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1 | INTRODUCTION
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This paper analyses the effect of rain data uncertainty on the performance of two

hydrological models with different spatial structures: a semidistributed and a fully

distributed model. The study is performed on a small catchment of 19.6 km2 located

in the north‐west of Spain, where the arrival of low pressure fronts from the Atlantic

Ocean causes highly variable rainfall events. The rainfall fields in this catchment

during a series of storm events are estimated using rainfall point measurements.

The uncertainty of the estimated fields is quantified using a conditional simulation

technique. Discharge and rain data, including the uncertainty of the estimated rainfall

fields, are then used to calibrate and validate both hydrological models following the

generalized likelihood uncertainty estimation (GLUE) methodology. In the storm

events analysed, the two models show similar performance. In all cases, results

show that the calibrated distribution of the input parameters narrows when the rain

uncertainty is included in the analysis. Otherwise, when rain uncertainty is not

considered, the calibration of the input parameters must account for all uncertainty

in the rainfall–runoff transformation process. Also, in both models, the uncertainty

of the predicted discharges increase in similar magnitude when the uncertainty of

rainfall input increase.
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The increasing number of physical processes included in operational

hydrological models over recent decades, plus advances in the

numerical schemes used to solve the model equations, has led to

improvements in their performance and range of application. In

addition, increases in computational efficiency has allowed the

development of more complex models with a high spatial resolution

and a very detailed characterization of physical processes (Fraga,

Cea, & Puertas, 2017; Goodrich et al., 2012; among others).

Enhancements in the capacities of hydrological models has also led

to greater concern regarding the accuracy and uncertainty of the

input data, due to the decisive impact of these on model predictions
(Arnaud, Bouvier, Cisneros, & Dominguez, 2002; Moulin, Gaume, &

Obled, 2009).

Rainfall data has been seen as one of the inputs with the greatest

impact on model performance (Huard & Mailhot, 2006; Bárdossy &

Das, 2008; Beven, 2011). Yet it is also one of the model inputs that

presents the highest degree of uncertainty (McMillan, Krueger, &

Freer, 2012), this originating mainly from two sources. The first cause

of rainfall uncertainty is the result of point measurement errors. Rain

gauges represent a reliable way of measuring rainfall depth at a

specific location, but they are subject to various kinds of errors (due

to mechanical limitations, wind effects, and evaporation losses) that

tend to increase with rainfall intensity and sampling frequency (Molini,

Lanza, & La Barbera, 2005). The second cause of rainfall uncertainty is
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the spatial interpolation at any location from point measurements at a

few specific locations. The spatial density of rain gauge networks is

rarely sufficient to capture the spatial and temporal variability of the

precipitation at small scales (McMillan et al., 2012; Villarini &

Krajewski, 2008; Volkmann, Lyon, Gupta, & Troch, 2010). The use of

interpolation techniques that combine point and distributed rainfall

measurements (i.e., radar or satellite data) partially overcomes this

drawback (Bargaoui & Chebbi, 2009; Haberlandt, 2007), but radar

and satellite data are not always available at the appropriate temporal

and spatial resolutions.

Numerous studies in recent years have focused on characterizing

rainfall uncertainty, which is usually quantified either by stochastic

perturbation techniques or through conditional simulation methods.

In stochastic perturbation methods, the observed rainfall fields are

either perturbed with an error function (Pan & Wood, 2009; Turner,

Walker, & Oke, 2008) or multiplied by a scale factor (Kavetski,

Kuczera, & Franks, 2006; Vrugt, TerBraak, Clark, Hyman, & Robinson,

2008). On the other hand, conditional simulation methods generate

multiple replicates of equiprobable rainfall fields (Vischel, Lebel,

Massuel, & Cappelaere, 2009). A detailed review of the methodologies

used to quantify rainfall uncertainty can be found in McMillan et al.

(2012). The development of these methodologies has allowed

modellers to include rainfall uncertainty in hydrological computations

(Maggioni et al., 2013; Mei, Nikolopoulos, Anagnostou, & Borga,

2016). Prior studies cascaded rainfall uncertainty along rainfall–runoff

computations using lumped conceptual models, which ignore the spa-

tial discretization of both the rainfall and the hydrological processes.

However, multiple studies have highlighted the sensitivity of hydro-

logical models to the spatial distribution of rainfall and to spatial

discretization of the catchment (Fu, Sonnenborg, Jensen, & He,

2011; Shen, Chen, Liao, Liu, & Hong, 2012). Moreover, Haberlandt

and Gattke (2004) recognized that the simplicity of the hydrological

model can limit the effect of rainfall uncertainty on runoff estimations

and recommended the use of physically based distributed models,

especially in those catchments subject to adverse weather events with

intense and highly variable rainfall. There is, however, an absence of
FIGURE 1 A, Study area with the location of the rain gauges used in this
the Con catchment with the location of the rain gauges used to validate t
work addressing the effect of rainfall uncertainty on physically based

distributed hydrological models and how the spatial structure of rain-

fall influences estimations of uncertainty.

