplain. Although Aug-Full is in the fastest class with Aug-DAC,
it is much larger. Other variants fall between these approaches in both time and



space.
When compared to the original one-pass MONI of Boucher et. al (PHONI with

SLPcomp), our best augmented threshold approaches showed over 40% speed improve-
ments with under 20% space increase on the largest dataset, and similar results across
all data. When compared to uncompressed threshold LCEs, our applied compression
schemes are space-efficient whilst still being faster than unmodified one-pass MONI.
Introducing an uncompressed SLP (SLPplain) experimentally was shown to be of great
benefit to both LCE and total query speed, only requiring a small size increase for
computing matching statistics on repetitive texts. Using this SLP, results show aug-
mented thresholds to allow a direct time/space tradeoff (increase speed/space by
≈ 20%), or a size decrease whilst maintaining a comparable speed increase.
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