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NUMERICAL ANALYSIS OF A SECOND-ORDER PURE
LAGRANGE-GALERKIN METHOD FOR

CONVECTION-DIFFUSION PROBLEMS. PART I: TIME
DISCRETIZATION∗

MARTA BENÍTEZ† AND ALFREDO BERMÚDEZ†

Abstract. We propose and analyze a second order pure Lagrangian method for variable co-
efficient convection-(possibly degenerate) diffusion equations with mixed Dirichlet-Robin boundary
conditions. First, the method is rigorously introduced for exact and approximate characteristics.
Next, l∞(H1) stability is proved and l∞(H1) error estimates of order O(∆t2) are obtained. More-
over, l∞(L2) stability and l∞(L2) error estimates of order O(∆t2) with constants bounded in the
hyperbolic limit are shown. For the particular case of Dirichlet boundary conditions, diffusion tensor
A = ϵI and right-hand side f = 0, the l∞(H1) stability estimate is independent of ϵ. Moreover, for
incompressible flows the constants in the stability inequalities are independent of the final time. In a
second part of this work, the pure Lagrangian scheme will be combined with Galerkin discretization
using finite elements spaces and numerical examples will be presented.

Key words. convection-diffusion equation, pure Lagrangian method, characteristics method,
stability, error estimates, second order schemes

AMS subject classifications. 65M12, 65M15, 65M25, 65M60

1. Introduction. The main goal of the present paper is to introduce and ana-
lyze a second order pure Lagrangian method for the numerical solution of convection-
diffusion problems with possibly degenerate diffusion. Computing the solutions of
these problems, especially in the convection dominated case, is an important and
challenging problem that requires development of reliable and accurate numerical
methods.

Linear convection-diffusion equations model a variety of important problems from
different fields of engineering and applied sciences, such as thermodynamics, fluid me-
chanics, and finance (see for instance [21]). In many cases the diffusive term is much
smaller than the convective one, giving rise to the so-called convection dominated
problems (see [18]). Furthermore, in some cases the diffusive term becomes degener-
ate, as in some financial models (see, for instance, [27]).

This paper concerns the numerical solution of convection-diffusion problems with
degenerate diffusion. For this kind of problems, methods of characteristics for time
discretization are extensively used (see the review paper [18]). These methods are
based on time discretization of the material time derivative and were introduced in
the beginning of the eighties of the last century combined with finite-differences or
finite elements for space discretization. When these methods are applied to the formu-
lation of the problem in Lagrangian coordinates (respectively, Eulerian coordinates)
they are called pure Lagrangian methods (respectively, semi-Lagrangian methods).
The characteristics method has been mathematically analyzed and applied to differ-
ent problems by several authors, primarily the semi-Lagrangian methods. In par-
ticular, the (classical) semi-Lagrangian method is first order accurate in time. It
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2 M. BENÍTEZ AND A. BERMÚDEZ

has been applied to time dependent convection-diffusion equations combined with fi-
nite elements ([17], [22]), finite differences ([17]), etc. Its adaptation to steady state
convection-diffusion equations has been developed in [9] and, more recently, the com-
bination of the classical first order scheme with discontinuous Galerkin methods has
been used to solve first-order hyperbolic equations in [3], [2] and [4]. Higher or-
der characteristics methods can be obtained by using higher order schemes for the
discretization of the material time derivative. In [23] multistep Lagrange-Galerkin
methods for convection-diffusion problems are analyzed. In [8] these kind of meth-
ods are applied to solve natural convection problems. In [12] and [13] multistep
methods for approximating the material time derivative, combined with either mixed
finite element or spectral methods, are studied to solve incompressible Navier-Stokes
equations. Stability is proved and optimal error estimates for the fully discretized
problem are obtained. In [26] a second order characteristics method for solving con-
stant coefficient convection-diffusion equations with Dirichlet boundary conditions is
studied. The Crank-Nicholson discretization has been used to approximate the ma-
terial time derivative. For a divergence-free velocity field vanishing on the boundary
and a smooth enough solution, stability and error estimates are stated (see also [10]
and [11] for further analysis). In [16] semi-Lagrangian and pure Lagrangian meth-
ods are proposed and analyzed for convection-diffusion equation. Error estimates for
a Galerkin discretization of a pure Lagrangian formulation and for a discontinuous
Galerkin discretization of a semi-Lagrangian formulation are obtained. The estimates
are written in terms of the projections constructed in [14] and [15].
In the present paper, a pure Lagrangian formulation is used for a more general prob-
lem. Specifically, we consider a (possibly degenerate) variable coefficient diffusive term
instead of the simpler Laplacian, general mixed Dirichlet-Robin boundary conditions
and a time dependent domain. Moreover, we analyze a scheme with approximate
characteristic curves.

The mathematical formalism of continuum mechanics (see for instance [19]) is
used to introduce the schemes and to analyze the error. In most cases the exact
characteristics curves cannot be determined analytically, so our analysis include, as a
novelty with respect to [16], the case where the characteristics curves are approximated
using a second order Runge-Kutta scheme. A proof of l∞(L2) stability inequality is
developed which can be appropriately used to obtain l∞(L2) error estimates of order
O(∆t2) between the solutions of the time semi-discretized problem and the continuous
one; these estimates are uniform in the hyperbolic limit. Moreover, for the particular
case of Dirichlet boundary conditions, diffusion tensor A = ϵI and right-hand side
f = 0, the l∞(H1) stability estimate is independent of ϵ (see Remark 4.6). Similar
stability and error estimates of order O(∆t2) are proved in the l∞(H1) norm. In gen-
eral, the constants involved in the stability inequalities depend on the size of the time
interval. However, if the flow is incompressible we get constants that are independent
of this size.

The paper is organized as follows. In Section 2 the convection-diffusion Cauchy
problem is stated in a time dependent bounded domain and some assumptions and
notations concerning motions and functional spaces are introduced. In Section 3,
the strong formulation of the convection-diffusion Cauchy problem is written in La-
grangian coordinates and the standard associated weak problem is obtained. In Sec-
tion 4, a second order time discretization scheme is proposed for both exact and second
order approximate characteristics. Next, under suitable hypotheses on the data, the
l∞(L2) and l∞(H1) stability results are proved for small enough time step. Finally,
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assuming higher regularity on the data, l∞(L2) and l∞(H1) error estimates of order
O(∆t2) for the solution of the time discretized problem are derived. In order to make
reading the article easier, some technical results have been included in appendix and
the main notations have been summarized in a table.

In a second part of this work (see [7]), a fully discretized pure Lagrange-Galerkin
scheme by using finite elements in space will be analyzed and numerical results will
be presented.

2. Statement of the problem. General assumptions and notations. Let
Ω be a bounded domain in Rd (d = 2, 3) with Lipschitz boundary Γ divided into
two parts: Γ = ΓD ∪ ΓR, with ΓD ∩ ΓR = ∅. Let T be a positive constant and
Xe : Ω × [0, T ] −→ Rd be a motion in the sense of Gurtin [19]. In particular, Xe ∈
C3(Ω× [0, T ]) and for each fixed t ∈ [0, T ], Xe(·, t) is a one-to-one function satisfying

detF (p, t) > 0 ∀p ∈ Ω,(2.1)

being F (·, t) the Jacobian tensor of the deformation Xe(·, t). We call Ωt = Xe(Ω, t),
Γt = Xe(Γ, t), Γ

D
t = Xe(Γ

D, t) y ΓR
t = Xe(Γ

R, t), for t ∈ [0, T ]. We assume that
Ω0 = Ω. Let us introduce the trajectory of the motion

T := {(x, t) : x ∈ Ωt, t ∈ [0, T ]},(2.2)

and the set

O :=
∪

t∈[0,T ]

Ωt.(2.3)

For each t, Xe(·, t) is a one-to-one mapping from Ω onto Ωt; hence it has an inverse

P (·, t) : Ωt −→ Ω,(2.4)

such that

Xe(P (x, t), t) = x, P (Xe(p, t), t) = p ∀(x, t) ∈ T ∀(p, t) ∈ Ω× [0, T ].(2.5)

The mapping P : T −→ Ω, so defined is called the reference map of motion Xe and
P ∈ C3(T ) (see [19] pp. 65 − 66). Let us recall that the spatial description of the
velocity v : T −→ Rd is defined by

v(x, t) := Ẋe(P (x, t), t) ∀(x, t) ∈ T .(2.6)

We denote by L the gradient of v with respect to the space variables.
In expressions involving gradients and time derivatives we use the notations given

in [19]. Moreover, fields defined in T are called spatial fields. If Ψ is a spatial field
we define its material description Ψm by

Ψm(p, t) := Ψ(Xe(p, t), t).(2.7)

Similar definition is used for functions, Ψ, defined in a subset of T or of O.
The objective of this paper is the numerical solution of the following initial-

boundary value problem.

(SP) STRONG PROBLEM. Find a function ϕ : T −→ R such that

ρ(x)
∂ϕ

∂t
(x, t) + ρ(x)v(x, t) · gradϕ(x, t)− div (A(x) gradϕ(x, t)) = f(x, t),(2.8)
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for x ∈ Ωt and t ∈ (0, T ), subject to the boundary conditions

ϕ(·, t) = ϕD(·, t) on ΓD
t ,(2.9)

αϕ(·, t) +A(·) gradϕ(·, t) · n(·, t) = g(·, t) on ΓR
t ,(2.10)

for t ∈ (0, T ), and the initial condition

ϕ(x, 0) = ϕ0(x) in Ω.(2.11)

In the above equations, A : O −→ Sym denotes the diffusion tensor field, where
Sym is the space of symmetric tensors in the d-dimensional space, ρ : O −→ R,
f : T −→ R, ϕ0 : Ω −→ R, ϕD(·, t) : ΓD

t −→ R and g(·, t) : ΓR
t −→ R, t ∈ (0, T ), are

given scalar functions, and n(·, t) is the outward unit normal vector to Γt.
In the following A denotes a bounded domain in Rd. Let us introduce the Lebesgue
spaces Lr(A) and the Sobolev spaces Wm,r(A) with the usual norms || · ||r,A and
|| · ||m,r,A, respectively, for r = 1, 2, . . . ,∞ and m an integer. For the particular case
r = 2, we endow space L2(A) with the usual inner product ⟨·, ·⟩A, which induces a
norm to be denoted by || · ||A (see [1] for details).

Moreover, we denote by H1
ΓD (A) the closed subspace of H1(A) defined by

H1
ΓD (A) :=

{
φ ∈ H1(A), φ|ΓD ≡ 0

}
,(2.12)

where ΓD is a part of the boundary of A of non-null measure.
For a Banach function space X and an integer m, space Cm([0, T ], X) will be

abbreviated as Cm(X) and endowed with norm

||φ||Cm(X) := max
t∈[0,T ]

{
max

j=0,...,m
||φ(j)(t)||X

}
.