In this paper, we look at the effect of rainfall uncertainty on the cal-

ibration and performance of two hydrological models: a fully distributed

and a semidistributed one. The study is carried out in a small catchment

located in the north‐west of Spain, subject to low pressure fronts gener-

ated in the Atlantic Ocean, which produce storm events characterized

by a high spatial variability and rainfall intensities. Both hydrological

models are calibrated within the generalized likelihood uncertainty esti-

mation (GLUE) framework, using a conditional simulation method to

include the uncertainty in rainfall input data. Results show that when

rainfall uncertainty is included in the calibration procedure, the uncer-

tainty in the estimation of model parameters is reduced. In addition,

the uncertainty bounds on the predicted discharges narrow when the

effect of rainfall uncertainty is taken into account in both the calibration

procedure and the discharge predictions. This is true for both the fully

distributed and the semidistributed models.
2 | STUDY SITE AND DATA

2.1 | Site location

The study site is the catchment of the river Con, located in the north‐

west of Spain (Figure 1). The catchment has a surface of 19.6 km2.

Despite its relatively small size, the terrain elevationwithin the catchment

varies significantly. The river Con begins at Monte Xiabre (≈650 m asl)

and discharges into the sea after crossing the town of Vilagarcia de

Arousa. The slopes within the catchment vary from 0.25 m/m near the

summit of Monte Xiabre to 0.05 m/m near the catchment outlet.

With a length of 9.6 km, the river Con is the main watercourse

along the Con catchment, with two ephemerals discharging to the

Con near the town of Vilagarcia. Around two thirds of the water-

course has slopes between 0.01 and 0.03 m/m, whereas the remaining

length has a slope of approximately 0.05 m/m. The width of the river
study to estimate the uncertainty on the rainfall fields; and B, detail of
he rainfall predictions and the discharge gauge stations



increases progressively from 0.5 m at the headwater of the river to

approximately 3 m at the river discharge.
2.2 | Climate and rainfall

The Con catchment is located in the path of low pressure fronts

approaching from the Atlantic Ocean. These fronts are generated at

the northern polar regions and are displaced towards the east by the

prevailing winds, which dominate at these latitudes. The fronts arriv-

ing at the coastline are uplifted due to the sharp topography of the

coastal regions. This generates adverse weather events with intense

rainfalls characterized by a high spatial and temporal variability

(Cabalar‐Fuentes, 2005). This behaviour is also observed in other

regions, such as the U.S. Pacific Coast, given the similar latitude and

orography (Eiras‐Barca, Brands, & Miguez‐Macho, 2016).

In order to monitor the highly variable rainfall, a dense meteorolog-

ical network is in place, managed by the regional weather agency

MeteoGalicia. The mean annual rainfall registered by the meteorologi-

cal stations closest to the catchment is approximately 1,300 mm, very

similar to themean value of the region (1,280mm;MeteoGalicia, 2017).
TABLE 1 Characteristics of the analysed rain events. Imax and σI
correspond to the maximum rainfall intensity and the rainfall intensity
standard deviation registered at rain gauge RG3 using an aggregation
time step of 30 min

Event
Duration

(hr)
Imax,30min

(mm/hr)
σI

(mm/hr)
Total rainfall
depth (mm)

E1 23 5.00 1.11 58.20

E2 5 5.20 1.60 17.00
2.3 | Geology, soil properties, and land use

Three main land uses within the catchment (Figure 1) were identified

from the Corine Land Cover raster, provided by the Land Monitoring

Core Service of Copernicus. Forest covers approximately 55% of the

catchment. These include mainly broad‐leaved species, with only a

small part (<10% of the total forest surface) of coniferous species.

Agricultural land represents 30% of the catchment surface, mainly

corn fields with very irregular cultivation patterns. Discontinuous

urban fabric represents the remaining 15% of the catchment surface.

Geological data of the catchment was obtained from the GEODE car-

tographical series, produced by the Spanish National Mining and

Geological Institute, whereas soil‐related information was obtained from

the soil property cartography produced by the University of Santiago

(http://rgis.cesga.es/index.html). The soil of the Con catchment is

composed of fractured granite, which provides a relatively permeable sub-

strate. The soil density is around 0.75 g/cm3 in the forest areas and close

to 1 g/cm3 in the urban and agricultural lands. Soil porosity is relatively uni-

form across thewhole catchment, with values at around 60%. Forest lands

are mainly composed of sand (70%) with small amounts of silt (10%) and

clay (20%). Comparedwith the forest, agricultural, and urban lands present

a lower percentage of sand (50%), a similar content of clay (20%), and a

higher silt percentage (30%). Following the United States Department of

Agriculture (USDA) texture classification, forest lands correspond to sandy

loam soil, whereas agricultural and urban soils correspond to loam soils.
E3 5 5.20 1.85 16.40

E4 21 8.80 1.77 53.60

E5 11 4.00 1.08 23.60

E6 7 14.00 3.70 24.40

E7 14 3.40 0.76 15.60

E8 11 15.80 3.94 33.40

E9 14 15.80 3.76 33.40

E10 16 7.80 2.28 33.00
2.4 | Rainfall and discharge data

Seventeen tipping‐bucket stations operated by MeteoGalicia were

identified in a radius of 50 km around the Con catchment (Figure 1).

