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Abstract

In this paper we analyse how the performance and calibration of a distributed
event-based soil erosion model at the hillslope scale is affected by different sim-
plifications on the parameterisations used to compute the production of suspended
sediment by rainfall and runoff. Six modelling scenarios of different complexity
are used to evaluate the temporal variability of the sedimentograph at the outlet of
a 60 m long cultivated hillslope. The six scenarios are calibrated within the GLUE
framework in order to account for parameter uncertainty, and their performance is
evaluated against experimental data registered during five storm events. The NSE,
PBIAS and coverage performance ratios show that the sedimentary response of
the hillslope in terms of mass flux of eroded soil can be efficiently captured by a
model structure including only two soil erodibility parameters which control the
rainfall and runoff production of suspended sediment. Increasing the number of
parameters makes the calibration process more complex without increasing in a
noticeable manner the predictive capability of the model.
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1. Introduction1

Soil erosion and subsequent sediment delivery to river systems are increas-2

ingly studied as a consequence of both on-site and off-site impacts such as net3

soil and nutrient losses (Pimentel, 2006), turbidity increase in rivers and reservoir4

filling (Owens et al., 2005). Understanding sediment production and conveyance5

at the watershed scale implies a detailed analysis of sediment production on hill-6

slopes. This involves complex processes such as the detachment of soil particles7

due to rainfall impact and runoff shear, the transport of these particles by over-8

land flow and eventually, their deposition in other regions different from where9

they were originally eroded. Several physically-based formulations to represent10

these processes at small scales have been proposed in the last years (Beuselinck11

et al., 2002, 1999; Foster et al., 1995; Govers, 1992; Hairsine and Rose, 1992b,a;12

Jomaa et al., 2010; Kinnell, 1990, 2005; Nord and Esteves, 2007; Shaw et al.,13

2009, 2006), and implemented in distributed event-based (Favis-Mortlock et al.,14

2000; Laloy and Bielders, 2009; Morgan et al., 1998; Nord and Esteves, 2005;15

Smith et al., 1995) and continuous (Ascough et al., 1997) soil erosion models.16

All these formulations require a detailed definition of the soil erodibility proper-17

ties, as well as an accurate representation of the flow field, including water depth,18

velocity and bed friction. Moreover, the formulations for the calculation of the19

production of suspended sediments by rainfall and runoff require the definition of20

parameters which are difficult to measure, and for which there are no available21

empirical estimations that can be used in a robust way, since the scarce values22

reported in the literature vary over a wide range (Rousseau, 2012). At the same23

time, the calibration of distributed soil erosion models with field data is complex24

for several reasons as: the large number of parameters which need to be estimated,25

the high non-linearity of the equations, the interaction between input parameters,26

the scarcity of comprehensive field data available for calibration, the uncertainty27

in the experimental measurements and input data, and the spatial and temporal28

variability of the physical processes involved in soil erosion. In order to make29

affordable the use of distributed soil erosion models in field applications it is nec-30

essary to circumvent the previous difficulties in the determination of model pa-31

rameters. One possible way is to identify the parameters with a highest impact on32

model output by means of a global sensitivity analysis (Hantush and Kalin, 2005;33

Laloy and Bielders, 2009; Rousseau, 2012; Veihe and Quinton, 2000) and then34

focus the efforts of model calibration on accurately identifying these parameters.35

An alternative way is to simplify the representation of the most relevant sediment36

production mechanisms without a significant reduction on model performance, in37
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such a way that the number of input parameters and calibration efforts are reduced.38

The aim of this paper is to study the impact of different model structure sim-39

plifications on the performance of a distributed event-based soil erosion model at40

the hillslope scale. Model structure is understood in this context as the selection41

of processes, formulations and parameterisations used to model the production of42

suspended sediment on hillslopes. For this purpose six modelling scenarios of dif-43

ferent complexity are calibrated and validated within the Generalized Likelihood44

Uncertainty Estimation (GLUE) framework (Beven and Binley, 1992), which as-45

sumes that in field applications different parameter sets can produce acceptable46

results due to our imperfect knowledge of the system and to the uncertainty in in-47

put data and parameters. The use of the GLUE framework is of particular interest48

in soil erosion studies due to the scarcity of accurate field data, which increases the49

uncertainty on model calibration and validation. This methodology was applied50

for the first time to soil erosion models by Brazier et al. (2000), who used it to as-51

sess explicitly the uncertainties associated to the predictions of annual soil losses52

at the plot scale. Other recent applications of the GLUE methodology to soil ero-53

sion models are described in Quinton et al. (2011) and Krueger et al. (2012). In54

this study we use the standard GLUE framework to assess to which extent de-55

creasing the complexity of a soil erosion model impacts its performance at the56

storm event scale. Model performance is evaluated against field measurements of57

water discharge and sediment mass flux during five storm events. The increase in58

model performance relative to the increase in model complexity is evaluated and59

discussed.60

2. Numerical Model61

2.1. Hydrodynamic Equations62

The overland flow water depth and velocity fields are computed from the two-63

dimensional shallow water equations, including rainfall and infiltration terms and64

using Manning formulation to compute the bed friction, which can be written as:65
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where h is the water depth, zs is the free surface elevation, (qx, qy) are the two66

components of the unit discharge, n is the Manning coefficient, R is the rainfall67

intensity, i is the infiltration rate and g is the gravity acceleration. Previous works68

have shown that the depth-averaged shallow water equations are able to represent69

properly the spatial distribution of water depth and velocity in overland flows, as70

long as an accurate characterization of the bed roughness coefficient is used (Cea71

et al., 2014; Mugler et al., 2011; Tatard et al., 2008).72

2.2. Soil Erosion Model73

The soil erosion model used in this work considers a vertical structure of the74

soil composed of a non-cohesive layer of eroded sediment which lays over a co-75

hesive matrix of non-eroded soil. Both layers have different erodibility properties.76

This kind of soil structure has been used in previous works such as Hairsine and77

Rose (1992a); Heng et al. (2011); Nord and Esteves (2005); Rose et al. (2007);78

Sander et al. (2007). In this section we describe all the processes implemented in79

the soil erosion model. As mentioned in the introduction, the aim of this study is80

to analyse the influence on model performance of different simplifications on the81

formulations used to compute the production of suspended sediment. These sim-82

plifications assume that some of the processes represented in the full model have83

a minor effect on model output and can therefore be neglected without a signifi-84

cant performance degradation. The model structure simplifications are described85

in following sections.86

The median size of the particles collected at the outlet of the hillslope during87

the events selected for this study is of the order of 25 µm. Bed load is therefore88

considered to be negligible relative to suspended load. Thus, this latter will be the89

only sediment transport mechanism considered in the model. The time and spatial90

evolution of suspended sediment concentration is computed from the following91

depth-averaged scalar transport equation, which includes several source terms to92

account for the production and deposition of suspended sediment:93

∂hC

∂t
+
∂qxC

∂x
+
∂qyC

∂y
= Drdd +Drdrd +Dfde +Dfdre +Ddep (2)

where C (kg/m3) is the depth-averaged concentration of sediment in the water94

column, Drdd is the rainfall driven detachment rate from the cohesive layer, Drdrd95

is the rainfall driven redetachment rate from the eroded layer, Dfde is the flow96

driven entrainment rate from the cohesive layer, Dfdre is the flow driven reen-97

trainment rate from the eroded layer and Ddep is the deposition rate of suspended98
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sediment in the eroded layer. All the terms in the right hand side of Equation (2)99

are expressed in kg/m2/s.100

The rainfall driven detachment and redetachment source terms (Drdd andDrdrd)101

model respectively the sediment transfer from the cohesive and eroded layers to102

the water column. Both terms are evaluated assuming a linear relationship be-103

tween the detachment/redetachment rates and the rainfall rate (Sharma et al., 1993,104