In the above definitions, φ(j) denotes the j-th derivative of φ with respect to time.
Finally, vector-valued function spaces will be distinguished by bold fonts, namely
Lr(A), Wm,r(A) and Hm(A), and tensor-valued function spaces will be denoted by
Lr(A), Wm,r(A) and Hm(A). For the particular case m = 1 and r = ∞, we consider
the vector-valued space W1,∞(A) equipped with the following equivalent norm to the
usual one

||w||1,∞,A := max {||w||∞,A, || divw||∞,A, ||∇w||∞,A} ,(2.13)

being

||∇w||∞,A := ess sup
x∈A

||∇w(x)||2,(2.14)

where || · ||2 denotes the tensor norm subordinate to the Euclidean norm in Rd.
Corresponding to the semidiscretized scheme, we have to deal with sequences of

functions ψ̂ = {ψn}Nn=0. Thus, we will consider the spaces of sequences l∞(L2(A))
and l2(L2(A)) equipped with their respective usual norms:

∣∣∣∣∣∣ψ̂∣∣∣∣∣∣
l∞(L2(A))

:= max
0≤n≤N

||ψn||A ,
∣∣∣∣∣∣ψ̂∣∣∣∣∣∣

l2(L2(A))
:=

√√√√∆t

N∑
n=0

||ψn||2A.(2.15)
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Similar definitions are considered for functional spaces l∞(L2(ΓR)) and l2(L2(ΓR))
associated with the Robin boundary condition and for vector-valued function spaces
l∞(L2(A)) and l2(L2(A)).

Moreover, let us introduce the notations

Ŝ[ψ] := {ψn+1 + ψn}N−1
n=0 , R̂∆t[ψ] :=

{
ψn+1 − ψn

∆t

}N−1

n=0

.

Throughout this article some of the following assumptions will be made on the data
of the problem:

Hypothesis 1. There exists a parameter δ > 0, such that the velocity field v is
defined in T δ and v ∈ C1(T δ), where

T δ :=
∪

t∈[0,T ]

Ω
δ

t × {t}, being Ωδ
t :=

∪
x∈Ωt

B(x, δ).(2.16)

Moreover, some properties can be improved if we consider a motion satisfying the
following assumption (see, for instance, Appendix A):

Hypothesis 2. The motion Xe satisfies

Ωt = Ω Xe(p, t) = p ∀p ∈ Γ ∀t ∈ [0, T ].

In order to introduce approximations to the characteristic curves and gradient tensors
some additional assumptions are required.

Firstly, we introduce the following set

Oδ :=
∪

t∈[0,T ]

Ω
δ

t .(2.17)

Moreover, we define

T δ
ΓR :=

∪
t∈[0,T ]

G
δ

t × {t}, being Gδ
t =

∪
x∈ΓR

t

B(x, δ).(2.18)

Hypothesis 3. Function ρ is defined in Oδ and belongs to W 1,∞(Oδ), being Oδ

the set defined in (2.17). Moreover,
0 < γ ≤ ρ(x) a.e. x ∈ Oδ.
Let us denote ρ1,∞ = ||ρ||1,∞,Oδ .
Hypothesis 4. The diffusion tensor, A, is defined in Oδ and belongs to W1,∞(Oδ).

Moreover, A is symmetric and has the following form:

A =

(
An1 Θ
Θ Θ

)
,(2.19)

with An1 being a positive definite symmetric n1 × n1 tensor (n1 ≥ 1) and Θ an
appropriate zero tensor. Besides, there exists a strictly positive constant, Λ, which is
a uniform lower bound for the eigenvalues of An1 .

Remark 2.1. Notice that the diffusion tensor can be degenerate in some applica-
tions. This is the case, for instance, in some financial models where, nevertheless, the
diffusion tensor satisfies Hypothesis 4.

Hypothesis 5. Function f is defined in T δ and it is continuous with respect to the
time variable, in space L2.
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Hypothesis 6. Function g is defined in T δ
ΓR and it is continuous with respect to

the time variable, in space H1. Besides, coefficient α in boundary condition (2.10) is
strictly positive.

Let us denote by B the d× d tensor,

B =

(
In1 Θ
Θ Θ

)
,(2.20)

where In1 is the n1 × n1 identity matrix. Clearly, under Hypothesis 4 we have

Λ||Bw||2Ω ≤ ⟨Aw,w⟩Ω ∀w ∈ Rd.(2.21)

As far as the velocity field is defined in T δ (see Hypothesis 1), we can introduce
the following assumption:

Hypothesis 7. The velocity field satisfies,

(I −B)L(x, t)B = 0 ∀(x, t) ∈ T δ.(2.22)

Remark 2.2. Hypothesis 7 is equivalent to having a velocity field v whose d− n1
last components depend only on the last d− n1 variables.

Remark 2.3. For any d × d tensor E of the form given in (2.19) it is easy to
check that

⟨EHTw1,w2⟩ = ⟨EHTBw1, Bw2⟩,

for any d × d tensor H satisfying (I − B)HB = 0, and vectors w1, w2 ∈ Rd. This
equality will be used below without explicitly stated.

3. Weak formulation. We are going to develop some formal computations in
order to write a weak formulation of the above problem (SP) in Lagrangian coordinates
p. First, by using the chain rule, we have

ϕ̇m(p, t) = ϕ′(Xe(p, t), t) + gradϕ(Xe(p, t), t) · v(Xe(p, t), t).(3.1)

Next, by evaluating equation (2.8) at point x = Xe(p, t) and then using (3.1), we
obtain

ρm(p, t)ϕ̇m(p, t)− [ div (A gradϕ)]m (p, t) = fm(p, t),(3.2)

for (p, t) ∈ Ω × (0, T ). Note that in (3.2) there are derivatives with respect to the
Eulerian variable x. In order to obtain a strong formulation of problem (SP) in
Lagrangian coordinates we introduce the change of variable x = Xe(p, t). By using
the chain rule we get (see [6])

[ div (A gradϕ)]m = Div
[
F−1AmF

−T∇ϕm detF
] 1

detF
.

Then, ϕm satisfies

ρmϕ̇m detF − Div
[
F−1AmF

−T∇ϕm detF
]
= fm detF.(3.3)

Throughout this article, we use the notation

Ãm(p, t) := F−1(p, t)Am(p, t)F−T (p, t) detF (p, t) ∀(p, t) ∈ Ω× [0, T ],

m̃(p, t) := |F−T (p, t)m(p)| detF (p, t) ∀(p, t) ∈ Γ× [0, T ],
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where m is the outward unit normal vector to Γ. By using the chain rule and noting
that

n(Xe(p, t), t) =
F−T (p, t)m(p)

|F−T (p, t)m(p)|
(p, t) ∈ Γ× (0, T ),

we get

A(x) gradϕ(x, t) · n(x, t) = F−1(p, t)Am(p, t)F−T (p, t)∇ϕm(p, t) · m(p)

|F−T (p, t)m(p)|
,

for (p, t) ∈ Γ× (0, T ) and x = Xe(p, t). Thus, from (2.9)-(2.11) and (3.3), we deduce
the following pure Lagrangian formulation of the initial-boundary value problem (SP):

(LSP) LAGRANGIAN STRONG PROBLEM. Find a function ϕm : Ω ×
[0, T ] −→ R such that

ρm(p, t)ϕ̇m(p, t) detF (p, t)− Div
[
Ãm(p, t)∇ϕm(p, t)

]
= fm(p, t) detF (p, t),(3.4)

for (p, t) ∈ Ω× (0, T ), subject to the boundary conditions

ϕm(p, t) = ϕD(Xe(p, t), t) on ΓD × (0, T ),(3.5)

αm̃(p, t)ϕm(p, t) + Ãm(p, t)∇ϕm(p, t) ·m(p) = m̃(p, t)g(Xe(p, t), t) on ΓR × (0, T ),

(3.6)

and the initial condition

ϕm(p, 0) = ϕ0(p) in Ω.(3.7)

We consider the standard weak formulation associated with this pure Lagrangian
strong problem:∫

Ω

ρm(p, t)ϕ̇m(p, t)ψ(p) detF (p, t) dp+

∫
Ω

Ãm(p, t)∇ϕm(p, t) · ∇ψ(p) dp

+α

∫
ΓR

m̃(p, t)ϕm(p, t)ψ(p) dAp =

∫
Ω

fm(p, t)ψ(p) detF (p, t) dp

+

∫
ΓR

m̃(p, t)gm(p, t)ψ(p) dAp,

(3.8)

∀ψ ∈ H1
ΓD(Ω) and t ∈ (0, T ). These are formal computations, i.e., we have assumed

appropriate regularity on the involved data and solution.

4. Time discretization. In this section we introduce a second order scheme for
time semi-discretization of (3.8). We consider the general case where the diffusion
tensor depends on the space variable and can degenerate, and the velocity field is
not divergence-free. Moreover, mixed Dirichlet-Robin boundary conditions are also
allowed instead of merely Dirichlet ones.
In the first part, we propose a time semi-discretization of (3.8) assuming that the char-
acteristic curves are exactly computed. Next, we propose a second-order Runge-Kutta
scheme to approximate them. Finally, stability and error estimates are rigorously
stated.
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4.1. Second order semidiscretized scheme with exact characteristic curves.
We introduce the number of time steps, N , the time step ∆t = T/N , and the mesh-
points tn = n∆t for n = 0, 1/2, 1, . . . , N . Throughout this work, we use the notation
ψn(y) := ψ(y, tn) for a function ψ(y, t).
The semi-discretization scheme we are going to study is a Crank-Nicholson-like scheme:

1

2

∫
Ω

(
ρn+1
m (p) detFn+1(p) + ρnm(p) detFn(p)

) ϕn+1
m,△t(p)− ϕnm,△t(p)

∆t
ψ(p) dp

+
1

4

∫
Ω

(
Ãn+1

m (p) + Ãn
m(p)

)(
∇ϕn+1

m,△t(p) +∇ϕnm,△t(p)
)
· ∇ψ(p) dp

+
α

4

∫
ΓR

(
m̃n+1(p) + m̃n(p)

) (
ϕn+1
m,△t(p) + ϕnm,△t(p)

)
ψ(p) dAp

=
1

2

∫
Ω

(
detFn+1(p)fn+1

m (p) + detFn(p)fnm(p)
)
ψ(p) dp

+
1

2

∫
ΓR

(
m̃n+1(p)gn+1

m (p) + m̃n(p)gnm(p)
)
ψ(p) dAp.

