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A second order characteristics finite element scheme for natural

convection problems

M. Beníteza,∗, A. Bermúdeza

aDepartamento de Matemática Aplicada, Universidad de Santiago de Compostela, Campus Sur s/n,
E-15782 Santiago de Compostela, Spain

Abstract

In this paper a second order characteristics finite element scheme is applied to the nu-
merical solution of natural convection problems. Firstly, after recalling the mathematical
model, a second order time discretization of the material time derivative is introduced.
Next, fully discretized schemes are proposed by using finite element methods. Numerical
results for the two-dimensional problem of buoyancy-driven flow in a square cavity with
differentially heated side walls are given and compared with a reference solution.

Key words: natural convection, finite elements methods, characteristics method,
Lagrange-Galerkin methods

1. Introduction

Natural convection is present in many real situations, such as room ventilation, dou-
ble glass window design, etc. More important, it is behind the ocean and atmosphere
dynamics. Typically, fluid flow and heat transfer are governed by the partial differential
equation system of mass, momentum and energy conservation but in the case of natural
convection the so-called Boussinesq approximation is generally employed.

This paper concerns the numerical solution of this problem. Due to the importance of
the convective terms and in order to get upwind schemes, we use methods of characteristics
in combination with finite elements. These methods are based on time discretizations of
the material time derivative and were introduced in the beginning of the eighties of the
last century. They have been combined with different space discretizations, for example,
finite differences [16], finite elements ([24], [6], [8], [22], [30], [29], [25]), spectral finite
elements ([31], [1]), discontinuous finite elements ([3], [2], [4]), and so on. When combined
with finite elements they are also called Lagrange-Galekin methods.

Numerical solution of convection-diffusion partial differential equations by this kind of
methods is addressed in ([16], [24], [30], [15], [5]) among others. Unconditional stability,
independent of the diffusion coefficient, has been obtained in these works. Moreover, in
[24] and [30], error estimates are stated. More precisely, if △t denotes the time step,
h the mesh-size and k the degree of the finite elements space, estimates of the form
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O(hk) + O(△t) in l∞(L2(Rm))-norm are shown in [30] (m denotes the dimension of the
spatial domain). In [24] error estimates of the form O(hk) + O(△t) + O(hk+1/△t) in
l∞(L2(Ω))-norm are obtained under the assumption that the normal velocity component
vanishes on the boundary of Ω. All of these estimates involve constants which depend
on solution norms. For linear finite elements and for a velocity field vanishing on the
boundary a convergence of order O(h2) + O(min(h, h2/△t) + O(△t) in l∞(L2(Ω))-norm
is stated in [5], where the constants only depend on the data. In principle, the method
has been introduced for evolution equations but an adaption to solve convection-diffusion
stationary problems has been proposed in [7].

In [27] a second order characteristics method for solving constant coefficient convection-
diffusion equations with Dirichlet boundary conditions is studied. The Crank-Nicholson
discretization has been used to approximate the material time derivative. For a divergence-
free velocity field vanishing on the boundary and a smooth enough solution, stability and
O(△t2) + O(hk) error estimates in l∞(L2(Ω))-norm are stated (see also [10] and [11] for
further analysis).

In this work we use a three points second order formula to discretize the material time
derivative. This method has been proposed and analyzed for one-dimensional convection-
diffusion equations in [17], and for the incompressible Navier-Stokes equations in [12]. We
combine this time discretization with P1-bubble finite elements for the motion equation
and P2 finite elements for the energy equation.

In order to test the proposed methods, the problem of a buoyancy-flow in a square
cavity with vertical sides which are differentially heated is solved for 103 ≤ Ra ≤ 107.
This problem is suitable for testing and validating computer codes for convective ther-
mal problems, as the numerous references in the literature show. For example, in [13]
numerical solutions to the transient Navier-Stokes equations have been given for laminar
convective motion of a gas in an enclosed vertical slot with large horizontal temperature
differences. De Vahl Davis [14] uses a finite difference method for solving the stream
function-vorticity formulation of the problem; forward differences were used for the time
derivatives and second-order central differences for all space derivatives. He describes a
benchmark numerical solution obtained by Richardson’s extrapolation. It is used in the
present paper to assess the proposed methodology and to validate our computer code.