1995; Gao et al., 2003), as:105

Drdd = αdR (1− ε) Drdrd = αrdRε (3)

with:106

ε = min

[
Ms

Ms,cr

, 1

]
(4)

where αd and αrd (kg/m3) are the rainfall erodibility coefficients for the cohesive107

and eroded layers, which represent the flux of sediment mass per unit surface108

detached by a rainfall intensity of 1 m/s and ε is a shield factor which represents109

the protection effect that the eroded layer has over the cohesive layer. The shield110

factor is assumed to vary linearly with the mass of sediment per unit surface in the111

eroded layer (Ms). WhenMs achieves a critical value (Ms,cr) the protection effect112

is maximum, implying that no sediment is eroded from the cohesive layer. This113

kind of model for rainfall driven erosion has been used in previous works as those114

presented by Gao et al. (2003), Nord and Esteves (2005), Sharma et al. (1993),115

Sharma et al. (1995) and Shaw et al. (2006).116

The flow driven entrainment and reentrainment rates (Dfde and Dfdre) model117

respectively the transfer of sediment particles from the cohesive matrix and from118

the eroded layer to the water column due to the effect of bed friction. Both terms119

are computed from the formulation proposed by Hairsine and Rose (1992a) as:120

Dfde =


F

J
(Ω− Ωcr) (1− ε) if Ω > Ωcr

0 otherwise
(5)

Dfdre =


ρsrfF

(ρs − ρ) g

(
Ω− Ωcr

h

)
ε if Ω > Ωcr

0 otherwise
(6)

where ρs = 2600 kg/m3 and ρ = 1000 kg/m3 are the densities of sediment121

particles and water, Ω (W/m2) is the runoff stream power per unit surface, Ωcr122

is a critical stream power threshold below which the sediment entrainment rate is123
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zero, F (dimensionless) is the fraction of the stream power excess over Ωcr which124

contributes to the entrainment and reentrainment of sediment, and J (J/kg) is125

the specific energy of entrainment, which characterises the resistance offered by126

the soil matrix to entrainment. In Equation (6) rf is the Rouse factor, defined127

as the ratio between the concentration of suspended sediment near the bed and128

the depth-averaged concentration of sediment. Given the small water depths in129

overland flow applications, the Rouse factor is often taken to be one, assuming130

that the sediment is homogeneously distributed over the water column. Therefore,131

a value of rf = 1 was used in all the simulations presented in this paper. The132

formulation given by Equations (5-6) assumes that from the total stream power133

dissipation (Ω), only a fraction given by F (Ω−Ωcr) contributes to soil erosion, the134

rest being spent in other head losses. This stream power available for soil erosion135

is distributed between entrainment and reentrainment according to the thickness136

of the eroded layer via the parameter ε. In all the simulations done in this study137

the critical stream power Ωcr in the entrainment and reentrainment equations was138

set to zero. This simplification is supported by typical values of this parameter139

reported by other authors, of the order of 0.01 W/m2 (Heng et al., 2011; Misra140

and Rose, 1995; Proffitt et al., 1993; Rose et al., 2007; Sander et al., 2007), two141

orders of magnitude lower than the average stream power in the study hillslope142

during the storm events analysed here (of the order of 1 W/m2 according to the143

numerical simulations).144

The deposition of suspended sediment from the water column to the eroded145

layer is modelled as:146

Ddep = −ρsrfwsC (7)

where ws is the settling velocity of sediment particles. The settling velocity is147

computed from the density and diameter of sediment particles using the formu-148

lation of van Rijn (1984), which for a particle size of 25 µm gives a value of149

ws = 0.34 mm/s.150

Once the suspended sediment concentration has been evaluated from Equa-151

tion (2), the following mass balance equation is solved to compute the time evo-152

lution of the mass of sediment per unit surface in the eroded layer:153

∂Ms

∂t
= − (Drdrd +Dfdre +Ddep) (8)

The evolution of the bed elevation (zb) is computed from the following mass154

conservation equation, which includes all the terms implying movement of sedi-155
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ment particles from either the eroded or the cohesive layer to the water column:156

∂zb

∂t
= −Drdd +Drdrd +Dfde +Dfdre +Ddep

ρs (1− φ)
(9)

where φ is the soil porosity. At each time step the new topography computed from157

Equation (9) is updated in the hydrodynamic equations to ensure an appropriate158

coupling between the movement of sediment and water.159

2.3. Numerical Solver160

The overland flow equations are solved with an explicit finite volume solver161

for the two-dimensional shallow water equations presented and validated in pre-162

vious works. The reader is referred to Cea et al. (2010) and the references therein163

for a detailed description of the numerical schemes, including experimental vali-164

dation under rainfall-runoff conditions.165

The suspended sediment transport equation is solved with the explicit finite166

volume scheme described in Cea and Vázquez-Cendón (2012) for scalar transport167

equations, which guarantees a mass conservative discretisation of the advection168

terms. The main singularity of Equation (2) with respect to the standard depth-169

averaged transport equation is the presence of the source terms which account for170

the production and deposition of suspended sediment (Drdd, Drdrd, Dfde, Dfdre, Ddep).171

In order to avoid negative values of the suspended sediment concentration dur-172

ing the computation, special care must be placed in the discretisation of the term173

Ddep, which is the only sink in Equation (2). A bad numerical practice is to reset174

to zero the concentration at any computational cell in which its value becomes175

negative. This procedure is not used in the present solver because it generates176

a gain of sediment mass, which can be very relevant if successive wetting and177

drying cycles occur, as it is often the case in rainfall runoff applications. Alter-178

natively an implicit discretisation of the suspended sediment concentration in the179

deposition term (Ddep) is used, which guarantees the positivity of the suspended180

sediment concentration and the conservation of sediment mass. At the same time,181

the source terms Drdrd and Dfdre are limited to the availability of sediment in the182

eroded layer in order to avoid negative values of the sediment mass Ms in Equa-183

tion (8). Since the all the equations are solved with an explicit scheme, the time184

step in the calculations was restricted by a CFL condition (Courant et al., 1967)185

automatically implemented in the solver.186
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3. Methodology187

3.1. Study Site and Observations188

The numerical model described in the previous section was applied to com-189

pute soil erosion at the outlet (4o29′43.2′′E; 44o34′47.3′′N ) of a hillslope located190

in the south eastern part of France (Cevennes-Vivarais, Figure 1) during five storm191

runoff events (Table 1). This instrumented hillslope is part of a wider network of192

nested catchments, itself being part of the Mediterranean Hydrometeorological193

Observatory (Boudevillain et al., 2011). Vineyard spreads over the whole hills-194

lope. The brown calcareous soils underlain by marly-limestones are composed195

with 34% of swelling clays, 41% of silt and 25% of sand particles. The vegeta-196

tion cover between the vine rows varied between years but remained very sparse.197