(4.1)

Remark 4.1. In Section 4.4 we will prove that the approximations involved in
scheme (4.1) are O(∆t2) at point (p, tn+ 1

2
). Moreover, this order does not change

if we replace the exact characteristic curves and gradients F by accurate enough
approximations.

4.2. Second order semidiscretized scheme with approximate charac-
teristic curves. In most cases, the analytical expression for motion Xe is unknown;
instead, we know the velocity field v. Let us assume that Xe(p, 0) = p ∀p ∈ Ω. Then,
the motion Xe, assuming it exists, is the solution to the initial-value problem

Ẋe(p, t) = vm(p, t) Xe(p, 0) = p.(4.2)

Since the characteristics Xe(p, tn) cannot be exactly tracked in general, we propose
the following second order Runge-Kutta scheme to approximate Xn

e , n ∈ {0, . . . , N}.
For n = 0:

X0
RK(p) := p ∀p ∈ Ω,(4.3)

and for 0 ≤ n ≤ N − 1 we define by recurrence,

Xn+1
RK (p) := Xn

RK(p) +△tvn+ 1
2 (Y n(p)) ∀p ∈ Ω,(4.4)

being

Y n(p) := Xn
RK(p) +

△t
2
vn(Xn

RK(p)).(4.5)

A similar notation to the one in Section 2 is used for the Jacobian tensor of Xn
RK ,

namely,

F 0
RK(p) = I,(4.6)

and for 0 ≤ n ≤ N − 1,

Fn+1
RK (p) = Fn

RK(p) + ∆tLn+ 1
2 (Y n(p))

(
I +

∆t

2
Ln(Xn

RK(p))

)
Fn
RK(p).(4.7)
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In appendix, we state some lemmas concerning properties of the approximate charac-
teristics Xn

RK .
Let us define the following sequences of functions of p.

Ãn
RK := (Fn

RK)−1A ◦Xn
RK(Fn

RK)−T detFn
RK , m̃

n
RK = |(Fn

RK)−Tm| detFn
RK ,

for 0 ≤ n ≤ N . Since usually the characteristic curves cannot be exactly computed,
we replace in (4.1) the exact characteristic curves and gradient tensors by accurate
enough approximations,

1

2

∫
Ω

(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

) ϕn+1
m,∆t − ϕnm,∆t

∆t
ψ dp

+
1

4

∫
Ω

(
Ãn+1

RK + Ãn
RK

)(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)
· ∇ψ dp

+
α

4

∫
ΓR

(
m̃n+1

RK + m̃n
RK

) (
ϕn+1
m,∆t + ϕnm,∆t

)
ψ dAp

=
1

2

∫
Ω

(
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

)
ψ dp

+
1

2

∫
ΓR

(
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

)
ψ dAp.

(4.8)

For these computations we have made the assumptions of Lemma A.3, and Hypoth-
esis 3, 4, 5 and 6.
Notice that we have used a lowest order characteristics approximation formula pre-
serving second order in time accuracy.

Let us introduce Ln+ 1
2

∆t [ϕ] ∈ (H1(Ω))′ and Fn+ 1
2

∆t ∈ (H1(Ω))′ defined by⟨
Ln+ 1

2

∆t [ϕ], ψ
⟩
:=

⟨(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

)
2

ϕn+1 − ϕn

∆t
, ψ

⟩
Ω

+

⟨(
Ãn+1

RK + Ãn
RK

)
2

(
∇ϕn+1 +∇ϕn

)
2

,∇ψ

⟩
Ω

+ α

⟨(
m̃n+1

RK + m̃n
RK

)
2

(
ϕn+1 + ϕn

)
2

, ψ

⟩
ΓR

,

⟨
Fn+ 1

2

∆t , ψ
⟩
:=

⟨
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

2
, ψ

⟩
Ω

+

⟨
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

2
, ψ

⟩
ΓR

,

for ϕ ∈ C0(H1(Ω)) and ψ ∈ H1(Ω).

Remark 4.2. Regarding the definitions of Ln+ 1
2

∆t [ϕ] and Fn+ 1
2

∆t , only the values of
function ϕ at discrete time steps {tn}Nn=0 are required. Thus, the above definitions

can also be stated for a sequence of functions ϕ̂ = {ϕn}Nn=0 ∈ [H1(Ω)]N+1.
Then the semidiscretized time scheme can be written as follows:{

Given ϕ0m,∆t, find ϕ̂m,∆t = {ϕnm,∆t}Nn=1 ∈
[
H1

ΓD (Ω)
]N

such that⟨
Ln+ 1

2

∆t [ϕ̂m,∆t], ψ
⟩
=
⟨
Fn+ 1

2

∆t , ψ
⟩

∀ ψ ∈ H1
ΓD (Ω) for n = 0, . . . , N − 1.

(4.9)
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Remark 4.3. The stability and convergence properties to be studied in the next
sections still remain valid if we replace the approximation of characteristics appearing
in scheme (4.9) by higher order ones or by the exact value.

4.3. Stability of the semidiscretized scheme. Firstly, we notice that, as a
consequence of Hypothesis 4, there exists a unique positive definite symmetric n1×n1
tensor field, Cn1 , such that An1 = (Cn1)

2. Let us denote by C the symmetric and
positive semidefinite d× d tensor defined by

C =

(
Cn1 Θ
Θ Θ

)
.(4.10)

Notice that A = C2 and C ∈ W1,∞(Oδ). Let us denote by G the matrix with
coefficients Gij = | gradCij |, 1 ≤ i, j ≤ d. At this point, let us introduce the constant

cA = max{||G||2
∞,Oδ , ||C||2∞,Oδ},(4.11)

and the sequence of tensor fields

C̃n
RK := C ◦Xn

RK(Fn
RK)−T

√
detFn

RK ∀n ∈ {0, . . . , N}.

Let us introduce the sequence of tensor fields

B̃n
RK := B(Fn

RK)−T
√

detFn
RK ∀n ∈ {0, . . . , N},

where tensor B has been defined in (2.20).
Now, it is convenient to notice that Hypothesis 4 also covers the nondegenerate

case. This hypothesis is usual in ultraparabolic equations (see, for instance, [25]),
which represent a wide class of degenerate diffusion equations arising from many
applications (see, for instance, [5]). Furthermore, as stated in [20], ultraparabolic
problems either have C∞ solutions or can be reduced to nondegenerate problems
posed in a lower spatial dimension. This is an important point, as the stability and
error estimates will be obtained under regularity assumptions on the solution.

In what follows, cv denotes the positive constant

cv := max
t∈[0,T ]

||v(·, t)||1,∞,Ωδ
t
,(4.12)

where || · ||1,∞,Ωδ
t
is the norm given in (2.13). Moreover, Cv (respectively, J and D)

will denote a generic positive constant, related to the norm of the velocity field v
(respectively, to the rest of the data of the problem), not necessarily the same at each
occurrence.

Lemma 4.1. Let us assume Hypotheses 1, 3 and 4. Let {ϕnm,∆t}Nn=1 be the solution
of (4.9) . Then, there exist a positive constant c(v, T, δ) such that, for ∆t < c, we
have ⟨

Ln+ 1
2

∆t [ϕ̂m,∆t], ϕ
n+1
m,∆t + ϕnm,∆t

⟩
≥ 1

∆t

∣∣∣∣∣∣∣∣√ρ ◦Xn+1
RK detFn+1

RK ϕn+1
m,∆t

∣∣∣∣∣∣∣∣2
Ω

− 1

∆t

∣∣∣∣∣∣√ρ ◦Xn
RK detFn

RKϕ
n
m,∆t

∣∣∣∣∣∣2
Ω

+
1

4

∣∣∣∣∣∣C̃n+1
RK

(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)∣∣∣∣∣∣2
Ω
+

1

4

∣∣∣∣∣∣C̃n
RK

(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)∣∣∣∣∣∣2
Ω

(4.13)
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+
α

4

∣∣∣∣∣∣∣∣√m̃n+1
RK + m̃n

RK

(
ϕn+1
m,∆t + ϕnm,∆t

)∣∣∣∣∣∣∣∣2
ΓR

−ĉγ

(∣∣∣∣∣∣∣∣√detFn+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
Ω

+
∣∣∣∣∣∣√detFn

RKϕ
n
m,∆t

∣∣∣∣∣∣2
Ω

)
,

where ĉ = ρ1,∞(cv + Cv∆t)/γ and n ∈ {0, . . . , N − 1}.

Proof. First, we decompose
⟨
Ln+ 1

2

∆t [ϕ̂m,∆t], ϕ
n+1
m,∆t + ϕnm,∆t

⟩
= I1 + I2 + I3, with

I1 =

⟨(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

)
2

ϕn+1
m,∆t − ϕnm,∆t

∆t
, ϕn+1

m,∆t + ϕnm,∆t

⟩
Ω

,

I2 =
1

4

⟨(
Ãn+1

RK + Ãn
RK

)(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)
,∇ϕn+1

m,∆t +∇ϕnm,∆t

⟩
Ω
,

I3 =
α

4

⟨(
m̃n+1

RK + m̃n
RK

) (
ϕn+1
m,∆t + ϕnm,∆t

)
, ϕn+1

m,∆t + ϕnm,∆t

⟩
ΓR
.

Let K be the constant appearing in Corollary A.4. If ∆t < K, we first have

I1 =

⟨(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

)
2

ϕn+1
m,∆t − ϕnm,∆t

∆t
, ϕn+1

m,∆t + ϕnm,∆t

⟩
Ω

=
1

2∆t

∣∣∣∣∣∣∣∣√ρ ◦Xn+1
RK detFn+1

RK ϕn+1
m,∆t

∣∣∣∣∣∣∣∣2
Ω

− 1

2∆t

∣∣∣∣∣∣√ρ ◦Xn
RK detFn

RKϕ
n
m,∆t

∣∣∣∣∣∣2
Ω

+
1

2∆t

∣∣∣∣∣∣√ρ ◦Xn
RK detFn

RKϕ
n+1
m,∆t

∣∣∣∣∣∣2
Ω
− 1

2∆t

∣∣∣∣∣∣∣∣√ρ ◦Xn+1
RK detFn+1

RK ϕnm,∆t

∣∣∣∣∣∣∣∣2
Ω

,

(4.14)

where we have used Hypothesis 3. Next, we introduce the function Y n
RK(p, ·) :

[tn, tn+1] −→ Ωδ
tn , defined by Y n

RK(p, s) := Xn
RK(p) − (tn − s)vn+ 1

2 (Y n(p)), which

satisfies Y n
RK(p, tn) = Xn

RK(p) and Y n
RK(p, tn+1) = Xn+1

RK (p). If ∆t is small enough,
it is easy to prove that Y n

RK(p, ·) ⊂ Ωδ
tn . By hypothesis, ρ is a differentiable function,

then by Barrow’s rule and the chain rule, the following identity holds:

ρ(Xn
RK(p)) = ρ(Xn+1

RK (p))− ζn(p) for a.e. p ∈ Ω,(4.15)

where

ζn(p) :=

∫ tn+1

tn

grad ρ(Y n
RK(p, s)) · vn+ 1

2 (Y n(p)) ds for a.e. p ∈ Ω,(4.16)

verifies |ζn(p)| ≤ ρ1,∞cv∆t. Then, by using (A.6), (A.7) and (4.15) in (4.14), we get

I1 ≥ 1

∆t

∣∣∣∣∣∣∣∣√ρ ◦Xn+1
RK detFn+1

RK ϕn+1
m,∆t

∣∣∣∣∣∣∣∣2
Ω

− 1

∆t

∣∣∣∣∣∣√ρ ◦Xn
RK detFn

RKϕ
n
m,∆t

∣∣∣∣∣∣2
Ω

(4.17)

− ρ1,∞ (cv + Cv∆t)

{∣∣∣∣∣∣∣∣√detFn+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
Ω

+
∣∣∣∣∣∣√ detFn

RKϕ
n
m,∆t

∣∣∣∣∣∣2
Ω

}
.