Rain data from these stations were used to estimate the spatial and

temporal distribution of rainfall during 10 storm events registered over

the years 2015 and 2016 and to quantify rainfall uncertainty as
described in Section 3.2. The characteristics of the rain events are

detailed in Table 1. The measuring accuracy of the pluviometers is

0.2 mm, and the time resolution of the observed data is 10 min.

Despite the fact that MeteoGalicia operates a meteorological radar,

its data were not considered in the present study because they were

unavailable for most of the analysed rain events.

In order to validate the predictions obtained from the

MeteoGalicia network, three additional pluviometers were installed

in the Con catchment during this study, at locations RG1, RG2, and

RG3 (Figure 1). The elevations of these pluviometers are 150, 30,

and 5 m asl, respectively. These rain gauges have the same measuring

and time resolutions as the ones operated by MeteoGalicia.

As noted by several authors (Ciach, 2003; Molini et al., 2005;

Villarini, Mandapaka, Krajewski, & Moore, 2008), the accuracy of the

tipping‐bucket rain gauges increases with the accumulation of time,

and the use of these devices for temporal scales lower than 10 min

is usually inappropriate (Habib, Krajewski, & Kruger, 2001). For this

reason the rainfall depths measured with a 10‐min resolution were

aggregated to a 30‐min interval.

Discharges at the catchment outlet were used to calibrate the

hydrological models and to validate the predictions of these. A pres-

sure gauge that monitors the water level was installed 1.2 km

upstream the discharge of the Con river into the sea. This location

prevents the measured levels being conditioned by the tidal level.

The drainage surface at the pressure gauge represents approximately

95% of the catchment surface. The pressure gauge has an accuracy

of ±0.1% field scale, a measuring range of 0–2 m, and a sampling

frequency of 10 min. Water depths were converted to discharge using

a rating curve, which was previously calibrated.
3 | METHODOLOGY

3.1 | Workflow and general description of the
methodology

In order to analyse the effect of rainfall uncertainty on the perfor-

mance of physically based rainfall–runoff models, the first step was

http://rgis.cesga.es/index.html


to characterize the uncertainty of the estimated rainfall fields during a

series of storm events (Section 3.2). Once the rainfall had been charac-

terized, fully distributed and a semidistributed hydrological models of

the catchment were made (Sections 3.3 and 3.4). Both hydrological

models were calibrated against the river discharge observations at

the catchment outlet, using the estimated rainfall fields as input data

(Section 3.5). A sensitivity analysis was also performed, in order to bet-

ter understand the effect of rainfall uncertainty on model calibration

(Section 3.6). Finally, the performance of the hydrological models

was analysed by comparing the model predictions with the observed

hydrographs at the catchment outlet (Section 3.7).
3.2 | Rainfall estimation and uncertainty
quantification

Rain data from the MeteoGalicia meteorological stations referred in

Section 2.4 was used to interpolate the spatial distribution of rainfall

over the Con catchment during the rain events detailed in Table 1.

The rainfall fields were interpolated with a spatial and temporal reso-

lution of 250 m and 30 min, respectively. The interpolation was done

with the ordinary kriging method, which computes the rainfall depth at

any location as a weighted average of the rainfall depths observed at

the pluviometers. The weight of each pluviometer is obtained from a

variogram function. The variogram is computed for each individual

rainfall event from the accumulated rainfall depths during the whole

event observed at all the available rain gauges (Delrieu et al., 2014).

The uncertainty of the interpolated rainfall fields was quantified

with the conditional simulation method proposed by Lebel, Bastin,

Obled, and Creutin (1987) and modified by Vischel et al. (2009). This

technique consists of generating multiple error fields for an observed

rain event. Here, we have generated five random error fields for each

time step of each rain event. A more statistical representation of the

uncertainty would be obtained if more random fields were generated,

but the computational burden of the simulations performed by the

hydrological model made this unfeasible.

The accuracy of the rainfall interpolations and the uncertainty

quantification performed following the described procedure was eval-

uated with the observed rainfall data at the three pluviometers

installed within the catchment (RG1, RG2, and RG3 in Figure 1).
3.3 | Hydrological models

Two physically based hydrological models were used to compute the

rainfall–runoff transformation and the flow routing in the selected

storm events: a fully distributed model and a semidistributed model.
3.3.1 | Fully distributed hydrological model

The distributed hydrological model used in this paper is based in the

overland flow model Iber (Bladé et al., 2014; García‐Feal et al.,

2018), which solves the 2D shallow water equations, coupled to a

groundwater flow model, which solves the 2D Boussinesq equations

(Cea et al., 2015). The model has been validated in previous studies

under conditions of overland flow including rainfall–runoff
transformation at different spatial scales (Cea & Bladé, 2015; Cea,

Legout, Darboux, Esteves, & Nord, 2014).