The instrumented hillslope is 60 m long and 2.2 m width, which corresponds to198

the distance between two vines rows. The topography of the hillslope (Figure 1)199

was measured twice (2012 and 2014) with a theodolite with a spatial resolution200

of 1 m2 and uncertainties of 1 cm in the three dimensions. No significant evo-201

lution of the topography occurred between 2012 and 2014. The average slope in202

the longitudinal direction is about 15% and, as shown in Figure 1, there is a clear203

rill which collects and conveys the overland flow to the hillslope outlet, avoid-204

ing runoff losses through the lateral sides of the hillslope. Rainfall was measured205

with a raingauge (Précis Mécanique) having a 0.2 mm resolution, whose loca-206

tion is represented in Figure 1. Runoff was collected in the bottom part of the207

hillslope. The water heights were measured every minute with a 1 mm resolution208

using a limnimeter (OTT Thalimede) within a H-flume designed following the US209

Soil Conservation Service recommendations. The discharge rating curve was built210

experimentally and allowed to calculate discharges with a median relative uncer-211

tainty of 10%. A sequential sampler (ISCO 3700 Teledyne) containing 24 bottles212

of 1 l capacity sampled water and soil aggregates within the H-flume, the intake213

of the pipe being placed horizontally at the bottom of the flume. When critical214

thresholds of water heights or water heights variations were exceeded, the data215

logger (Campbell CR 800) triggered the sampling of water and soil aggregates.216

Thus, the time intervals between each two samples were irregular, depending on217

the shape of the hydrograph. The suspended sediment concentrations were esti-218

mated by weighting the water samples after drying them during 24 h at 105oC219

with a median relative uncertainty of 15%. While the discharges were available220

continuously, the sediment fluxes were only calculated for the times where sus-221

pended sediment concentrations were available.222

With mean runoff rates of 110 mm/yr for 890 mm of rainfall and mean erosion223
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rates of the order of 5 t/yr/ha, the site is representative of this type of land in224

a mediterranean context (Cerdan et al., 2010). It is important to note that these225

erosion rates are smaller than those recorded in mediterranean areas for bare soils.226

3.2. Numerical Model Setup227

In order to solve the hydrodynamic and soil erosion equations the study hill-228

slope was discretised with a finite volume mesh formed by 3300 quadrilateral229

elements of 20 cm length (Figure 1). Given the small size of the hillslope all230

the parameters included in the hydrodynamic and soil erosion equations were as-231

sumed to be spatially homogeneous. Rainfall intensity was also considered to be232

uniform in the whole hillslope, and it was defined in the model with the same tem-233

poral resolution as it was measured by the raingauge. As initial condition it was234

assumed that the soil surface was completely dry at the beginning of the events.235

The only boundary condition imposed was a critical flow condition at the hillslope236

outlet, which is coherent with the experimental conditions.237

3.3. Calibration of the Overland Flow Equations238

In order to focus our analysis in the soil erosion model, an independent cali-239

bration of the Manning coefficient and infiltration parameters was done for each240

of the five rainfall events to reproduce as best as possible the hydrograph mea-241

sured at the hillslope outlet. This means that the hydrological performance of242

the model is prioritized over its sedimentological performance, since the water243

depth, velocity and bed stress are essential variables in soil erosion modelling.244

Numerical-experimental agreement was evaluated in terms of the Nash-Sutcliffe245

Efficiency (NSE), defined as the ratio of the error variance to the variance of the246

observed time series (Nash and Sutcliffe, 1970).247

A Dunne type infiltration model (Dunne and Black, 1970) was used in all the248

computations. It considers that the soil has a very large infiltration capacity (larger249

than the rainfall rate) at the beginning of the event, until it gets completely satu-250

rated. For modelling purposes, the rainfall depth which is infiltrated in the soil251

during the first stage is considered as an initial abstraction (Ia). After the soil252

is fully saturated the infiltration capacity is reduced to a constant value (ks) of253

a few mm/h. Since the number of parameters of the overland flow equations is254

limited (Manning coefficient, initial abstraction, and constant infiltration rate) and255

the effect of each one in the outlet hydrograph is quite distinctive, their calibra-256

tion was performed manually to their optimal value. The beginning of the rising257

limb of the hydrograph is determined mainly by the initial abstraction (Ia) and258

can therefore be identified quite easily. The Manning coefficient (n) has its major259
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effect on the sharpness of the outlet hydrograph, while the total runoff volume is260

largely influenced by the constant infiltration capacity (ks). There is obviously261

some interaction between these three parameters, mostly between the Manning262

coefficient and the infiltration capacity, which could be captured by performing a263

GLUE-based calibration instead of an optimal value calibration. However, cali-264

brating independently the hydraulic parameters to their optimal value allows us to265

detach the hydraulic calibration from the estimation of the soil erosion parameters,266

and is justified by the fact that the experimental hydrograph is very well captured267

by the numerical model, with NSE values higher than 0.95 in all cases (Table 2268

and Figure 2).269

The calibrated parameters are shown in Table 2. The order of magnitude of the270

Manning coefficient, which oscillates between 0.2 and 0.8 sm−1/3, is consistent271

with values reported in the literature for overland flows (Engman, 1986; Fraga272

et al., 2013; Muñoz-Carpena et al., 1999; Wilson and Horritt, 2002), which depend273

on the vegetative cover, micro-topography, rainfall intensity and water depth. The274

differences in the calibrated Manning coefficient from one event to another might275

be explained by differences in the characteristics of the micro-topography during276

the four years in which the five events took place, as well as by the fact that277

its numerical calibration might account for all sorts of model deficiencies (Lane,278

2014). The constant infiltration rate varies from 0 to 1.8 mm/h in four of the five279

events, which is consistent with the clayey nature of the soil and with the values280

measured by Braud et al. (2014) and Braud and Vandervaere (2012), but raises281

to 18 mm/h in the event R4. It should be noted that R4 is the only event which282

occurs in early september, corresponding to the beginning of the rainy season in283

this south eastern part of France. The presence of many desiccation cracks in these284

dry clayey soils at this period would increase the infiltration capacity of soils due285

to a dual permeability structure. The variability of Ia from one event to another286

is also consistent with already published litterature in this catchment, highlighting287

the high influence of the antecedent soil moisture conditions on the generation of288

runoff (Huza et al., 2014). In all the events model output agrees very well with the289

experimental measures (Figure 2), the NSE being larger than 0.97 (Table 2) and290

the mean absolute error lower than 10% of the maximum discharge in all cases.291

3.4. Modelling Scenarios292

In the following, model structure is understood as the formulations and pa-293

rameterisations used to model the production of suspended sediment by rainfall294

and runoff, which include all the terms on the right hand side of Equation (2).295
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As justified in section 2.2, in all the scenarios considered in this study the crit-296

ical stream power and the Rouse factor were fixed respectively to zero and one297

(Ωcr = 0 and rf = 1). With this assumption, the complete erosion model given298

by Equations (3), (4), (5) and (6) has 5 parameters, namely: αd, αrd, F , J and299

Ms,cr. Rough estimates for some of the previous parameters can be found in the300

scientific literature (Heng et al., 2011; Proffitt et al., 1993; Sander et al., 2007).301