For I2 we use the fact that A = C2 being C a symmetric tensor field. We obtain,

I2 :=
1

4

⟨(
Ãn+1

RK + Ãn
RK

)(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)
,∇ϕn+1

m,∆t +∇ϕnm,∆t

⟩
Ω

(4.18)

=
1

4

∣∣∣∣∣∣C̃n+1
RK

(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)∣∣∣∣∣∣2
Ω
+

1

4

∣∣∣∣∣∣C̃n
RK

(
∇ϕnm,∆t +∇ϕnm,∆t

)∣∣∣∣∣∣2
Ω
.
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For I3 we have

I3 =
α

4

∣∣∣∣∣∣∣∣√m̃n+1
RK + m̃n

RK

(
ϕn+1
m,∆t + ϕnm,∆t

)∣∣∣∣∣∣∣∣2
ΓR

.(4.19)

Then, by summing up (4.17), (4.18) and (4.19) we get inequality (4.13).
Lemma 4.2. Let us assume Hypotheses 1, 3, 4 and 7. Let {ϕnm,∆t}Nn=1 be the

solution of (4.9) and α > 0 be the constant appearing in the Robin boundary condition
(2.10). Then, there exist a positive constant c(v, T, δ) such that, for ∆t < c, we have⟨

Ln+ 1
2

∆t [ϕ̂m,∆t], ϕ
n+1
m,∆t − ϕnm,∆t

⟩
≥ 1

2∆t

∣∣∣∣∣∣∣∣√(ρ ◦Xn+1
RK detFn+1

RK + ρ ◦Xn
RK detFn

RK

) (
ϕn+1
m,∆t − ϕnm,∆t

)∣∣∣∣∣∣∣∣2
Ω

+
1

2

∣∣∣∣∣∣C̃n+1
RK ∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
− 1

2

∣∣∣∣∣∣C̃n
RK∇ϕnm,∆t

∣∣∣∣∣∣2
Ω
+
α

2

∣∣∣∣∣∣∣∣√m̃n+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
ΓR

(4.20)

−α
2

∣∣∣∣∣∣√m̃n
RKϕ

n
m,∆t

∣∣∣∣∣∣2
ΓR

− ĉ∆tΛ

(∣∣∣∣∣∣B̃n+1
RK ∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
+
∣∣∣∣∣∣B̃n

RK∇ϕnm,∆t

∣∣∣∣∣∣2
Ω

)
−ĉ∆tα

(∣∣∣∣∣∣∣∣√m̃n+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
ΓR

+
∣∣∣∣∣∣√m̃n

RKϕ
n
m,∆t

∣∣∣∣∣∣2
ΓR

)
,

where ĉ = max {cACv/Λ, Cv} and n ∈ {0, . . . , N − 1}.

Proof. First, we decompose
⟨
Ln+ 1

2

∆t [ϕ̂m,∆t], ϕ
n+1
m,∆t − ϕnm,∆t

⟩
= I1 + I2 + I3, with

I1 =

⟨(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

)
2

ϕn+1
m,∆t − ϕnm,∆t

∆t
, ϕn+1

m,∆t − ϕnm,∆t

⟩
Ω

,

I2 =
1

4

⟨(
Ãn+1

RK + Ãn
RK

)(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)
,∇ϕn+1

m,∆t −∇ϕnm,∆t

⟩
Ω
,

I3 =
α

4

⟨(
m̃n+1

RK + m̃n
RK

) (
ϕn+1
m,∆t + ϕnm,∆t

)
, ϕn+1

m,∆t − ϕnm,∆t

⟩
ΓR
.

For I1, we use Hypothesis 3 to get

I1 =
1

2∆t

∣∣∣∣∣∣∣∣√(ρ ◦Xn+1
RK detFn+1

RK + ρ ◦Xn
RK detFn

RK

) (
ϕn+1
m,∆t − ϕnm,∆t

)∣∣∣∣∣∣∣∣2
Ω

,(4.21)

where we have assumed that ∆t < K, being K the constant appearing in Corollary
A.4. For I2 we first have

I2 =
1

4

∣∣∣∣∣∣C̃n+1
RK ∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
− 1

4

∣∣∣∣∣∣C̃n
RK∇ϕnm,∆t

∣∣∣∣∣∣2
Ω

(4.22)

+
1

4

∣∣∣∣∣∣C̃n
RK∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
− 1

4

∣∣∣∣∣∣C̃n+1
RK ∇ϕnm,∆t

∣∣∣∣∣∣2
Ω
.

Then we use Corollary A.5, Hypotheses 4 and 7, and equality (4.7) to get

1

4

∣∣∣∣∣∣C̃n
RK∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
≥ 1

4

∣∣∣∣∣∣∣∣C ◦Xn
RK(Fn+1

RK )−T∇ϕn+1
m,∆t

√
detFn+1

RK

∣∣∣∣∣∣∣∣2
Ω

(4.23)

−cACv∆t
∣∣∣∣∣∣B̃n+1

RK ∇ϕn+1
m,∆t

∣∣∣∣∣∣2
Ω
.



HIGHER ORDER PURE LAGRANGIAN METHOD 13

Moreover, since An1 is symmetric and positive definite, Cn1 =
√
An1 is a differentiable

tensor field . Then by Barrow’s rule and the chain rule, the following identity holds,

C(Xn+1
RK (p)) = C(Xn

RK(p)) +Dn(p) for a.e. p ∈ Ω,(4.24)

where we have denoted by Dn the d× d symmetric tensor field defined by

Dn
ij(p) :=

∫ tn+1

tn

gradCij(Y
n
RK(p, s)) · vn+ 1

2 (Y n(p)) ds,(4.25)

being Y n
RK the mapping defined in the proof of Lemma 4.1. Notice that D is of the

form given in (4.10) and verifies ||Dn||∞,Ω ≤ cv
√
cA∆t. Then, from the previous

properties, we have

1

4

∣∣∣∣∣∣C̃n
RK∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
≥ 1

4

∣∣∣∣∣∣C̃n+1
RK ∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
− cACv∆t

∣∣∣∣∣∣B̃n+1
RK ∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
.(4.26)

Similarly, we obtain the estimate

−1

4
||C̃n+1

RK ∇ϕnm,∆t||2Ω ≥ −1

4
||C̃n

RK∇ϕnm,∆t||2Ω − cACv∆t||B̃n
RK∇ϕnm,∆t||2Ω.(4.27)

Thus, by introducing (4.26) and (4.27) in equality (4.22) we obtain the following
inequality:

I2 ≥ 1

2

∣∣∣∣∣∣C̃n+1
RK ∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
− 1

2

∣∣∣∣∣∣C̃n
RK∇ϕnm,∆t

∣∣∣∣∣∣2
Ω

(4.28)

− cACv∆t
∣∣∣∣∣∣B̃n+1

RK ∇ϕn+1
m,∆t

∣∣∣∣∣∣2
Ω
− cACv∆t

∣∣∣∣∣∣B̃n
RK∇ϕnm,∆t

∣∣∣∣∣∣2
Ω
.

For I3 we first have

I3 =
α

4

∣∣∣∣∣∣∣∣√m̃n+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
ΓR

− α

4

∣∣∣∣∣∣√m̃n
RKϕ

n
m,∆t

∣∣∣∣∣∣2
ΓR

(4.29)

+
α

4

∣∣∣∣∣∣√m̃n
RKϕ

n+1
m,∆t

∣∣∣∣∣∣2
ΓR

− α

4

∣∣∣∣∣∣∣∣√m̃n+1
RK ϕnm,∆t

∣∣∣∣∣∣∣∣2
ΓR

.

Next, by applying Corollaries A.4, A.5, Lemma A.3 and equality (4.7) we obtain

I3 ≥ α

2

∣∣∣∣∣∣∣∣√m̃n+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
ΓR

− α

2

∣∣∣∣∣∣√m̃n
RKϕ

n
m,∆t

∣∣∣∣∣∣2
ΓR

(4.30)

− Cvα∆t

(∣∣∣∣∣∣∣∣√m̃n+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
ΓR

+
∣∣∣∣∣∣√m̃n

RKϕ
n
m,∆t

∣∣∣∣∣∣2
ΓR

)
.

Then, by summing up (4.21), (4.28) and (4.30), inequality (4.20) follows.
Now, in order to get error estimates we need to prove stability inequalities for more
general right-hand sides; more precisely, for

Q̂ = {Qn}Nn=1 ∈ [L2(Ω)]N and Ĝ = {Gn}Nn=1 ∈ [L2(ΓR)]N .(4.31)

Let us consider the problem:{
Given ϕ0m,∆t, find ϕ̂m,∆t = {ϕnm,∆t}Nn=1 ∈

[
H1

ΓD (Ω)
]N

such that⟨
Ln+ 1

2

∆t [ϕ̂m,∆t], ψ
⟩
=
⟨
Hn+ 1

2

∆t , ψ
⟩

∀ψ ∈ H1
ΓD (Ω) for n = 0, . . . , N − 1,

(4.32)
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with
⟨
Hn+ 1

2

∆t , ψ
⟩
=
⟨
Qn+1, ψ

⟩
Ω
+
⟨
Gn+1, ψ

⟩
ΓR .