The distributed model discretizes the whole catchment in rela-

tively small cells. In this case, the catchment was discretized in

19,321 triangular elements, with sizes ranging from 15 m in the main

stream network to 100 m in the hillslopes. The elevation of each ele-

ment was interpolated from a 5‐m DEM provided by the Spanish

National Geographical Institute.

The soil properties and land uses (surface roughness, permeabil-

ity, and porosity) and its hydrological state (water depth, rain

intensity, and infiltration rate) vary from one cell to another. The land

use assigned to each cell was obtained from the 100‐m resolution

raster of the Corine Land Cover raster, provided by the Land

Monitoring Core Service of Copernicus. In the simulations performed

in this study, evapotransporation losses have not been taken into

account, because their impact in short and intense storm events is

low. Infiltration losses were estimated using a constant potential

infiltration rate. Although this simplification ignores the temporal

variation of the potential infiltration rate, it can give an acceptable

approximation of the average infiltration during short rain events.

This approach requires fewer input parameters than other formula-

tions, which avoids overparameterization. Three types of soils with

different infiltration parameters are considered in the model (agricul-

tural, forest, or sparse urban).

3.3.2 | Semidistributed hydrological model

The semidistributed model used in this study is version 4.2.1 of HEC‐

HMS (Scharffenberg & Fleming, 2006). The model lumps the hydrolog-

ical variables and physical parameters of the catchment into subbasins

with spatially homogeneous properties. Rainfall–runoff is computed

within each subbasin, and the resulting discharges are routed through

the river network to the catchment outlet.

The HEC‐GeoHMS software (Fleming & Doan, 2009) was used to

discretize the catchment in subbasins. Each subbasin was defined in

such a way that it comprises only one of the three land uses (agricul-

tural, forest, or sparse urban). This resulted in 16 subbasins with sizes

ranging from 0.2 to 5 km2. The average terrain elevation and slope of

each subbasin was obtained from the same DEM used in the distrib-

uted model. In all the subbasins, rainfall–runoff transformation was

computed with the Soil Conservation Service (SCS) Unit hydrograph

method. The concentration time of each subbasin (Table 2) was deter-

mined from theTR55 equations (USDA, 1986). Infiltration losses were

evaluated using a constant infiltration rate, and the baseflow was com-

puted using a nonlinear Boussinesq model. Flow routing along the

river network was computed using the kinematic wave equation.

3.4 | Models parameters and calibration

Six input parameters were considered for both hydrological models: the

hydraulic conductivity and porosity of the soil, the potential infiltration

rate of each kind of land use (urban, agricultural, and forest), and the

river Manning coefficient (Table 3). The hydraulic conductivity and

the porosity of the soil were assumed to be homogeneous in the whole

catchment. The potential infiltration rates vary from one subbasin to



TABLE 3 Hydrological model input parameters and corresponding
ranges of variation considered in their calibration

Symbol Parameter Range Units

k Hydraulic conductivity 0.05–0.20 m/hr

P Porosity 0.2–0.6 %

nR River Manning coefficient 0.02–0.4 s m‐1/3

IU Infiltration rate sparse urban soil 0–10 mm/hr

IA Infiltration rate agricultural soil 2–20 mm/hr

IF Infiltration rate forest soil 2–30 mm/hr
another depending on the land use of these. The river's Manning

coefficient is the same for the whole stream network. It is important

to note here that both models use the same six input parameters, even

if their mathematical structure and equations are different.

The parameters of the hydrological models shown inTable 3 were

calibrated within the well‐established GLUE framework (Beven &

Binley, 1992). The GLUE methodology has been successfully applied

to the calibration of hydrological models, including semi and fully dis-

tributed models, such as the ones used in this paper (Blasone et al.,

2008; Shen et al., 2012; Cea, Legout, Grangeon, & Nord, 2016; Fraga

et al., 2016; Lehbab‐Boukezzi, Boukezzi, & Errih, 2016).

The parameters shown in Table 3 were sampled using the Latin

hypercube sampling (LHS) technique. This technique has been suc-

cessfully used for model calibration in many hydrological studies

(Zhao, Chen, Wang, & Tong, 2012; Kim et al., 2015; Fraga et al.,

2016). The ranges of variation of the three potential infiltration rates,

the soil porosity, and the river's Manning coefficient, were estimated

from the HEC‐HMS reference manual (Scharffenberg & Fleming,

2006). The range of variation of the hydraulic conductivity of the soil

was defined from the values recommended by the U.S. Soil Conserva-

tion Service (USDA, 1986).