Such estimates are generally obtained after calibration of simplified analytical so-302

lutions of soil erosion models with data from laboratory experiments which were303

undertaken under rather different conditions from those of field applications (con-304

stant rainfall intensity, no vegetation, unstructured soils, uniform bed slope, no305

macro-roughness features). The extrapolation of these estimates to field studies is306

not evident and thus, parameter calibration is mandatory.307

The simplified Model Scenarios (MS) considered in this paper are shown in308

Table 3. The simplest scenarios are MS1 and MS2, which include a single param-309

eter to model respectively the production of suspended sediment by rainfall and310

runoff. The modelling scenario MS1 can be easily obtained from the full soil ero-311

sion model described in section 2 by forcing the parameters F = 0 (neglect runoff312

production) and αd = αrd, which implies to assume a single soil layer with uni-313

form erodibility characteristics. In this case the total sediment production in the314

right hand side of Equation (2) is equal to αrd ×R and therefore, the model is in-315

sensitive to J and Ms,cr. With this simplification the only model parameter is αrd.316

Notice that there are other ways of simplifying the full erosion model to obtain the317

scenario MS1 which can lead to different physical interpretations. For instance,318

setting F = αd = 0 and ε = 1 leads also to MS1. Even though the physical in-319

terpretation of these choices of parameters is different, they are exactly equivalent320

from a mathematical point of view. The only parameter of the second modelling321

scenario (MS2) is F , the fraction of stream power which is spent on soil erosion.322

In this scenario the rainfall erodibility parameters are set to zero (αd = αrd = 0),323

and the shield factor to 1 (ε = 1). The scenario MS3 is a combination of the first324

two scenarios (2 parameters: αrd and F ).325

The first three scenarios assume that only one soil layer with uniform erodi-326

bility properties is active during a single storm event. The other three modelling327

scenarios (MS4, MS5 and MS6) are respectively the two soil layer extensions of328

MS1, MS2 and MS3. The fact of considering two layers with different resistance329

to erosion doubles the number of erodibility parameters in the model and in addi-330

tion, it is necessary to introduce the shielding parameter Ms,cr. MS4 is obtained331

from the full erosion model by just setting F = 0, while in MS5 the parameters332

which are set to zero are αd and αrd. The most complex scenario is MS6, which333
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corresponds to the full erosion model.334

3.5. Calibration of the Soil Erosion Parameters335

The parameters of the five modelling scenarios defined in Table 3 were cali-336

brated using the standard Generalised Likelihood Uncertainty Estimation (GLUE)337

methodology of Beven and Binley (1992), which allows for many acceptable (or338

behavioural) parameter sets in the calibration process. The parameter sets iden-339

tified as behavioural are then used to assess the uncertainty on parameter identi-340

fication and model predictions. The original GLUE methodology was extended341

in the last years in the so-called limits of acceptability approach, which was first342

proposed in Beven (2006) to account for observational errors in the field data used343

to evaluate model performance and as model input. Different implementations of344

the limits of acceptability approach have been applied to hydrological (Liu et al.,345

2009; Blazkova and Beven, 2009) and sediment transport (Quinton et al., 2011;346

Krueger et al., 2012) studies. The advantages of using a limits of acceptability347

approach within GLUE are discussed in detail in Beven (2006).348

In order to focus the analysis on the soil erosion model the overland flow pa-349

rameters were kept equal to the values detailed in Table 2 in all the simulations,350

which guarantee an optimal representation of the experimental hydrograph at the351

plot outlet. Other authors as Quinton et al. (2011) perform an ensemble hydro-352

logical and sedimentological calibration within the GLUE framework, varying at353

the same time the hydraulic and soil erosion parameters of the model. The pro-354

cedure followed in Quinton et al. (2011) allows to account for the uncertainty on355

the hydraulic parameters estimation on the calibration of the soil erosion model.356

However, it increases the number of parameters to calibrate within GLUE and357

therefore the number of Monte Carlo simulations, which is computationally very358

expensive in a fully distributed model as the one used in this study, and was for359

that reason not applied in this study.360

Since no prior estimation of the model parameters in our study site was avail-361

able, a uniform prior distribution over the ranges of variation defined in Table 4362

was assumed for all the parameters. These ranges of variation were chosen after363

some preliminary simulations in which the parameters were varied over wider in-364

tervals. To verify that the search of behavioural parameter sets was not restricted365

by these interval limits, after the calibration process it was verified that the lat-366

ter probability density functions were not limited by the chosen variation ranges367

and that the most probable parameter values were located well inside the search368

interval. The random parameter sets were generated using a Sobol quasi-Monte369
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Carlo low-discrepancy sequence (Sobol, 1998; Saltelli et al., 2008). This sam-370

pling method is very adequate for computationally demanding models, because it371

allows for the extraction of a large amount of information with a smaller number372

of parameter sets than traditional Monte Carlo random sampling (Saltelli et al.,373

2008). The number of random sets was different for each modelling scenario,374

since the number of input parameters increases with the complexity of the model375

structure. A total number of 100 sets were generated for scenarios MS1 and MS2,376

which have a single parameter, 250 for MS3 (2 parameters), 1000 for MS4 and377

MS5 (3 parameters) and 5000 for MS6 (5 parameters). Each storm event was run378

with all the previous parameter sets, and behavioural simulations were defined379

as those with a positive NSE. This implies a quite loose rejection level, which is380

justified in our case by the large uncertainties involved in measuring and mod-381

elling suspended sediment fluxes, including model structural errors. As it will be382

shown in the results section, the NSE values computed from the suspended sedi-383

ment fluxes are significantly lower than those computed from the water discharge.384

Nevertheless, the GLUE methodology is flexible in the definition of the thresh-385

old of model rejection, which should be fixed considering data availability and386

modellers criterion (Beven, 2006).387

Each behavioural simulation was assigned a weight wi computed as:388

wi(θi) =
L(θi | C∗)∑m

j=1 L(θj | C∗)
i = 1,m (10)

where m is the number of behavioural simulations, θi is a behavioural parame-389

ter set and C∗ is the measured sediment flux. The generalized likelihood mea-390

sure for each parameter set θi was computed as the inverse error variance L(θi |391

C∗) = σ−2
e , where σe is the root mean square error computed from the numerical-392

experimental agreement of sediment fluxes at the hillslope outlet.393

All behavioural parameter sets are run to compute the cumulative density func-394

tion (cdf) of model predictions at any time step as:395

P [Ĉt < C] =
m∑

i=1

wi(θi | Ĉt,i < C) (11)

where Ĉt,i is the model prediction at time t obtained with the parameter set θi. The396

deterministic model prediction and its associated uncertainty are characterised re-397

spectively by the median of the cdf and the 95% confidence interval, as it is usually398

done when applying the GLUE methodology.399
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3.6. Evaluation of Model Performance400

The performance of each modelling scenario was evaluated by comparing the401

computed and measured sedimentographs for each of the storm events shown in402

Table 2. Model performance was evaluated in both, calibration and validation403

phases. In the calibration phase the behavioural parameter sets of each scenario404

were computed independently for each storm event, and model performance was405

evaluated in terms of the NSE, the percent bias (PBIAS) and the coverage of the406