Theorem 4.3. Let us assume Hypotheses 1, 3 and 4. Let ϕ̂m,∆t be the solution of
(4.32) subject to the initial value ϕ0m,∆t ∈ H1

ΓD(Ω) and α > 0 be the constant appearing
in the Robin boundary condition (2.10). Then there exist two positive constants J and
D, which are independent of the diffusion tensor, such that if ∆t < D then

√
γ

∣∣∣∣∣∣∣∣ ̂√
detFRKϕm,∆t

∣∣∣∣∣∣∣∣
l∞(L2(Ω))

+

√
Λ

4

∣∣∣∣∣∣∣∣ ̂
B̃RKS[∇ϕm,∆t]

∣∣∣∣∣∣∣∣
l2(L2(Ω))

+

√
α

8

∣∣∣∣∣∣∣∣ ̂√
S [m̃RK ]S[ϕm,∆t]

∣∣∣∣∣∣∣∣
l2(L2(ΓR))

≤ J
(√
γ||ϕ0m,∆t||Ω

+||Q̂||l2(L2(Ω)) + ||Ĝ||l2(L2(ΓR))

)
.

(4.33)

Proof. Sequence ϕ̂m,∆t = {ϕnm,∆t}Nn=0 satisfies
⟨
Ln+ 1

2

∆t [ϕ̂m,∆t], ϕ
n+1
m,∆t + ϕnm,∆t

⟩
=⟨

Hn+ 1
2

∆t , ϕn+1
m,∆t + ϕnm,∆t

⟩
. We can use Lemma 4.1 to obtain a lower bound of this

expression, and Lemma A.8 for ψ = ϕn+1
m,∆t and φ = ϕnm,∆t to obtain an upper bound.

By jointly considering both estimates, we get

1

∆t

∣∣∣∣∣∣∣∣√ρ ◦Xn+1
RK detFn+1

RK ϕn+1
m,∆t

∣∣∣∣∣∣∣∣2
Ω

− 1

∆t

∣∣∣∣∣∣√ρ ◦Xn
RK detFn

RKϕ
n
m,∆t

∣∣∣∣∣∣2
Ω

+
1

4

∣∣∣∣∣∣C̃n
RK

(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)∣∣∣∣∣∣2
Ω
+
α

8

∣∣∣∣∣∣∣∣√m̃n+1
RK + m̃n

RK

(
ϕn+1
m,∆t + ϕnm,∆t

)∣∣∣∣∣∣∣∣2
ΓR

≤ cs||Qn+1||2Ω +
4cg
α

||Gn+1||2ΓR

+ĉγ

(∣∣∣∣∣∣∣∣√ detFn+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
Ω

+
∣∣∣∣√ detFn

RKϕ
n
m,∆t

∣∣∣∣2
Ω

)
,

(4.34)

where ĉ = max {1/γ, 2ρ1,∞(cv + Cv∆t)/γ}. Let us introduce the notation

θ1n := γ
∣∣∣∣∣∣√detFn

RKϕ
n
m,∆t

∣∣∣∣∣∣2
Ω
, θ2n :=

Λ

4

n−1∑
s=0

∆t
∣∣∣∣∣∣B̃s

RK

(
∇ϕs+1

m,∆t +∇ϕsm,∆t

)∣∣∣∣∣∣2
Ω
,

θn :=
α

8

n−1∑
s=0

∆t

∣∣∣∣∣∣∣∣√m̃s+1
RK + m̃s

RK

(
ϕs+1
m,∆t + ϕsm,∆t

)∣∣∣∣∣∣∣∣2
ΓR

.

Now, for a fixed integer q ≥ 1, let us sum (4.34) multiplied by ∆t from n = 0 to
n = q − 1. Then, with the above notation we have

(1− ĉ∆t)θ1q + θ2q + θq ≤ 2ĉ∆t

q−1∑
n=0

θ1n + β
(
θ10 + ||Q̂||2l2(L2(Ω)) + ||Ĝ||2l2(L2(ΓR))

)
,

where we have used Hypotheses 3 and 4. In the above equation β denotes a positive
constant and ĉ = max {1/γ, 2ρ1,∞(cv + Cv∆t)/γ}. For ∆t small enough, we can
apply the discrete Gronwall inequality (see, for instance, [24]) and take the maximun
in q ∈ {1, . . . , N}. Then, estimate (4.33) follows.
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Theorem 4.4. Let us assume Hypotheses 1, 3, 4, 7 and (4.31), and let ϕ̂m,∆t

be the solution of (4.32) subject to the initial value ϕ0m,∆t ∈ H1
ΓD (Ω). Let α > 0 be

the constant appearing in the Robin boundary condition (2.10). Then, there exist two
positive constants J(v, cA/Λ, T ) and D(δ,v, T, cA/Λ) such that if ∆t < D then√

γ

4

∣∣∣∣∣∣∣∣ ̂√
S[ detFRK ]R∆t[ϕm,∆t]

∣∣∣∣∣∣∣∣
l2(L2(Ω))

+

√
Λ

2

∣∣∣∣∣∣∣∣ ̂
B̃RK∇ϕm,∆t

∣∣∣∣∣∣∣∣
l∞(L2(Ω))

+

√
α

4

∣∣∣∣∣∣∣∣ ̂√
m̃RKϕm,∆t

∣∣∣∣∣∣∣∣
l∞(L2(ΓR))

≤ J

(√
Λ

2

∣∣∣∣B∇ϕ0m,∆t

∣∣∣∣
Ω

+

√
α

4

∣∣∣∣ϕ0m,∆t

∣∣∣∣
ΓR + ||Q̂||l2(L2(Ω)) + ||Ĝ||l∞(L2(ΓR)) +

∣∣∣∣∣∣R̂∆t[G]
∣∣∣∣∣∣
l2(L2(ΓR))

)
.

(4.35)

Proof. Sequence ϕ̂m,∆t = {ϕnm,∆t}Nn=0 satisfies
⟨
Ln+ 1

2

∆t [ϕ̂m,∆t], ϕ
n+1
m,∆t − ϕnm,∆t

⟩
=⟨

Hn+ 1
2

∆t , ϕn+1
m,∆t − ϕnm,∆t

⟩
. Then, we use Lemma 4.2 and Lemma A.9 for ψ = ϕn+1

m,∆t

and φ = ϕnm,∆t to obtain, respectively, a lower and an upper bound for this expression.
By jointly considering both estimates, we get

1

2∆t

∣∣∣∣∣∣∣∣√(ρ ◦Xn+1
RK detFn+1

RK + ρ ◦Xn
RK detFn

RK

) (
ϕn+1
m,∆t − ϕnm,∆t

)∣∣∣∣∣∣∣∣2
Ω

+
1

2

∣∣∣∣∣∣C̃n+1
RK ∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
− 1

2

∣∣∣∣∣∣C̃n
RK∇ϕnm,∆t

∣∣∣∣∣∣2
Ω
+
α

2

∣∣∣∣∣∣∣∣√m̃n+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
ΓR

−α
2

∣∣∣∣∣∣√m̃n
RKϕ

n
m,∆t

∣∣∣∣∣∣2
ΓR

≤ ĉ∆tΛ

(∣∣∣∣∣∣B̃n+1
RK ∇ϕn+1

m,∆t

∣∣∣∣∣∣2
Ω
+
∣∣∣∣∣∣B̃n

RK∇ϕnm,∆t

∣∣∣∣∣∣2
Ω

)
+ĉ∆tα

(∣∣∣∣∣∣∣∣√m̃n+1
RK ϕn+1

m,∆t

∣∣∣∣∣∣∣∣2
ΓR

+
∣∣∣∣∣∣√m̃n

RKϕ
n
m,∆t

∣∣∣∣∣∣2
ΓR

)
+

2cs∆t

γ
||Qn+1||2Ω

+
γ

16∆t

∣∣∣∣∣∣∣∣√ detFn+1
RK + detFn

RK(ϕn+1
m,∆t − ϕnm,∆t)

∣∣∣∣∣∣∣∣2
Ω

+
⟨
Gn+1, ϕn+1

m,∆t − ϕnm,∆t

⟩
ΓR
,

(4.36)
with ĉ = max {cACv/Λ, Cv}. For n = 0, . . . , N , let us introduce the notations

θ1n :=
γ

4∆t

n−1∑
s=0

∣∣∣∣∣∣∣∣√detF s+1
RK + detF s

RK

(
ϕs+1
m,∆t − ϕsm,∆t

)∣∣∣∣∣∣∣∣2
Ω

,

θ2n :=
Λ

2

∣∣∣∣∣∣B̃n
RK∇ϕnm,∆t

∣∣∣∣∣∣2
Ω
, θn :=

α

4

∣∣∣∣∣∣√m̃n
RKϕ

n
m,∆t

∣∣∣∣∣∣2
ΓR
.

Now, for a fixed q ≥ 1, let us sum (4.36) from n = 0 to n = q − 1. With the above

notation and by using Lemma A.10 for ψ̂ = ϕ̂m,∆t, we get

θ1q + (1− 2ĉ∆t)θ2q + (1− 4ĉ∆t)θq ≤ 4ĉ∆t

q−1∑
n=0

θ2n + 10ĉ∆t

q−1∑
n=0

θn

+β

(
θ20 + θ0 + ||Q̂||2l2(L2(Ω)) + ||Ĝ||2l∞(L2(ΓR)) +

∣∣∣∣∣∣R̂∆t[G]
∣∣∣∣∣∣2
l2(L2(ΓR))

)
,(4.37)

where we have used Hypotheses 3 and 4. In the above equation ĉ = max {cACv/Λ, Cv}
and β denotes a positive constant. For ∆t small enough, we can apply the discrete
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Gronwall inequality (see, for instance, [24]) and take the maximun in q ∈ {1, . . . , N}.

Remark 4.4. Stability results for the semidiscretized time scheme (4.9) are ob-
tained by replacing

Qn+1 with 1/2
(
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

)
and Gn+1 with 1/2

(
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

)
in (4.33) and by replacing

Qn+1 with 1/2
(
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

)
and Gn+1 with 1/2

(
m̃n+1

RK g ◦Xn+1
RK + m̃n

RKg ◦Xn
RK

)
in (4.35).

Remark 4.5. Notice that, constants J and D appearing in Theorem 4.4 depend

on the diffusion tensor, more precisely, on fraction
cA
Λ

. In most cases this fraction is

bounded in the hyperbolic limit.
Remark 4.6. In the particular case of Dirichlet boundary conditions (ΓD ≡ Γ),

diffusion tensor of the form A ≡ ϵB and f ≡ 0, a l∞(H1) stability result with
constants independent of the diffusion constant ϵ can be obtained. Specifically, by
using analogous procedures to the ones in the Theorem 4.4 we can obtain the following
l∞(H1) stability result with constants (J and D) independent of ϵ. For ∆t < D,√

γ

2

∣∣∣∣∣∣∣∣ ̂√
S[ detFRK ]R∆t[ϕm,∆t]

∣∣∣∣∣∣∣∣
l2(L2(Ω))

+

√
1

2

∣∣∣∣∣∣∣∣ ̂
B̃RK∇ϕm,∆t

∣∣∣∣∣∣∣∣
l∞(L2(Ω))

≤ J(1 +
√
ϵ)

√
1

2

∣∣∣∣B∇ϕ0m,∆t

∣∣∣∣
Ω
.

