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ABSTRACT
The following paper shows a Finite Element formulation for the resolution of the –
local and convective acceleration terms including- Navier-Stokes equations, which
gives analytical response to the problem of viscous, incompressible, unsteady flows.
The integration of the resulting non-linear system of first order ordinary differential
equations, is made upon a successive approximation algorithm together with an
implicit backward time integrating scheme. The interpolation of the spatial domain is
made in terms of a Q1/P0 pair (bilinear velocity-constant pressure). The usage of a
Bubnov Galerkin formulation in the process of obtaining a weak form implies that
flows of a certain velocity need the employment of a very refined spatial mesh so as
to avoid numerical instability. For high Reynolds numbers the convection term
becomes predominant compared to the diffussion term and a different algorithm
(SPGU, GLS), should be introduced. Finally the developed program is checked over
some of the most commonly used flow tests and its results on velocity and pressure
are shown.

GOVERNING EQUATIONS
The unsteady incompressible Navier-Stokes equations are given by:
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for Tt ≤≤0 , (whereT is a specified time), together with the initial and boundary
conditions:
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where u is the velocity, p is the pressure, t is the time, ν  is the cinematic viscosity, f
is the body force per unit mass and ,, ∆∇  are the gradient and laplacian tensor

operators. The problem consists in finding u H∈ 0
1  and p S∈ 0

1 in a time-space domain
Ω x(0,T).

FINITE ELEMENT FORMULATION



Let V be the subspace of D(Ω ) satisfying the incompressibility constraint:
( ){ }0=⋅∇Ω∈= u:u DV , let H be the closure of V in ( )Ω1
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If we apply the weighted-residual argument by taking the scalar product of the
momentum equation times an arbitrary test function v satisfying 0v =⋅∇ , that is for

V∈v ,

( ) ∫∫∫∫∫
ΩΩΩΩΩ

Ω⋅=Ω⋅∇+Ω⋅∆−Ω⋅∇⋅+Ω⋅
∂
∂

ddpddd
t

        vfvvuvuuv
u

ν (2.1)

Applying the divergence theorem and taking into account that 0v =⋅∇  in Ω , we
arrive to:
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for all admissible functions V∈v .
Even with 0=⋅∇ v  in Ω , we will maintain the pressure term so as to be able to use a
mixed formulation rather than the penalized one. This allows us to keep as variables
the pressure unknowns.Although it produces a certain increase in computational
cost, the penalty parameter formulation is known to be the cause of loss of accuracy
for small values and for holding up the convergence of the solution for too large ones.
In the same way, making the scalar product of the continuity equation with an
arbitrary test function ( ) PRLq =Ω∈ /2 , the weak expression turns into:
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The velocity and pressure fields may be approximated now as piecewise polynomials
on the discretization by (Q1/P0) Lagrange-Type elements, so they are expressed in
terms of the trial functions, ( )xnφ , ( )xmχ .
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Replacing (2.4) into (2.2) and (2.3):
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For all admissible test functions h
h V∈v and h

h Pq ∈ .

Introducing the expansions for hh p ,u , and integrating, the following non-linear
ordinary differential equations system is obtained.



( ) FBpAuuCuM =−++ ν& 

0uB =T (2.7)

In expanded matrix form:
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where:

( ) ∫Ω
+==

h

dx
yyxx

A srsr
rs ∂

∂φ
∂

∂φ
∂

∂φ
∂
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In order to turn equation (2.8) into a linear system of equations we are going to
approximate the non-linear term ( )uC , by an iterative scheme known as successive-
approximation:
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Thus (2.7) is written:
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Finally, the time integration based on an implicit backward scheme, results in the
following non-differential linear system:
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Which characterises the unsteady viscous incompressible flow.



DISCRETIZATION
The Q1/P0 pair means a quadratic first order approximation for the velocity field and
a constant pressure approximation for each basic element. The shape functions for
the velocity field Ni are expressed in terms of the local coordinates ξη  , .
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The derivatives of the form functions with respect to the global axis coordinates must
be calculated so as to be able to constitute the basic matrices, the change of
coordinates leads to:
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Combining the former expressions, the matrices M, A, Bx, By, C may be now
expressed in terms of the derivatives with respect to the local axis coordinates. So,
the matrix Bx (for instance) being:
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The integration of expression (3.3) and that of the other matrices will be carried out,
following a numerical 4-point two-dimensional Gauss integration, where the Gauss
points are in ( ) 57730 57730 .,. ±± , and the weighting function H=1.
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NUMERICAL EXAMPLES
A FORTRAN code has been developed making use of the previously explained
formulation. The program has been checked with the well known backward step and
driven cavity flow tests and the results for velocity and pressure unknowns are shown
bellow
The following figure shows the evolution in time of the behaviour of the streamlines
for the backward step problem in which the eddy takes form for flow decreasing
boundary conditions.
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Fig 1. Backward step streamlines varying in time.

The results of the velocity field, both for the backward step and cavity flow are plotted
bellow
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Fig 2. Velocity fields.

Pressure field numerical results in iso-lines and 3D graph
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Fig 3 Pressure fields for the cavity flow problem.

Fig 4 Pressure field for the backward (16x60) step flow

CONCLUSIONS AND FURTHER DEVELOPMENTS.
The results may be considered accurate enough for small Reynolds numbers, with its
magnitude being a function of the mesh grade of refinement. Once the Reynolds
number becomes of considerable magnitude (and so the convective term gets bigger
compared with the diffusive term), the upwinding Petrov Galerking formulation
together with the inclusion of an artificial streamline diffusion term (SUPG), should
provide a computationaly speaking inexpensive and convenient approach. Next, a
turbulence-considering scheme and a pattern being able to model transitions in flow,
would be implemented.
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