Regarding the Manning coefficient of the hillslopes, values of

0.15, 0.25, and 0.55 s m‐1/3 were imposed on the mesh cells (in the

distributed model) and subbasins (in the semidistributed model) with

urban, agricultural, and forest land uses, respectively. These values

were selected from the ones recommended by the U.S. Soil Conserva-

tion Service (USDA, 1986) for sheet flow over each type of soil.

In order to limit the computational burden of the simulations, 200

parameter sets were sampled with the LHS technique. For each storm

event, the hydrological models were run with the 200 parameter sets,

and the performance of each set was evaluated using the following

likelihood function:

wj ¼ Σi¼N
i¼1wij

N
wij ¼ 1 −

q*1 − qij
σi

If q*1 − qij
�
�

�
� < σi wij

¼ 0 If q*1 − qij
�
�

�
� > σi; (1)
TABLE 2 Characteristics of the subbasins of the semidistributed
model

Subbasin Area (m2) Slope (%) Land use Tc (min)

1 105,672.603 26.04 Forest 60.43

2 5,701,168.78 25.80 Agricultural 56.04

3 1,132,333.93 26.10 Forest 31.38

4 251,642.169 19.86 Sparse urban 31.55

5 1,756,421.65 18.50 Forest 40.65

6 221,289.645 19.00 Agricultural 34.06

7 133,141.264 14.31 Agricultural 16.24

8 766,821.151 14.03 Forest 53.47

9 835,881.921 14.03 Agricultural 48.80

10 783,708.735 7.79 Sparse urban 38.65

11 166,245.259 18.89 Sparse urban 46.79

12 1,569,502.37 16.00 Forest 55.03

13 455,269.442 18.50 Agricultural 49.06

14 362,468.888 8.56 Sparse urban 27.29

15 2,000,995.19 13.70 Forest 107.92

16 3,357,437 13.60 Agricultural 100.68
where wj is the likelihood of the jth parameter set and qi
* and qij are

respectively the observed and computed discharges of the jth simula-

tion at the ith time step, N is the number of time steps over the rain

event, and σi is the expected standard error of the observed discharge

at each time step. The expected error of the observed discharge (σi)

was assumed as ±10% of the average discharge. This value is within

the range proposed by Pelletier (1988) and McMillan et al. (2012) for

discharges obtained from stage measurements combined with rating

curves. Equation 1 is similar to the performance measure described

in Pappenberger and Beven (2004), which also considers the expected

observation error in the definition of likelihoods.

Equation 1 gives the likelihood of each parameter set for each

storm event. The global likelihood of each parameter set was obtained

by multiplying these event‐based likelihoods. By multiplying the

likelihoods obtained for all the events rather than averaging them,

the weight of the parameter sets with a good performance in all the

events is increased. Due to the limited number of simulations

performed, this constrained by the computational burden of the

models, no likelihood threshold was defined. All the simulations were

considered behavioural and therefore taken into account during both

the calibration and the validation of the hydrological models.

At a first stage, the hydrological models were calibrated without

taking into account the uncertainty of the rainfall estimations. The

rainfall fields interpolated using the ordinary kriging technique were

used as input of the hydrological models. At a second stage, the cali-

bration was repeated including the uncertainty of the rainfall estima-

tions, computed with the conditional simulation method. As noted in

previous sections, five equiprobable rain events were used as model

inputs. This represents, for each of the two hydrological models,

1,200 simulations per event: 200 simulations with each parameter

set for each of the five equiprobable rainfall fields and another 200

simulations using the kriged rainfall fields without uncertainty.
3.5 | Sensitivity analysis

The sensitivity of the output of the models to their input parameters

was evaluated using the variance‐based Sobol sensitivity indices

(Saltelli et al., 2008). Combined with nonparametric metamodels, Sobol

sensitivity indices can give a good approximation of model sensitivity

even from a very limited number of simulations, and are therefore espe-

cially suitable for computationally demanding models (Cea, Bermúdez,

& Puertas, 2011; Saltelli et al., 2008; Sobol, 1998). In particular, we

analysed the sensitivity to the input parameters of the relative mean



FIGURE 2 Predicted and measured hyetographs at the rain gauge RG3
square error (RMSE), which is a performance measure widely used in

hydrology (Legates &McCabe, 1999). The sensitivity indices were com-

puted independently for each rain event from the results of the simula-

tions performed using both the kriged rainfall fields without considering

uncertainty and the rainfall fields obtained with the conditional simula-

tion technique to include uncertainty effects.
TABLE 4 Percentage of experimental rain data within the 95%
confidence interval and confidence interval amplitude at each rain
3.6 | Model validation

A cross‐validation procedure was followed to validate the hydrological

models. The input parameters were calibrated using nine rain events,

and the remaining event was used to validate the model predictions.
FIGURE 3 Mean and maximum uncertainty amplitudes of the
rainfall predictions at the rain gauge RG3
This was repeated 10 times, discarding one different event at each

time. This procedure reduces the effect of the selected calibration

data on the validation of the model (Zheng et al., 2018). Uncertainty

bounds on the predicted hydrographs were defined from the global

likelihood of each parameter set obtained in the GLUE calibration. In

order to analyse the effect of rainfall uncertainty on model perfor-

mance, the validation was done with and without considering the

uncertainty in the rainfall fields.
gauge

Event

Experimental rain data within 95%
confidence interval (%)