(4.38)

Remark 4.7. Notice that, constants appearing in the above stability inequalities
depend on T . However, in some particular cases, we can get stability inequalities
with constants independent of T as the theorem below shows. Moreover, a possible
alternative to obtain a scheme with constants independent of T in stability and error
estimates is re-initializing the transformation to the identity after a fixed number of
time steps. In this case, by using analogous procedures to the ones in this paper, we
could prove the same results but with constants independent of final time.

Let us suppose that motion Xe is incompressible ( divv = 0) and that exact charac-
teristics can be used. Let us assume further that density ρ is constant (we take ρ ≡ 1
for simplicity), that diffusion tensor is nondegenerate and that boundary conditions
of the problem are Dirichlet everywhere on the boundary, i.e. ΓD = Γ. Then we can
prove a stability result with constants independent of T . For this purpose, let us first
introduce the following notation:

ϕn,l∆t(x) = ϕnm,∆t((X
l
e)

−1(x)) ∀x ∈ Ω, 0 ≤ n, l ≤ N.

Theorem 4.5. For ∆t < D we have, ∣∣∣∣∣∣ϕ̂m,∆t

∣∣∣∣∣∣
l∞(L2(Ω))

+

(
Λ

8

N−1∑
s=0

∆t

(∣∣∣∣∣∣ gradϕs+1,s+1
∆t + gradϕs,s+1

∆t

∣∣∣∣∣∣2
Ω
+
∣∣∣∣∣∣ gradϕs+1,s

∆t + gradϕs,s∆t

∣∣∣∣∣∣2
Ω

))1/2

≤ J

(
||ϕ0m,∆t||Ω +

∣∣∣∣∣∣f̂m∣∣∣∣∣∣
l2(L2(Ω))

)
,

(4.39)
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being J and D independent of T .

Proof. For this particular case it is easy to prove that⟨
Ln+ 1

2

∆t [ϕ̂m,∆t], ϕ
n+1
m,∆t + ϕnm,∆t

⟩
=

1

∆t

∣∣∣∣∣∣ϕn+1
m,∆t

∣∣∣∣∣∣2
Ω
− 1

∆t

∣∣∣∣ϕnm,∆t

∣∣∣∣2
Ω

+
1

4

∣∣∣∣∣∣C̃n+1
(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)∣∣∣∣∣∣2
Ω
+

1

4

∣∣∣∣∣∣C̃n
(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)∣∣∣∣∣∣2
Ω
,

(4.40)

being C̃l := C ◦X l
e(F

l)−T , 0 ≤ l ≤ N . By using the change of variable x = Xn+1
e (p)

and the chain rule, we obtain∫
Ω

∣∣∣ gradϕn+1,n+1
∆t + gradϕn,n+1

∆t

∣∣∣2 dx =

∫
Ω

∣∣∣(Fn+1)−T
(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)∣∣∣2 dp.
(4.41)
Similarly, but by using the change of variable x = Xn

e (p), we have∫
Ω

∣∣∣ gradϕn+1,n
∆t + gradϕn,n∆t

∣∣∣2 dx =

∫
Ω

∣∣∣(Fn)−T
(
∇ϕn+1

m,∆t +∇ϕnm,∆t

)∣∣∣2 dp.(4.42)

By applying the Cauchy-Schwarz inequality, the Young’s inequality and a change of

variable we obtain an upper bound for
⟨
Fn+ 1

2

∆t , ϕn+1
m,∆t + ϕnm,∆t

⟩
, namely

⟨
Fn+ 1

2

∆t , ϕn+1
m,∆t + ϕnm,∆t

⟩
≤ C

2Λ

(
||fn+1

m ||2Ω + ||fnm||2Ω
)

+
Λ

8
|| gradϕn+1,n+1

∆t + gradϕn,n+1
∆t ||2Ω +

Λ

8
|| gradϕn+1,n

∆t + gradϕn,n∆t ||
2
Ω,

(4.43)

where we have used that the H1-norm and the L2-norm of the gradient are equivalent

on H1
Γ(Ω). Sequence ϕ̂m,∆t = {ϕnm,∆t}Nn=0 satisfies⟨

Ln+ 1
2

∆t [ϕ̂m,∆t], ϕ
n+1
m,∆t + ϕnm,∆t

⟩
=
⟨
Fn+ 1

2

∆t , ϕn+1
m,∆t + ϕnm,∆t

⟩
.

We use (4.40), Hypothesis 4, (4.41) and (4.42) to obtain a lower bound of this ex-
pression and (4.43) to get an upper bound. By jointly considering both estimates we
obtain an inequality which we sum up from n = 0 to n = q − 1. Then, by taking the
maximum in q ∈ {1, . . . , N}, we get the result.

Remark 4.8. Now, let us suppose that we use approximate characteristics. By
assuming Dirichlet boundary conditions, divv = 0, ρ ≡ 1, nondegenerate diffusion
tensor and Hypothesis 2, and by using analogous procedures to the ones in the previous
theorem, we can prove a stability result with constants independent of T for the
semidiscretized time scheme similar to (4.9) obtained by replacing detFRK with 1 in
the mass term. We notice that this replacement is plausible because for incompressible
motion detF = 1.

Remark 4.9. Let us suppose f ≡ 0, divv = 0, ρ ≡ 1 and Hypothesis 2. Then,
by using analogous procedures to the ones in the Theorem 4.3, one can also prove a
stability result with constants independent of T for the semidiscretized time scheme
(4.9).



18 M. BENÍTEZ AND A. BERMÚDEZ

4.4. Error estimate for the semidiscretized scheme. The aim of the present

section is to estimate the difference between the discrete solution of (4.9), ϕ̂m,∆t :=

{ϕnm,∆t}Nn=0, and the exact solution of the continuous problem, ϕ̂m := {ϕnm}Nn=0. Ac-
cording to (3.8) for tn+ 1

2
, with 0 ≤ n ≤ N − 1, the latter solves the problem⟨

Ln+ 1
2 [ϕ̂m], ψ

⟩
=
⟨
Fn+ 1

2 , ψ
⟩

∀ψ ∈ H1
ΓD (Ω),(4.44)

where Ln+ 1
2 [ϕ̂m] ∈ (H1(Ω))′ and Fn+ 1

2 ∈ (H1(Ω))′ are defined by⟨
Ln+ 1

2 [ϕ̂m], ψ
⟩
:=

⟨
ρ ◦Xn+ 1

2
e detFn+ 1

2

(
ϕ̇m

)n+ 1
2

, ψ

⟩
Ω

+
⟨
Ã

n+ 1
2

m ∇ϕn+
1
2

m ,∇ψ
⟩
Ω
+ α

⟨
m̃n+ 1

2ϕ
n+ 1

2
m , ψ

⟩
ΓR
,⟨

Fn+ 1
2 , ψ

⟩
:=
⟨
detFn+ 1

2 fn+
1
2 ◦Xn+ 1

2
e , ψ

⟩
Ω
+
⟨
m̃n+ 1

2 gn+
1
2 ◦Xn+ 1

2
e , ψ

⟩
ΓR
,

∀ψ ∈ H1(Ω).
The error estimate in the l∞(L2(Ω))-norm, to be stated in Theorem 4.8, is proved
by means of Theorem 4.3 and the forthcoming Lemmas 4.6 and 4.7. On the other
hand, the error estimate for the gradient in the l∞(L2(Ω))-norm, to be stated in
Theorem 4.9, is proved by means of Theorem 4.4 and the forthcoming Lemmas 4.6 and
4.7. Before doing this, we recall some properties satisfied by exact and approximate
characteristics. If v is smooth enough and ∆t is small enough, it is easy to prove
that F , F−1, detF and their partial derivatives, as well as the ones of (Fn

RK)−1 and
detFn

RK can be bounded by constants depending only on v and T , moreover

||Xn
e −Xn

RK ||1,∞,Ω ≤ C(v, T )∆t2, ||(Fn)−T − (Fn
RK)−T ||1,∞,Ω ≤ C(v, T )∆t2

||detFn − detFn
RK ||1,∞,Ω ≤ C(v, T )∆t2.

The following lemmas can be easily proved by using Taylor expansions, the above
estimates and the ones obtained in Appendix A for Fn

RK , (Fn
RK)−1 and detFn

RK (see
[6] for further details).

Lemma 4.6. Assume Hypotheses 1, 3 and 4 hold. Moreover, suppose that Xe ∈
C5(Ω× [0, T ]) and that the coefficients of problem (2.8)-(2.11) satisfy,

v ∈ C3(T δ), ρm ∈ C2(L∞(Ω)), A ∈ W2,∞(Oδ), Am ∈ C2(W1,∞(Ω)).

Let the solution of (4.44) satisfy,

ϕm ∈ C3(L2(Ω)), ∇ϕm ∈ C2(H1(Ω)), ϕm|ΓR ∈ C2(L2(ΓR)).