95% confidence interval, all of them being computed for the suspended sediment407

fluxes at the hillslope outlet. The PBIAS (Gupta et al., 1999) measures whether408

there is a tendency in the numerical predictions to be larger or smaller than the409

experimental observation, while the coverage ratio, defined as the percentage of410

experimental measurements included in the 95% prediction confidence interval,411

is an indicator of the model performance considering output uncertainty (Vrugt412

et al., 2009). In order to compute the NSE and PBIAS performance indices, the413

median of the output sediment flux cdf was used as the deterministic model pre-414

diction.415

It should be stressed that the calibration phase allows us to evaluate what is416

the best performance expected for a given model structure during each rainfall417

event (within the calibration framework used in this paper), but it does not account418

for the predictive capability of the model. However, in the validation phase the419

parameters obtained from the calibration of the storm event R1 were used to model420

the other four events, and the predictive performance of each modelling scenario421

was evaluated in terms of the NSE, PBIAS (Gupta et al., 1999) and coverage422

ratios.423

4. Results and Discussion424

4.1. Evaluation of the Modelling Scenarios425

4.1.1. Calibration426

The NSE, PBIAS and coverage performance ratios in calibration phase for the427

six modelling scenarios and for each rainfall event are shown in Table 5. By con-428

sidering the rainfall and runoff production parameters (αrd and F ) the scenarios429

MS3 and MS6 are able to reproduce the experimental observations with NSE val-430

ues larger than 0.85 in all the events except in R1, with no significant bias in the431

prediction, even if the sedimentary response of the hillslope in terms of sediment432

flux variability is very different from one event to another, as illustrated in Fig-433

ure 3. Regarding the percentage of field measurements captured by the estimated434
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95% confidence interval, there is a general departure of the coverage from 95%,435

which is usual in the application of the GLUE methodology, and may be explained436

in our case by the uncertainty on the experimental measurements and imperfec-437

tions on model structure. This is illustrated by the first experimental measure in438

the event R2 (Figure 3), which is not captured by any of the modelling scenarios,439

and reveals either a limitation of the model structure or an erroneous measure-440

ment. Notice also that the number of field data points from which the coverage is441

computed varies within 19 for the event R3 and 6 for the event R4 and therefore,442

missing or hitting an additional data point implies a variation between 5% and443

15% in the coverage. With these limitations in mind, the coverage ratios obtained444

with MS3 and MS6 (in all cases except one larger than 65%) can be considered445

very satisfactory in the context of soil erosion modelling field applications. It is446

remarkable that these two scenarios give a very similar level of agreement with447

the experimental data, since MS6 assumes a two layer soil structure with 5 param-448

eters calibrated from 5000 Monte Carlo runs, while MS3 includes only 2 param-449

eters calibrated from 250 Monte Carlo runs. The calibration process is therefore450

simpler and less computationally demanding in MS3.451

The two scenarios which consider only the production of suspended sediment452

due to rainfall impact (MS1 and MS4) achieve also high NSE values in all the453

rainfall events (in general larger than 0.70), although they give in general lower454

coverage values (Table 5). Both scenarios show a systematic trend to underpre-455

dict the experimental observations (with PBIAS of the order of -20% in average)456

because they do not consider the production of sediment by runoff. At the same457

time the parameter αrd is higher in MS1 than in MS3 (Table 6). This could in-458

dicate that the calibration of MS1 tries to compensate the fact of neglecting the459

runoff production by increasing the rainfall production. A noticeable point is that460

considering a two layer soil structure in MS4 does not improve its performance461

relative to MS1 in terms of NSE, PBIAS and coverage.462

The two scenarios which give the worst performance levels are those which463

only consider runoff as the soil erosion mechanism (MS2 and MS5). Again, both464

scenarios have a very similar performance, despite considering one and two soil465

layers respectively. The fact of neglecting the rainfall driven production of sus-466

pended sediment prevents these model structures to reproduce multiple peaks in467

the sediment flux time series as the one which appears in R2 (Figure 3), which468

is clearly related to the peak in rainfall intensity and is well captured by all the469

other scenarios. The calibrated value of the parameter F is of the order of 2 ·10−6.470

This is a very low value compared to results reported by other authors in labo-471

ratory studies (Hairsine and Rose, 1992b; Heng et al., 2011; Rose et al., 2007;472
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Sander et al., 2007), and it means that a very small fraction of the total stream473

power dissipated by bed friction is used for the entrainment and reentrainment of474

sediment particles in the water column. This is because most of the bed friction475

is due to the head losses induced by the micro-topography of the terrain, or even476

the vegetation, and only a very small fraction is caused by skin roughness. Since477

the total streampower is used in Equations (5-6), the parameter F has to account478

for the difference between total and skin roughness. In laboratory experiments479

this difference is in general small, but in field applications of overland flow over480

rough terrains it can be very relevant. As mentioned in previous sections, this is481

also related to the large values of the Manning coefficient reported in Table 2.482

Regarding parameter uncertainty, the average value of αrd and F can be clearly483

identified in the single layer scenarios MS1 and MS3 (Figure 4). On the other484

hand, in the two soil layer scenarios the spread on the value of these parameters485

after calibration increases in a significant way. The reason for that is illustrated486

in Figure 5, which shows the behavioural simulations obtained after calibrarion487

of MS4 with the event R2, plotted in parameter space. This figure shows that488

no modal value can be easily identified for αrd in MS4, as it can be in MS1 and489

MS3. It also shows that when the value of Ms,cr is below a certain threshold490

(which in this specific case is around 0.5 kg/m2) the model is insensitive to the491

erodibility of the cohesive layer (αd), and model performance is determined only492

by the erodibility of the eroded layer (αrd). This gives rise to a strong equifinality493

problem in the identification of the model parameters, which is further illustrated494

with the results shown in Figure 6, which represents the timeseries of the rainfall495

production terms in three different calibration runs of MS4. The first column of496

Figure 6 shows the suspended sediment production terms in a behavioural run with497

a very good performance (NSE=0.94) and a small value of Ms,cr (0.048 kg/m2).498

In this simulation the mass of eroded soil (Ms) rapidly exceeds the value of Ms,cr.499

At that moment the cohesive layer becomes fully protected by the eroded layer500

and therefore, it does not contribute to the production of suspended sediment, the501

total production being equal to the production from the eroded layer (Drdrd). The502

second column of Figure 6 represents the production terms in another behavioural503

run which also attains a very good performance (NSE=0.97), but in this case with504

a large value of Ms,cr (2.5 kg/m2). In this case the average mass of sediment505

in the eroded layer built up during the whole event (Ms=0.17 kg/m2) is much506

lower than Ms,cr and therefore, it is not enough to protect the cohesive layer.507

In this situation it is the production from the cohesive layer (parameter αd) the508

most relevant process which determines the model performance. Therefore, the509

relevance of the parameters αd and αrd in the model is completely conditioned by510
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the value of the parameter Ms,cr. Moreover, Figure 5 shows that in the scenario511

MS4 when Ms,cr is lower than 0.5 kg/m2 the average value of αrd is the same as512

that of αd when Ms,cr is larger than 1, and both are very similar to the average513

value of αrd in the scenario MS1. This indicates that the scenarios MS1 and514

MS4 are equivalent for small or large values of Ms,cr, which explains the similar515

performance results reported in Table 5. The effect on model calibration of this516

sort of insensitivity to input parameters conditioned by the value of Ms,cr is that517

the parameter distribution of αd and αrd extend over the whole parameter range.518