Mean 95%
confidence
interval

amplitude (mm/hr)

RG1 RG2 RG3 RG1 RG2 RG3

E1 65* n.a 67 0.89 1.03 1.03

E2 80* 80* 80* 1.74 2.33 2.38

E3 30* 30 50 1.51 2.09 1.95

E4 57* 69* 69* 1.86 2.63 2.09

E5 55* 64* 68* 0.90 1.36 1.21

E6 57* 29 43 2.67 2.45 2.29

E7 82* 64* 73* 1.14 1.24 1.25

E8 44* 38* 44 2.57 2.58 2.13

E9 11 6 17 2.61 1.94 2.11

E10 na 43 64 1.77 2.33 1.92

*Indicates that the measured peak rain intensity lies within the confidence
interval.



FIGURE 4 Total sensitivity indices of the
RMSE to the hydraulic conductivity (k),
porosity (P), manning coefficient of the river
(nR) and infiltration rates of the sparse urban
(IU), agricultural (IA), and forest (IF) soils. Dots
indicate the median values and the bars
extend to the 95% confidence interval

FIGURE 5 Probability distributions of the infiltration rates. Light grey bars show the result of the calibration performed without taking into
account rain uncertainty. Dark grey bars correspond to the calibrations performed including the rainfall uncertainty

FIGURE 6 Probability distributions of the
river manning coefficient. Light grey bars
show the result of the calibration performed
without taking into account rain uncertainty.
Dark grey bars correspond to the calibrations
performed including the rainfall uncertainty



TABLE 5 Percentage of experimental discharge data within the 95%
confidence interval computed with (RU) and without (NRU) rainfall
uncertainties

Event

Percentage of experimental discharge data
within uncertainty bounds (%)

Distributed model Semidistributed model

RU NRU RU NRU

E1 45* 67* 15 88*

E2 49* 51* 30 77*

E3 36 38 15 10

E4 46 68* 31* 77*

E5 56* 62* 51* 77*

E6 15* 25 15 22*

E7 35 49 63 78*

E8 57* 51* 39* 58*

E9 36 73* 68* 76*

E10 41 48 48 53

*Indicates that the measured peak discharge lies within the confidence
interval.

FIGURE 7 Mean bound amplitude (MBA) of the 95% confidence
interval of the rainfall and discharge predictions
4 | RESULTS

4.1 | Rainfall interpolation and uncertainty
quantification

The comparison between the interpolated and measured rainfall at the

validation rain gauge RG3 shows significant differences between rain

events (Figure 2). In some events (i.e., E1 and E4), the hyetograph

kriged from the measurements of the nearby rain gauges correctly

reproduces the observed rainfall. However, in other events (i.e., E10),

the shape and peak of the observed hyetographs are not correctly

reproduced by the kriged rainfall.

The uncertainty of the interpolated rainfall increases with rain

intensity. Both the mean and the maximum bound amplitudes are

higher in the events in which the peak rain intensity is highest

(Figure 3). The mean amplitude of the uncertainty bounds varies

between 15% and 30% of the maximum intensity observed during
TABLE 6 Mean predicted discharges at the catchment outlet computed
correspond to the amplitude of the 95% confidence interval

Event

Mean predicted peak disch

Distributed model

RU NRU

E1 2.44 (0.41) 1.9 (0.92)

E2 1.87 (0.77) 1.37 (0.74)

E3 0.53 (0.29) 0.41 (0.35)

E4 3.72 (3.44) 1.72 (1.03)

E5 0.69 (0.21) 0.71 (0.43)

E6 1.58 (2.69) 1.21 (2.58)

E7 0.37 (0.13) 0.31 (0.17)

E8 3.15 (4.03) 1.58 (1.00)

E9 6.78 (1.76) 6.94 (2.46)

E10 2.37 (0.53) 2.04 (0.70)
the rain event. Within each event, the performance observed in the

three validation gauges (RG1, RG2, and RG3) is similar, which suggests

that the performance of the methodology used to estimate rainfall

uncertainty is similar in the whole catchment (Table 4). This conclusion

might be expected, given the relatively small size of the catchment.