Finally, assume that ∆t < min{η, 1/(2||L||∞,T δ)}. Then, for each 0 ≤ n ≤ N − 1,

there exist two functions ξ
n+ 1

2

LΩ
: Ω −→ R and ξ

n+ 1
2

LΓ
: ΓR −→ R, such that⟨(

Ln+ 1
2 − Ln+ 1

2

∆t

)
[ϕ̂m], ψ

⟩
=
⟨
ξ
n+ 1

2

LΩ
, ψ
⟩
Ω
+
⟨
ξ
n+ 1

2

LΓ
, ψ
⟩
ΓR
,(4.45)

∀ψ ∈ H1
ΓD(Ω). Moreover, ξ

n+ 1
2

LΩ
∈ L2(Ω), ξ

n+ 1
2

LΓ
∈ L2(ΓR) and the following estimates

hold: ∣∣∣∣∣∣ξn+ 1
2

LΩ

∣∣∣∣∣∣
Ω
≤ ∆t2C(T,v, ρ, A)

(
||ϕm||C3(L2(Ω)) + ||∇ϕm||C2(H1(Ω))

)
,

(4.46) ∣∣∣∣∣∣ξn+ 1
2

LΓ

∣∣∣∣∣∣
ΓR

≤ ∆t2C(T,v, A)
(
||∇ϕm ·m||C2(L2(ΓR)) + α||ϕm||C2(L2(ΓR))

)
,
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where α > 0 appears in (2.10).
Lemma 4.7. Assume Hypothesis 1, v ∈ C2(T δ), Xe ∈ C4(Ω× [0, T ]) and ∆t <

min{η, 1/(2||L||∞,T δ)}, being η the constant appearing in Lemma A.1. Let fm ∈
C2(L2(Ω)), f ∈ C1(T δ), gm ∈ C2(L2(ΓR)), g ∈ C1(T δ

ΓR). Then, for each n ∈
{0, . . . , N − 1}, there exist ξ

n+ 1
2

f : Ω −→ R and ξ
n+ 1

2
g : ΓR −→ R, satisfying⟨(

Fn+ 1
2 −Fn+ 1

2

∆t

)
, ψ
⟩
=
⟨
ξ
n+ 1

2

f , ψ
⟩
Ω
+
⟨
ξ
n+ 1

2
g , ψ

⟩
ΓR

∀ψ ∈ H1(Ω).(4.47)

Moreover, ξ
n+ 1

2

f ∈ L2(Ω) and ξg ∈ L2(ΓR) and the following estimates hold:∣∣∣∣∣∣ξn+ 1
2

f

∣∣∣∣∣∣
Ω
≤ ∆t2C(T,v, T δ)

(
|| detFfm||C2(L2(Ω)) + ||f ||C1(T δ)

)
,

(4.48) ∣∣∣∣∣∣ξn+ 1
2

g

∣∣∣∣∣∣
ΓR

≤ ∆t2C(T,v, T δ
ΓR)

(
||m̃gm||C2(L2(ΓR)) + ||g||C1(T δ

ΓR )

)
.

Now let us introduce some regularity assumptions on the data of the problem needed
to prove the error estimates below.

Hypothesis 8. Functions appearing in problem (2.8)-(2.11) satisfy,
• ρm ∈ C2(L∞(Ω)), A ∈ W2,∞(Oδ), Am ∈ C2(W1,∞(Ω)),
• v ∈ C3(T δ),
• fm ∈ C2(L2(Ω)), f ∈ C1(T δ), gm ∈ C2(L2(ΓR)), g ∈ C1(T δ

ΓR) and α > 0.
Hypothesis 9. Functions appearing in problem (2.8)-(2.11) satisfy,
• ρm ∈ C2(L∞(Ω)), A ∈ W2,∞(Oδ), Am ∈ C3(W1,∞(Ω)),
• v ∈ C3(T δ),
• fm ∈ C2(L2(Ω)), f ∈ C1(T δ), gm ∈ C3(L2(ΓR)), g ∈ C2(T δ

ΓR) and α > 0.

Theorem 4.8. Assume Hypotheses 1, 3, 4, 5, 6, 7 and 8, and Xe ∈ C5(Ω×[0, T ]).
Let

ϕm ∈ C3(L2(Ω)), ∇ϕm ∈ C2(H1(Ω)), ϕm|ΓR ∈ C2(L2(ΓR)),

be the solution of (4.44) and let ϕ̂m,∆t be the solution of (4.9) subject to the initial
value ϕ0m,∆t = ϕ0m = ϕ0 ∈ H1(Ω). Then, there exist two positive constants J and D,
the latter being independent of the diffusion tensor, such that, if ∆t < D we have

√
γ|| ̂√

detFRK (ϕm − ϕm,∆t)||l∞(L2(Ω))

+

√
Λ

4

∣∣∣∣∣∣∣∣ ̂
B̃RKS [∇ϕm −∇ϕm,∆t]

∣∣∣∣∣∣∣∣
l2(L2(Ω))

+

√
α

8

∣∣∣∣∣∣∣∣ ̂√
S [m̃RK ]S [ϕm − ϕm,∆t]

∣∣∣∣∣∣∣∣
l2(L2(ΓR))

≤ J ∆t2
(
||ϕm||C3(L2(Ω))

+||∇ϕm||C2(H1(Ω)) + ||∇ϕm ·m||C2(L2(ΓR)) + ||ϕm||C2(L2(ΓR))

+|| detFfm||C2(L2(Ω)) + ||f ||C1(T δ) + ||m̃gm||C2(L2(ΓR)) + ||g||C1(T δ

ΓR )

)
.

(4.49)

Proof. We denote by êm,∆t the difference between the continuous and the discrete

solution, that is, êm,∆t =
{
ϕnm − ϕnm,∆t

}N
n=0

. Then, by using (4.9) and (4.44) we have⟨
Ln+ 1

2

∆t [êm,∆t], ψ
⟩
=
⟨(

Ln+ 1
2

∆t − Ln+ 1
2

)
[ϕ̂m], ψ

⟩
+
⟨
Fn+ 1

2 −Fn+ 1
2

∆t , ψ
⟩
,(4.50)
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∀ψ ∈ H1
ΓD (Ω) and 0 ≤ n ≤ N − 1. Then, as a consequence of Lemmas 4.6 and 4.7,

we deduce⟨
Ln+ 1

2

∆t [êm,∆t], ψ
⟩
=
⟨
ξ
n+ 1

2

f − ξ
n+ 1

2

LΩ
, ψ
⟩
Ω
+
⟨
ξ
n+ 1

2
g − ξ

n+ 1
2

LΓ
, ψ
⟩
ΓR
,(4.51)

∀ψ ∈ H1
ΓD(Ω). Now the result follows by applying Theorem 4.3 to (4.51), noting that

e0m,∆t = 0 and using the upper bounds for ξLΩ , ξf , ξLΓ and ξg given in Lemmas 4.6
and 4.7.

Remark 4.10. Notice that constant J appearing in the previous theorem is
bounded in the limit when the diffusion tensor vanishes. In particular, Theorem
4.8 is also valid when A ≡ 0.

Theorem 4.9. Let us assume Hypotheses 1, 3, 4, 5, 6, 7 and 9, and Xe ∈
C5(Ω× [0, T ]). Let ϕm with

ϕm ∈ C3(L2(Ω)), ∇ϕm ∈ C3(H1(Ω)), ϕm|ΓR ∈ C3(L2(ΓR)),

be the solution of (4.44) and ϕ̂m,∆t be the solution of (4.9) subject to the initial value
ϕ0m,∆t = ϕ0m = ϕ0 ∈ H1(Ω). Then, there exist two positive constants J and D such
that, for ∆t < D we have √

γ

4

∣∣∣∣∣∣∣∣ ̂√
S[ detFRK ]R∆t[ϕm − ϕm,∆t]

∣∣∣∣∣∣∣∣
l2(L2(Ω))

+

√
Λ

2

∣∣∣∣∣∣∣∣ ̂
B̃RK (∇ϕm −∇ϕm,∆t)

∣∣∣∣∣∣∣∣
l∞(L2(Ω))

+

√
α

4

∣∣∣∣∣∣∣∣ ̂√
m̃RK (ϕm − ϕm,∆t)

∣∣∣∣∣∣∣∣
l∞(L2(ΓR))

≤ J ∆t2
(
||ϕm||C3(L2(Ω))

+||∇ϕm||C2(H1(Ω)) + ||∇ϕm ·m||C3(L2(ΓR)) + ||ϕm||C3(L2(ΓR))

+|| detFfm||C2(L2(Ω)) + ||f ||C1(T δ) + ||m̃gm||C3(L2(ΓR)) + ||g||C2(T δ

ΓR )

)
.

(4.52)

Proof. It is analogous to the one of the previous theorem, but using Theorem 4.4
instead of Theorem 4.3 and noting that∣∣∣∣∣∣ ̂R∆t[ξLΓ ]

∣∣∣∣∣∣
l2(L2(ΓR))

+
∣∣∣∣∣∣R̂∆t[ξg]

∣∣∣∣∣∣
l2(L2(ΓR))

≤ C̃∆t2
(
||∇ϕm ·m||C3(L2(ΓR))

+ ||ϕm||C3(L2(ΓR)) + ||m̃gm||C3(L2(ΓR)) + ||g||C2(T δ

ΓR )

)
.

This estimate follows by using Taylor expansions and∣∣(Xn+1
e (p)−Xn+1

RK (p)
)
− (Xn

e (p)−Xn
RK(p))

∣∣ ≤ C̃∆t3,∣∣((Fn+1)−1(p)− (Fn+1
RK )−1(p)

)
−
(
(Fn)−1(p)− (Fn

RK)−1(p)
)∣∣ ≤ C̃∆t3,∣∣( detFn+1(p)− detFn+1

RK (p)
)
− ( detFn(p)− detFn

RK(p))
∣∣ ≤ C̃∆t3.

Remark 4.11. In the particular case of diffusion tensor of the form A = ϵB with
ϵ > 0, constants J and D appearing in the previous theorem are bounded as ϵ→ 0.

Remark 4.12. Notice that, from the obtained estimates and by using a change
of variable, we can deduce similar ones in Eulerian coordinates (see [6] for further
details).
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5. Conclusions. We have performed the numerical analysis of a second-order
pure Lagrangian method for convection-diffusion equations with degenerate diffusion
tensor and non-divergence-free velocity fields. Moreover, we have considered general
Dirichlet-Robin boundary conditions. The method has been introduced and analyzed
by using the formalism of continuum mechanics. Although our analysis considers any
velocity field and use approximate characteristic curves, second order error estimates
have been obtained when smooth enough data and solutions are available. In the
second part of this paper ([7]), we analyze a fully discretized pure Lagrange-Galerkin
scheme and present numerical examples showing the predicted behavior (see also [6]).

Appendix A. In this section, firstly we prove some technical results which are
used throughout this paper. Then, we introduce a summary table of the main nota-
tions.

Lemma A.1. Under Hypothesis 1, there exists a parameter η > 0 such that if
∆t < η then Xn

RK(p) is defined ∀p ∈ Ω and ∀n ∈ {0, . . . , N}, and the following
inclusion holds

Xn
RK(Ω) ⊂ Ωδ

tn .

Proof. The result can be easily proved by applying Taylor expansion to Xe in the
time variable and using the regularity of v.

Lemma A.2. Under Hypothesis 1, if ∆t < η, η being the number introduced in
the previous lemma, there exists a constant C depending on v such that

||Fn
RK ||∞,Ω ≤ eT (||L||∞,T δ+C∆t) ∀ n ∈ {0, . . . , N}.(A.1)

Proof. The inequality follows by applying norms to (4.7), using the initial condi-
tion (4.6) and applying the discrete Gronwall inequality.