This is clearly reflected in the median and standard deviation of the calibrated519

parameters in MS4 (Table 6).520

It is interesting to notice in Table 6 that the median value of the parameters F521

and αrd is quite similar in the scenarios MS3 and MS6. This confirms that the most522

relevant processes which drive the sediment flux variability at the hillslope outlet523

during a single storm event are well represented in MS3 with just two parameters524

and a single soil layer structure. Although slightly higher, the value of αrd in MS1525

is also consistent with the two previous scenarios, which stresses the fact that this526

parameter alone is able to explain properly most of the sedimentary response of527

the hillslope in terms of mass flux variability.528

The previous results are confirmed by the relative contribution in the scenar-529

ios MS3 and MS6 of rainfall driven production (via the terms Drdd and Drdrd) to530

the total suspended sediment production (Table 7). The fact that for each event531

the relative contribution of rainfall is similar in the scenarios MS3 and MS6 rein-532

forces the conclusions concerning the strong equifinality between these two sce-533

narios. Rainfall production represents at least 60% of the total production in all534

the events, achieving rates of 90% in the event R1. This is consistent with the fact535

that the scenarios MS2 and MS5, which do not consider rainfall production, obtain536

very low performance levels in the event R1 (Table 5). The performance of these537

scenarios is also low in the events R2 and R5, in which the relative contribution538

of rainfall is still significant (of the order of 70%).539

The results obtained in calibration suggest that in our study site the most rele-540

vant sediment production process which determines the good or bad performance541

of a model scenario is rainfall impact. This is consistent with the results of the542

sensitivity analysis on synthetic data presented by Rousseau (2012), which sug-543

gest that rainfall erodibility is the parameter which explains most of the variability544

of the eroded mass at the hillslope outlet. Adding the reentrainment of sediment545

due to overland flow (MS3) improves model performance in the events R3, R4546

and R5, which are the ones with highest peaks of runoff discharge. The scenario547

MS3 is therefore more versatile and would be more adequate than MS1 in other548
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sites dominated by rill and gully erosion. Increasing further the complexity of the549

model by adding a two layer soil structure (MS4, MS5 and MS6) does not imply550

a significant improvement on model performance.551

4.1.2. Validation552

The predictive capability of the five model structure scenarios was analysed by553

modelling the rainfall events R2, R3, R4 and R5 with the parameters inferred from554

the calibration of the event R1, which are shown in Table 6. Model performance555

was evaluated in terms of the NSE, PBIAS and coverage of the 95% confidence556

interval.557

According to the performance ratios reported in Table 8 the model structure558

with the best predictive capabilities is MS3. This modelling scenario gives NSE559

values larger than 0.6 and PBIAS values lower than 40%, with the only excep-560

tion of event R4. But even in this case the coverage ratio (67%) is acceptable. In561

the events R2 and R3 the NSE and coverage results obtained with MS3 in vali-562

dation are similar to those obtained in calibration (Table 5), while in R5 they are563

slightly worse, but still satisfactory. The scenarios MS1 and MS6 also produce564

high NSE values and low PBIAS ratios (again except in the event R4), but their565

coverage ratios are lower than those obtained with MS3. Excluding the event R4,566

the PBIAS results shown in Table 8 indicate that none of these three scenarios567

(MS1, MS3 and MS6) tend to systematically overpredict or underpredict the ex-568

perimental observations. On the other hand MS2 and MS5 give very low NSE569

values and PBIAS ratios larger than 50% and cannot therefore be considered as570

satisfactory models. In addition the coverage ratios obtained with these scenar-571

ios are very low (in general lower than 30%) and the PBIAS is always negative,572

which indicates a systematic underestimation of the mass flux of sediment at the573

hillslope outlet.574

The sediment flux time series predicted by the three scenarios MS1, MS3 and575

MS6 in the 4 validation events are shown in Figure 7. The differences between576

the median predictions of MS3 and MS6 are minimal at all time steps. Since the577

spread of the uncertainty bounds is slightly larger in the case of MS3, the coverage578

ratios obtained in this scenario are higher (Table 8). The suspended sediment flux579

computed with MS1 responds somewhat stronger to peaks in the rainfall intensity,580

since the calibrated rainfall erodibility coefficient (αrd) is larger in this scenario581

(Table 6) because it has to account by itself alone for all the sediment production.582

Some measured points are clearly not captured by any scenario, for instance the583

first point in the event R2 or the third one in R5. This might be due to some pro-584

cess which is not captured by any of the sediment production formulations, or to585
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exceptionally large errors in the rainfall or sediment flux data. Also the last four586

experimental points in the recession curve of event R5 are not captured by the 95%587

confidence interval of any model structure. The fact that the model predictions588

on the recession curve systematically underestimate the measured sediment flux,589

suggests that the flow driven production parameter (F ) might be slightly underes-590

timated in the calibration of the model. Nevertheless, this numerical-experimental591

disagreements are quite restrained if we look at the whole validation data shown592

in Figure 7, with the exception of the event R4, which is overestimated by all the593

scenarios.594

We have not found a clear reason to explain why the model performs worse595

during validation with the event R4. The model results presented in section 4.1.1596

do not show any significant difference in the contribution of rainfall and runoff597

driven erosion from one event to another. In all the events the performance of the598

model in calibration is good (as shown in Table 5) and the percentage contribu-599

tion of the rainfall driven production terms (Drdd +Drdrd) is similar in R2, R3 and600

R4 (Table 7). The problem during validation with the event R4 might be related601

with a limitation on the mathematical representation of physical processes within602

the numerical model. As argued in Quinton et al. (2011), the reasons of finding603

non-overlapping parameter distributions when applying the GLUE methodology604

to different events in the same catchment might be related to errors in the model605

structure, errors in the input data and initial conditions, or real variations in the hy-606

draulic and soil characteristics between events. Another possible reason could be607

added in our study case: the poor experimental representation of the sedimento-608

graph measured during the event R4, which is defined by only 6 field data points,609

with only two of them during the main part of the hydrograph. The number of610

experimental measures in the other events is noticeably larger, ranging from 11 to611