The observed rain data lying within the uncertainty bounds

exceeds 50% in most of the events. The peak rainfall intensity is in

general correctly reproduced. In all the storm events except two

(Events E9 and E10), the peak rain intensity measured at least at one

rain gauge lies within the uncertainty bounds.
4.2 | Sensitivity analysis and model calibration

The total sensitivity indices indicate that the potential infiltration rates

have a major impact on the output of both the fully distributed and

the semidistributed models (Figure 4). The almost null sensitivities of

model outputs to the hydraulic conductivity and the porosity of the

soil suggest that the groundwater flow has a negligible effect on

the outlet hydrograph. This means that in the study, catchment the

groundwater flow parameters might take any value within the consid-

ered ranges of variation without affecting the predicted discharges.
with (RU) and without (NRU) rainfall uncertainties. Results in brackets

arge (m3/s)

Measured peak
discharge (m3/s)

Semidistributed model

RU NRU

1.31 (0.14) 1.35 (0.95) 2.08

1.24 (0.31) 1.29 (1.27) 1.80

0.43 (0.21) 0.174 (0.35) 1.10

1.79 (4.51) 1.96 (2.20) 2.34

0.62 (0.23) 0.76 (0.68) 0.79

1.07 (3.50) 1.13 (4.1) 2.47

0.34 (0.17) 0.38 (0.19) 0.60

1.69 (3.76) 1.62 (2.38) 2.02

3.3 (1.87) 4.85 (3.21) 5.89

1.8 (0.41) 1.88 (0.77) 3.19



The probability distributions of the calibrated parameters are

presented in Figure 5. In both models, the parameter distributions

concentrate on narrower ranges when rainfall uncertainty is consid-

ered in the calibration. The cumulative distributions of the calibrated

parameters present significant differences between the two models,

especially the potential infiltration rates of the agricultural and forest

soils, and the Manning coefficient of the river (Figure 6). For these

parameters, the probability distributions for each hydrological model

concentrate at opposite ends of the sampling range. This fact,

together with the differences observed in the sensitivities of each
FIGURE 8 Radar measured rain intensities during the peak of the hyeto

FIGURE 9 Scatter plot of the RMSE for each combination of infiltration
the averaged values over all the events
model, suggests a limited transferability of calibration results between

hydrological models with different spatial structure.
4.3 | Model validation

The performance of the two hydrological models at the validation

stage is analogous. The experimental data coverage and the peak

discharges obtained with both models are very similar in most of the

events (Table 5 and Table 6). The observed discharge data within the
graphs of the rain events E1 (left) and E10 (right)

rates, computed using the kriged rainfall fields. Results correspond to



95% confidence bounds exceeds 40% in most cases, these being data

coverage values common in the validation of hydrological models

within the GLUE methodology (Vrugt et al., 2008).

The uncertainty of the discharges predicted in both models is very

similar when the same rainfall fields are used as input data (Figure 7). A

higher uncertainty of rainfall input results in wider uncertainty bounds

on the discharges predicted by both hydrological models. Therefore,

in the events in which rainfall data presents highest uncertainties

(i.e., event E8 in Table 4), the uncertainty bounds of the predicted

discharges are substantially wider.
5 | DISCUSSION

5.1 | Rainfall interpolation and uncertainty
quantification

The accuracy of the rainfall predictions obtained with the methodol-

ogy described in Section 3 varies depending on the type of storm

event. In the events that originate from an extended weather system,

the spatial correlation of the rainfall is high, and an accurate estimation

of the rainfall over the study catchment can be obtained from the

nearby rain gauges. Because of this, the hyetographs observed at the

validation rain gauges (RG1, RG2, and RG3) are correctly predicted

during these events (i.e., E1 and E7). On the contrary, when the

weather system is patchy across the study area, as is the case in

events E9 and E10 (Figure 8), the spatial correlation of rainfall

decreases, and the nearby rain gauges are not capable of accurately
FIGURE 10 Mean bound amplitude (MBA) of the 95% confidence interv
capturing the spatial and temporal evolution of the storm. As a result,

the interpolated rainfall estimates are worse and do not accurately

reproduce the measured values at the validation rain gauges.

Regardless of the spatial structure of the rainfall, the uncertainty

of the interpolated fields increases with the rain intensity. This is

because, in order to quantify rainfall uncertainty, the conditional sim-

ulation technique generates Gaussian error fields that are scaled with

the rain intensity. Therefore, higher rain intensities will always result in

higher prediction uncertainties. However, these higher rainfall uncer-

tainties do not ensure that the rainfall observed at the validation rain

gauges is properly reproduced (Table 4), because it depends whether

the spatial structure of the rain event is properly captured or not.

Thus, in order to improve rainfall characterization, and consequently

discharge predictions, efforts should focus on accurately capturing

the weather front evolution, using tools such as meteorological radar

and satellite precipitation data. This is especially relevant in catch-

ments located in climatic areas like the ones under study here (those

like the Atlantic and U.S. Pacific coasts, for instance), in which the

storm events associated with the uplifting of low pressure fronts can

result in rainfall with a high spatial and temporal variability.
5.2 | Effects of rain uncertainty on parameter
sensitivity and model calibration

The sensitivities and the cumulative distributions of the calibrated

input parameters vary significantly between the fully distributed and

semidistributed hydrological models. This means that model structure
al of the rainfall and discharge predictions



has an effect on the value of the input parameters, even though both

models are physically based and use the same input parameters. This,

indeed, has been observed elsewhere (Alvarez‐Garreton et al., 2015).