Lemma A.3. Under Hypothesis 1 if ∆t < min{η, 1/(2||L||∞,T δ)}, then

||(Fn
RK)−1||∞,Ω ≤ eT (||L||∞,T δ+C∆t) ∀ n ∈ {0, . . . , N}(A.2)

and

(Fn+1
RK )−1(p) = (Fn

RK)−1(p)
(
I −∆tLn+ 1

2 (Y n(p)) +O(∆t2)
)
,(A.3)

being the term O(∆t2) depending on v, p ∈ Ω and 0 ≤ n ≤ N − 1.
Proof. Firstly, we can write Fn+1

RK (p) = Mn
RK(p)Fn

RK(p), with Mn
RK(p) := I +

∆tLn+ 1
2 (Y n(p)) (I +∆t/2Ln(Xn

RK(p))). Now, by applying norms we have that ||I −
Mn

RK ||∞,Ω < 1. Thus,Mn
RK(p) is invertible for 0 ≤ n ≤ N−1 and then, by induction,

we deduce that Fn+1
RK (p) is invertible too, with (Fn+1

RK )−1(p) = (Fn
RK)−1(p)(Mn

RK)−1(p).
Moreover, (Mn

RK)−1(p) =
∑∞

j=0(I −Mn
RK(p))j so (A.3) follows. The proof of (A.2)

is analogous to the one of the previous lemma.
The following corollaries can be easily proved (see [6] for further details).

Corollary A.4. Under the assumptions of Lemma A.2, we have

||detFn
RK ||∞,Ω ≤ eT (|| div v||∞,T δ+C(v)∆t),(A.4)

detFn
RK(p) > 0 if ∆t < K,(A.5)

with K depending on v and 0 ≤ n ≤ N . Moreover, ∀p ∈ Ω detFn+1
RK (p) satisfies

detFn+1
RK (p) = detFn

RK(p)
(
1 + ∆t divvn+ 1

2 (Y n(p)) +O(∆t2)
)
,(A.6)
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being O(∆t2) depending on v and 0 ≤ n ≤ N − 1.
Corollary A.5. Under the assumptions of Lemma A.3, we have

det (Fn+1
RK )−1(p) = det (Fn

RK)−1(p)
(
1−∆t divvn+ 1

2 (Y n(p)) +O(∆t2)
)
,(A.7)

∀p ∈ Ω, ∀n ∈ {0, . . . , N − 1}, with O(∆t2) depending on v. Moreover, ∀n ∈
{0, . . . , N}, we have

|| det (Fn
RK)−1||∞,Ω ≤ eT (|| div v||∞,T δ+C(v)∆t).(A.8)

Lemma A.6. Under Hypothesis 1 if ∆t < min{η, 1/(2||L||∞,T δ),K}, where K is

the constant appearing in Corollary A.4, then, ∀p ∈ Ω and ∀n ∈ {0, . . . , N}, we have

c̃1 ≤ detFn
RK(p) ≤ C̃1, c̃2 ≤ |(Fn

RK)−T (p)u| ≤ C̃2,(A.9)

being c̃j > 0, C̃j > 0, j = 1, 2, constants depending on v and T , and u ∈ Rd with
|u| = 1.
Proof. The result follows from expressions (A.1), (A.2), (A.4), (A.5) and (A.8), and
by using the following equality

1 = |u| =
∣∣(Fn

RK)T (p)(Fn
RK)−T (p)u

∣∣ ∀u ∈ Rd, |u| = 1.(A.10)

Under Hypothesis 2, Lemma A.1 can be improved.
Lemma A.7. Let us assume Hypothesis 2. If ∆t < min{K, 1/(2||L||∞,T )}, then,

Xn
RK(p) is defined ∀p ∈ Ω and ∀n ∈ {0, . . . , N}, and Xn

RK(Ω) = Ω.
Proof. See Proposition 1 in [26].
Lemma A.8. Let us assume Hypotheses 1 and (4.31). Let us suppose α > 0 and

∆t < min{η, 1/(2||L||∞,T δ),K}, being η and K the constants appearing, respectively,
in Lemma A.1 and in Corollary A.4. Then, we have

⟨Qn+1, ψ + φ⟩Ω + ⟨Gn+1, ψ + φ⟩ΓR ≤ cs||Qn+1||2Ω +
4cg
α

||Gn+1||2ΓR

+
1

2

(∣∣∣∣∣∣∣∣√ detFn+1
RK ψ

∣∣∣∣∣∣∣∣2
Ω

+
∣∣∣∣∣∣√detFn

RKφ
∣∣∣∣∣∣2
Ω

)
+
α

32

∣∣∣∣∣∣∣∣√m̃n+1
RK + m̃n

RK (φ+ ψ)

∣∣∣∣∣∣∣∣2
ΓR

,

∀φ,ψ ∈ H1(Ω), with cs = 1/c̃1 and cg = 1/(c̃1c̃2), where c̃1 and c̃2 are the constants
appearing in Lemma A.6.

Proof. The estimate follows directly by applying the Cauchy-Schwarz inequality
to the left-hand side of the inequality, and using Young’s inequality and Lemma A.6.

Lemma A.9. Let us assume Hypotheses 1 and (4.31). Let ∆t < min{η,K}, being
η and K the constants appearing in Lemma A.1 and in Corollary A.4, respectively.
Then, we have

⟨
Qn+1, ψ − φ

⟩
Ω
≤ 2cs∆t

γ
||Qn+1||2Ω +

γ

16∆t

∣∣∣∣∣∣∣∣√ detFn+1
RK + detFn

RK(ψ − φ)

∣∣∣∣∣∣∣∣2
Ω

,

∀φ,ψ ∈ L2(Ω), where cs is the constant appearing in Lemma A.8.
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Proof. The result easily follows by applying the Cauchy-Schwarz inequality,
Young’s inequality and Lemma A.6.

Lemma A.10. Let us assume Hypotheses 1 and (4.31). Suppose that α > 0 and
∆t < min{η, 1/(2||L||∞,T δ),K}. Then, for any sequence {ψn}Nn=0 ∈ [L2(ΓR)]N+1

and any q ∈ {1, . . . , N}, the following inequality holds:

∣∣∣∣∣
q−1∑
n=0

⟨Gn+1, ψn+1 − ψn⟩ΓR

∣∣∣∣∣ ≤ 4cg
α

||Gq||2ΓR +
α

16
||
√
m̃q

RKψ
q||2ΓR +

1

2α
||G1||2ΓR

+
α

2
||ψ0||2ΓR +

∆tcg
2α

q−1∑
n=1

∣∣∣∣∣∣∣∣Gn+1 −Gn

∆t

∣∣∣∣∣∣∣∣2
ΓR

+
∆tα

2

q−1∑
n=1

||
√
m̃n

RKψ
n||2ΓR .

Proof. The result follows from the equality

q−1∑
n=0

⟨Gn+1, ψn+1 − ψn⟩ΓR = ⟨Gq, ψq⟩ΓR − ⟨G1, ψ0⟩ΓR

−∆t

q−1∑
n=1

⟨
Gn+1 −Gn

∆t
, ψn

⟩
ΓR

.

Indeed, the three terms on the right-hand side can be bounded by using the Cauchy-
Schwarz inequality, Young’s inequality and Lemma A.6.
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Ω: bounded domain Xe: motion

Ωt := Xe(Ω, t) T : trajectory of the motion

O :=
∪

t∈[0,T ] Ωt F = ∇Xe: Jacobian matrix of the deformation

P : reference map of Xe v: spatial description of the velocity

L := gradv Ψm: material description of a spatial field Ψ

A =

 An1 Θ

Θ Θ

: diffusion tensor field Ãm(p, t) := F−1(p, t)Am(p, t)F−T (p, t) detF (p, t)

m: the outward unit normal vector to Γ := ∂Ω m̃(p, t) := |F−T (p, t)m(p)|detF (p, t)

Xn
RK : second order Runge-Kutta approximation of Xn

e Fn
RK := ∇Xn

RK

Ωδ
t :=

∪
x∈Ωt

B(x, δ) Oδ :=
∪

t∈[0,T ] Ω
δ

t

ρ: density γ: lower bound for ρ

ρ1,∞ = ||ρ||1,∞,Oδ Λ: lower bound for the eigenvalues of An1

Ãn
RK := (Fn

RK)−1A ◦Xn
RK(Fn

RK)−T detFn
RK m̃n

RK = |(Fn
RK)−Tm|detFn

RK

C =
√
A cA = max{||G||2

∞,Oδ , ||C||2∞,Oδ}, Gij = | gradCij |

cv := maxt∈[0,T ] ||v(·, t)||1,∞,Ωδ
t

C̃n
RK := C ◦Xn

RK(Fn
RK)−T

√
detFn

RK

B =

 In1 Θ

Θ Θ

, In1 is the n1 × n1 identity matrix B̃n
RK = B(Fn

RK)−T
√

detFn
RK

Ŝ[ψ] := {ψn+1 + ψn}N−1
n=0 R̂∆t[ψ] :=

{
ψn+1 − ψn

∆t

}N−1

n=0
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[11] A. Bermúdez, M.R. Nogueiras, and C. Vázquez. Numerical solution of (degenerated)
convection-diffusion-reaction problems with higher order characteristics/finite elements.
Part II: Fully Discretized Scheme and Quadrature Formulas. SIAM. J. Numer. Anal.,
44:1854–1876, 2006.

[12] K. Boukir, Y. Maday, and B. Métivet. A high-order characteristics method for the incompress-
ible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 116:211–218, 1994.
ICOSAHOM’92 (Montpellier, 1992).

[13] K. Boukir, Y. Maday, B. Métivet, and E. Razafindrakoto. A high-order characteristics/finite
element method for the incompressible Navier-Stokes equations. Internat. J. Numer. Meth-
ods Fluids, 25:1421–1454, 1997.

[14] K. Chrysafinos and N. J. Walkington. Error estimates for discontinuous Galerkin approxima-
tions of implicit parabolic equations. SIAM J. Numer. Anal., 43:2478–2499 (electronic),
2006.

[15] K. Chrysafinos and N. J. Walkington. Error estimates for the discontinuous Galerkin methods
for parabolic equations. SIAM J. Numer. Anal., 44:349–366 (electronic), 2006.

[16] K. Chrysafinos and N. J. Walkington. Lagrangian and moving mesh methods for the convection
diffusion equation. M2AN Math. Model. Numer. Anal., 42:25–55, 2008.

[17] J. Douglas, Jr., and T.F. Russell. Numerical methods for convection-dominated diffusion prob-
lems based on combining the method of characteristics with finite element or finite differ-
ence procedures. SIAM J. Numer. Anal., 19:871–885, 1982.

[18] R.E. Ewing and H. Wang. A summary of numerical methods for time-dependent advection-
dominated partial differential equations. J. Comput. Appl. Math., 128:423–445, 2001.

[19] M.E. Gurtin. An Introduction to Continuum Mechanics. Mathematics in Science and Engi-
neering, 158, Academic Press, San Diego, 1981.
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