19. Experimental measurement errors will have a much higher impact on model612

performance when modelling the event R4.613

4.2. Implications for soil erosion model calibration and application614

The NSE, PBIAS and coverage performance ratios show that considering just615

two erodibility parameters which account for the production of suspended sedi-616

ment due to rainfall and runoff, offers a good compromise between model perfor-617

mance and calibration efforts. If only one parameter should be retained, the most618

meaningful one in our study site is the rainfall erodibility coefficient, although619

in other sites in which rill or gully erosion dominates, the relative importance of620

runoff production on model output will probably be higher. The low variability on621

the value of the rainfall erodibility parameter from one event to another, and from622
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one modelling scenario to another, points out the robustness of the calibration623

methodology and confirms the fact that this parameter is representing correctly624

the production of sediment in the hillslope. Nevertheless, considering just the625

rainfall erodibility coefficient (MS1) in rill erosion dominated sites would fail to626

give accurate predictions and therefore, the scenario MS3 should be in general627

preferred unless the modeller is sure about the dominant soil erosion processes in628

a specific study site.629

While conceptually appealing, a two-layer soil structure is difficult to imple-630

ment in field applications because detachment and redetachment are very inter-631

related processes which are difficult to isolate and therefore, to characterise by632

field or laboratory measurements. The fact that the rainfall erodibility parame-633

ters (αrd and αd) calibrated in the two-layer scenarios (MS4 and MS6) have the634

same value for the cohesive and eroded layers indicates that in our study case it635

is not necessary to consider a double layer structure. This is further confirmed by636

the fact that in all the modelling scenarios and events the calibrated values of the637

rainfall erodibility parameter are very similar. These results suggest that it might638

be reasonable in field applications of event-based soil erosion models to consider639

the erodibility properties homogeneous over the soil depth, without the need of640

distinguishing two layers of soil with different properties. A two layer soil struc-641

ture makes the calibration process more complex and might be a constraint in the642

application of this type of models at larger scales. Even though the relevance of643

the sediment production processes and model parameters might vary from one644

study site to another, similar conclusions regarding the compromise between the645

structural complexity and efficiency of soil erosion models might apply to other646

hillslopes within the Mediterranean context and for similar land use.647

As previously said, the average median sediment diameter measured at the648

outlet of the studied hillslope during the 5 storm events was 25 µm. However, the649

median diameter measured from the suspended sediment samples varied during650

the same event (mostly between 10 and 50 µm), which could introduce a relevant651

source of uncertainty when computing its average value during a whole event from652

a few soil samples. In addition, the size of particles is not always available from653

field measurements. The soil texture is used in that cases to estimate the charac-654

teristic sediment diameter, even if it does not guarantee that the value obtained is655

the most representative of the eroded particles. Considering these sources of un-656

certainty, the sediment diameter might be considered as a calibration parameter in657

an attempt to improve model performance and to define its characteristic value for658

modelling purposes more precisely. For this purpose we have included the sedi-659

ment diameter as an additional parameter in the scenarios MS1 and MS3, which660
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are those showing a better performance with just a single soil layer. The calibra-661

tion procedure of these augmented scenarios was the same as the one described in662

previous sections, using in this case 500 and 1000 Monte Carlo runs respectively663

for MS1 and MS3. The sediment diameter was varied between 10 and 50 µm,664

which corresponds to settling velocities of 0.054 and 1.4 mm/s respectively.665

The results obtained after calibration and validation of these new augmented666

scenarios (Table 9) show that model performance is not improved when using the667

sediment diameter as an additional calibration parameter. The NSE performance668

ratios shown in Tables 5 and 9 for the scenarios MS1 and MS3 are almost identical.669

On the other hand, the sensitivity of the erodibility parameters to the sediment670

diameter is very high, as shown by the plot of the sediment diameter against the671

rainfall erodibility parameter (Figure 8). When including the sediment diameter672

as a model parameter there is a whole set of equifinal behavioural simulations673

which expand over the whole range of variation of the erodibility parameters.674

A representative average value of the parameters αrd and F can no longer be675

identified in Figure 8, as it was possible in MS3 (Figure 4), and the marginal676

parameter distribution of the erodibility parameters becomes almost flat. This677

implies that one of the three parameters (αrd, F , Ds) should be known in order678

to calibrate the others correctly. Given that no easily achievable measurements679

exist to characterise αrd and F , measurements efforts should focus on the settling680

velocity (or other size related properties) of eroded particles.681

5. Conclusions682

The performance of different simplified parameterisations of the production683

terms in a distributed event-based soil erosion model has been analysed in an684

agricultural hillslope during five storm events. Model performance was evalu-685

ated in terms of the sediment mass flux at the hillslope outlet. Calibration and686

validation was performed within the GLUE methodology in order to account for687

the uncertainties inherent to soil erosion modelling. The results show the capa-688

bilities in terms of model calibration and validation of the GLUE framework in689

soil erosion studies, an area in which accounting for modelling uncertainties is of690

paramount importance given the complexity of the physical processes which are691

being modelled and the scarcity of accurate field data available for calibration.692

The results presented show that in our study site a model structure considering693

a single soil layer with just two erodibility parameters accounting for the produc-694

tion of suspended sediment due to rainfall impacts and runoff shear offers a good695

compromise between calibration efforts and model performance. A two layer soil696
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structure makes the calibration process more complex without improving signif-697

icantly model performance, while it might be a constraint in the application of698

these type of models at larger scales. In cases in which the modeller is sure about699

the dominant soil erosion processes a single parameter (in our study site the rain-700

fall erodibility coefficient) can offer appropriate numerical predictions. It should701

be noticed that the number of simulations needed to account for uncertainty on702

model output, and consequentely the total amount of computer time required to703

perform the Monte Carlo runs within GLUE, increases greatly with the number704

of model parameters. It seems thus reasonable to diminish the number of in-705

put parameters as long as the remaining model structure provides an appropriate706

mathematical representation of the physical processes involved in soil erosion in707

the study site, especially if one of the next objectives is to apply the model to708

larger scales (e.g. small catchments). This decision should be made by the mod-709

eller based on his expertise, on the expected accuracy on model output and on his710

knowledge about the hydrological and sedimentological properties of the study711

site to be modelled.712

Even though including the sediment diameter as a calibration parameter does713

not improve model performance, model calibration is very sensitive to the cho-714

sen characteristic particle size, due to the strong interaction between the sediment715

diameter and the calibrated soil erodibility parameters. However, the precise defi-716

nition of an effective sediment diameter is still one of the biggest unknowns in soil717

erosion modelling for a number of reasons as soil aggregation, aggregate stabil-718

ity, change in aggregate size due to the stresses induced by rain drop impact and719

overland flow transport, among others. This poses a relevant equifinality problem720

when trying to obtain representative values of the soil erodibility parameters from721

model calibration.722

The methodology and results presented here should incite numerical modellers723

to incorporate model uncertainty in soil erosion studies, as it has been strongly en-724

couraged by other authors which have already been cited throughout this paper.725

A further step, not considered in this study, would be to incorporate data uncer-726

tainty in the analysis in order to account for observational errors, as it is done for727

example in the limits of acceptability approach.728
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Table 1: Characteristics of the five storm runoff events.

Event Start

Rain before
runoff starts

(mm)

Time before
runoff starts

(h)

Rain since
runoff starts

(mm)

Max. 1 min
rain intensity

(mm/h)

Runoff
duration

(h)

Runoff
depth
(mm)

Qmax

(l/s)
R1 09/11/2012 22:00 43 14.3 22 24 10.0 12 0.30
R2 04/11/2011 12:00 113 45.0 16 79 3.9 17 0.98
R3 18/05/2013 08:00 19 7.0 27 80 5.0 29 1.73
R4 07/09/2010 19:00 91 24.6 61 92 2.7 12 1.12
R5 20/10/2013 06:00 20 5.0 44 92 2.6 29 1.35

Table 2: Value of the hydraulic parameters after calibration of each storm runoff event.
Rainfall

event
n

(sm−1/3)
Ia

(mm)
ks

(mm/h)
NSE
(-)

R1 0.60 43 1.8 0.97
R2 0.30 113 1.4 0.98
R3 0.20 19 0.0 0.99
R4 0.40 91 18.0 0.99
R5 0.80 20 0.9 0.99

Table 3: Model structure scenarios of the soil erosion model.
Modelling
Scenario

Rainfall
production

Runoff
production

Number of
layers

Model
parameters

MC runs for
calibration

MS1 Yes No 1 αrd 100
MS2 No Yes 1 F 100
MS3 Yes Yes 1 αrd,F 250
MS4 Yes No 2 αrd,αd,Ms,cr 1000
MS5 No Yes 2 F ,J ,Ms,cr 1000
MS6 Yes Yes 2 αrd,αd,F ,J ,Ms,cr 5000

Table 4: Parameter ranges used in the definition of the prior parameter distribution for calibration
purposes.