However, in both hydrological models the uncertainty of rainfall

data has the same effect on the calibration results. When rainfall

uncertainty is included in the calibration process, the cumulative

distribution of the calibrated input parameters concentrate on

narrower ranges.

To understand the reason for this behaviour, the result of the cal-

ibration process when the rain uncertainty is not taken into account

should first be analysed. Figure 9 represents the RMSE of the simula-

tions performed with different combinations of input parameters,

when rainfall uncertainty is not considered in the simulations. The
FIGURE 11 Predicted and measured hydrographs at the catchment outlet
the rain fields including rainfall uncertainties (U) or without including the p
results show that, in both hydrological models, the performance of a

specific simulation is determined mostly by two infiltration rates. In

the semidistributed model, the infiltration rates that control model

performance are those of the agricultural and forest land uses,

whereas in the distributed model the most relevant infiltration rates

are those of the urban and agricultural soils. This strong equifinality

implies that similar model performance can be expected for different

combinations of two input parameters. This fact is also reflected in

the sensitivities of the two hydrological models.

When rainfall uncertainty is considered in the calibration, the per-

formance of both models is again determined by the same parameters

(Figure 10), but in this case, the ranges of infiltration rates that achieve

the best performances are much narrower. This is because when
determined using distributed (D) and semidistributed (SD) models with
redicted rain uncertainty (NU)



rainfall uncertainty is not considered, the input parameters are the

only source of uncertainty, and thus they must account for the whole

uncertainty in the calibration process. In both models, the inclusion of

rainfall uncertainty decreases the equifinality on the calibration

and results in cumulative distributions of the input parameters

concentrated in narrower ranges.
5.3 | Effects of model structure on the calibration
results

As shown in Figure 9 and Figure 10, the parameters that explain the

performance of each hydrological model are different for the

semidistributed and fully distributed models. Because the spatial dis-

tribution of all the land uses is the same in both models, these differ-

ences in sensitivity suggest that the role of each land use on the

hydrological response of the catchment is different depending on

the model structure.

The low sensitivity of the output of the fully distributed model

to the Manning coefficient of the river is probably explained by the

fact that the inertial terms are more relevant than the frictional

terms when the flow propagates along the river network. Because

the semidistributed model propagates the flow along the river using

the kinematic wave equation, which ignores inertia, the friction

terms have to artificially balance the inertial forces. This leads to

roughness values of the semidistributed model, which go far

beyond the ones recommended in hydraulic reference manuals

(Figure 6).
5.4 | Effects of rainfall data on model validation

The performance of the two hydrological models varies substantially

from one event to another during the validation stage. In the events

in which the kriged hyetographs capture the evolution of the weather

front, the discharges computed by both hydrological models correctly

reproduce the shape of the observed hydrographs (Events E1 and E5

in Figure 11). By contrast, in the events in which the observed rainfall

is not captured properly, the predictions of the hydrological models

deteriorate (Event E10 in Figure 11).

In both models, the uncertainty bounds on the discharge

predictions decrease when rainfall uncertainty is considered in the

calibration, because the equifinality on the input parameters is

reduced. Very similar uncertainty bounds on the predicted discharges

are obtained with both the semidistributed and the fully distributed

models (Figure 7). This implies that a similar propagation of

rainfall uncertainty is given by both models, regardless of their spatial

discretization.
6 | CONCLUSIONS

A study on the effect of rainfall uncertainty on the performance of

physically based fully and semidistributed hydrological models has

been presented. It was conducted in a small catchment subject to

intense rainfalls with a high spatial and temporal variability.
Results show that rainfall data has a very relevant impact on the

accuracy of the discharge predictions performed by both hydrological

models. When the estimations of the spatial and temporal evolution of

the rainfall fields in the whole catchment are accurate, the discharges

computed by both models correctly reproduce the observed

hydrographs, and most of the observed discharge data lies within

the uncertainty bounds, regardless of whether rainfall uncertainty, is

included in the computations or not. By contrast, when the estimated

rainfall fields do not correctly capture the peak rain intensity, the

computed hydrographs do not reproduce the measured hydrographs.

In these latter cases, including the uncertainty of rainfall data has a

very limited effect towards improving the accuracy of the discharge

predictions, even if rainfall uncertainty is properly characterized.

Very similar uncertainties on the discharge predictions are

observed in both hydrological models, which suggests that the

uncertainty on discharge predictions is mainly conditioned by the

uncertainty of input rainfall data. If rainfall uncertainty is included in

model calibration, the calibrated distributions of the input parameters

concentrate on narrower ranges, and the equifinality of the input

parameters is reduced. This decrease in parameter equifinality also

results in narrower confidence bounds of the discharge predictions.

The results presented here underline the importance of improving

the accuracy of rainfall data, rather than increasing model complexity,

towards effecting positive refinements in the discharge predictions of

semidistributed and fully distributed hydrological models.
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