Parameter αrd αd F J Ms,cr

Units kg/m3 kg/m3 - J/kg kg/m2

Sampling range [0-50] [0-50] [0-0.001] [1-10] [0-2.8]
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Table 5: NSE, PBIAS and coverage performance ratios obtained after calibration of the six mod-
elling scenarios. The NSE and PBIAS are computed from the median of the output sediment flux
cdf. The coverage is computed as the % of experimental measures lying within the 95% confidence
interval computed from the model output.

NSE
Event MS1 MS2 MS3 MS4 MS5 MS6

R1 0.72 0.07 0.57 0.78 0.21 0.56
R2 0.98 0.32 0.97 0.98 0.26 0.96
R3 0.67 0.91 0.91 0.66 0.93 0.94
R4 0.75 0.90 0.90 0.86 0.83 0.91
R5 0.78 0.64 0.86 0.77 0.65 0.85

PBIAS
Event MS1 MS2 MS3 MS4 MS5 MS6

R1 -4.45 -17.9 1.41 0.04 -12.9 -0.8
R2 -13.68 0.47 9.7 -7.7 -15.2 7.5
R3 -25.8 2.54 11.4 -16.7 5.7 5.7
R4 -33.9 -0.24 -6 -18.8 -4.8 -4.0
R5 -18.9 -13.75 -6.7 -14.9 -1.9 0.4

Coverage 95 (%)
Event MS1 MS2 MS3 MS4 MS5 MS6

R1 73 18 73 73 33 82
R2 47 41 65 65 18 60
R3 56 72 72 61 89 89
R4 50 50 67 67 33 67
R5 33 42 75 42 67 75

Table 6: Model parameters (median ± standard deviation) for each modelling scenario after cali-
bration for the event R1.

MS1 MS2 MS3 MS4 MS5 MS6
Ms,cr x10−3 - - - 910 ± 840 820 ± 339 710 ± 382
F x10−6 - 2.5 ± 0.3 1.0 ± 0.9 - 51.0 ± 24.0 4.8 ± 5.5
J - - - - 6.5 ± 2.8 6.9 ± 2.5
αd - - - 20.1 ± 20.3 - 11.5 ± 9.2
αrd 17.6 ± 5.0 - 12.9 ± 6.4 18.5 ± 25.9 - 12.1 ± 13.1

Table 7: Contribution of the rainfall driven production terms (Drdd + Drdrd in Equation (2)) to
the gross erosion. Only the scenarios MS3 and MS6 are considered since they are the only ones
which account simultaneously for rainfall and runoff production.

Scenario R1 R2 R3 R4 R5
MS3 88% 67% 60% 60% 77%
MS6 92% 70% 61% 71% 69%
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Table 8: NSE, PBIAS and coverage performance ratios in validation, using the parameters ob-
tained from the calibration of event R1. The coverage is computed as the % of experimental
measures lying within the 95% confidence interval computed from the model output.

NSE
Event MS1 MS2 MS3 MS4 MS5 MS6
R2 0.90 0.14 0.97 0.89 0.04 0.98
R3 0.60 0.92 0.81 0.58 0.91 0.72
R4 -10.80 0.32 -3.60 -11.00 0.05 -4.9
R5 0.78 -0.49 0.69 0.77 -0.21 0.77

PBIAS
Event MS1 MS2 MS3 MS4 MS5 MS6
R2 17.2 -55.9 -0.8 18.9 -68.1 5.6
R3 0.7 2.5 14.8 4.9 -8.5 23.5
R4 213.8 -56.3 131.3 218 -67.1 1.5
R5 -14.4 -85.3 -35.7 -11.5 -74.2 -27.0

Coverage 95 (%)
Event MS1 MS2 MS3 MS4 MS5 MS6
R2 59 0 65 71 6 59
R3 44 6 67 67 39 72
R4 17 17 67 33 17 33
R5 33 0 42 42 0 42

Table 9: NSE in validation and calibration for the scenarios MS1 and MS3 augmented with the
sediment diameter as an additional calibration parameter.

NSE calibration NSE validation
Event MS1 + Ds MS3 + Ds MS1 + Ds MS3 + Ds
R1 0.72 0.56 - -
R2 0.97 0.95 0.88 0.91
R3 0.63 0.92 0.59 0.88
R4 0.79 0.86 -12.80 -2.50
R5 0.72 0.79 0.66 0.51
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Figure 1: Location of the study site, finite volume mesh used in the numerical simulations, hills-
lope topography and typical water depth pattern computed during the storm runoff events.

Figure 2: Measured and computed hydrographs at the hillslope outlet during the five rainfall
events. Values in the x-axis refer to the time passed since the beginning of the storm event. Notice
that there is a time lag between the beginning of the rainfall and the start of the surface runoff due
to the initial abstraction.

Figure 3: Comparison of sediment flux median predictions and 95% confidence intervals obtained
in the calibration of the rainfall events R1 (left), R2 (middle) and R4 (right) with model structures
(from top to bottom) MS1, MS2, MS3 and MS6. Values in the x-axis refer to the time passed since
the beginning of the storm event.

Figure 4: Distribution of the parameter sets used in the behavioural simulations after calibration
of the event R2 with the modelling scenarios MS1 (left) and MS3 (middle and right). On the
right plot (MS3) each dot represents a behavioural simulation, the size and colour of the dot being
proportional to the NSE.

Figure 5: Posteriori distribution of the parameter αrd and behavioural simulations plotted in pa-
rameter space, after calibration of the event R2 with the modelling scenario MS4. In the middle
and right plots each dot represents a behavioural simulation, the size and colour of the dot being
proportional to the NSE.

Figure 6: Time series of the rainfall production terms (Dtot = Drdd + Drdrd, Drdd and Drdrd)
and sediment mass in the eroded layer (Ms) in 3 behavioural simulations computed during the
calibration of the modelling scenario MS4 with the storm event R2. Each column corresponds to
one simulation. The model parameters and NSE of each simulation are indicated in the first row.

Figure 7: Comparison of sediment flux median predictions and 95% confidence intervals obtained
with model structures MS1 (left), MS3 (middle) and MS6 (right). Model parameters calibrated
for the event R1. From top to bottom, events R2, R3, R4 and R5. Values in the x-axis refer to the
time passed since the beginning of the storm event.

Figure 8: Behavioural simulations after calibration of the event R2 with the modelling scenario
MS3 considering the characteristic particle size (Ds) as an additional calibration parameter. Each
dot represents a behavioural simulation, the size and colour of the dot being proportional to the
NSE.
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