The paper is organized as follows. We present the governing equations in Section 2. In
Section 3 the weak formulation of the problem is stated. A second order time discretization
scheme is proposed in Section 4 together with the definition of the characteristics curves
associated with the velocity field and the introduction of a second order approximation
of them. Section 5 discusses the fully discretized scheme using finite elements spaces. In
Section 6, the two dimensional motion of a fluid in a square cavity whose vertical walls
are maintained at different temperatures is solved and the numerical results compared
with those given in [14].

2. Mathematical model

The governing equations of fluid flow are conservation of mass, momentum and en-
ergy. Let us assume our fluid is viscous, incompresible, Newtonian and Boussinesq-
approximated. Thus, the equations are given as (see for instance [9], [19], [28])
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Continuity :
∂u∗

∂x∗
1

+
∂v∗

∂x∗
2

= 0. (1)

Momentum:

∂v∗

∂t∗
+ grad ∗v∗v∗ + grad ∗π∗

E = −
α(△θ)0L

3

λ2
θ∗g +

η

ρλ
△∗v∗. (2)

Energy :
∂θ∗

∂t∗
+ v∗ · grad ∗θ∗ = △∗θ∗. (3)

In the above equations, the following nondimensionalization was employed:

x∗
1 = x1

L x∗
2 = x2

L u∗ = uL
λ

v∗ = vL
λ

t∗ = tλ
L2

π∗
E = πEL2

ρλ2 θ∗ = θ − θ0
θw − θ0

= θ − θ0

(△θ)0
ρ∗ =

ρ
ρ = 1,

(4)

where L is a suitable characteristic length, λ = k
ρcπ

is the thermal diffusivity and θw is a
characteristic temperature on the boundary.

Notations are quite standard,

ρ: density,

v∗: nondimensional velocity vector (u∗, v∗),

π∗
E: nondimensional fluctuation of pressure,

cπ: specific heat at constant pressure,

η: dynamic viscosiy,

θ∗: nondimensional temperature

k: thermal conductivity,

α: coefficient of volumetric thermal expansion at constant pressure, namely,

α = −
1

ρ

(
∂ρ

∂θ

)

π

.

Then, the dimensionless parameters involved in the model are

gα(△θ)0L
3

λ2
and Pr :=

η

ρλ
=

ν

λ
, (5)

where ν = η

ρ
is the kinematic viscosity.

The second parameter, Pr, is the Prandtl number approximating the ratio between
momentum diffusivity (i.e. viscosity) and thermal diffusivity.

The first parameter can be written as

gα(△θ)0L
3

λ2
=

gα(△θ)0L
3

λν

ν

λ
= RaPr, (6)

3



where

Ra :=
gα(△θ)0L

3

λν
, (7)

is the Rayleigh number, which is a dimensionless number associated with the heat transfer
within the fluid. It measures the ratio between the buoyancy force and the viscous force.
When the Rayleigh number is below a critical value, heat transfer is primarily in the form
of conduction; when it exceeds this critical value, heat transfer is primarily in the form of
convection. Moreover, in the last case, if Rayleigh number exceeds certain threshold the
flow is unstable. This instability, called Rayleigh-Bénard instability, appears when there
is a coupling between the dynamic field and the thermal field (see for instance [28]).

3. Weak Formulation

In what follows we drop the ∗ superscript for the sake of simplicity.
We consider an initial-boundary value problem in a domain Ω ⊂ R

2 with boundary Γ.
Let us suppose that the velocity and the temperature are given at initial time, namely,

v(x, 0) = v0(x), (8)

θ(x, 0) = θ0(x). (9)

Besides we impose the boundary condition

v = 0 on Γ,

to the motion equation. For the energy equation we consider mixed boundary conditions:
let us decompose the boundary Γ into two disjoint parts, ΓD and ΓN , and suppose the
temperature is given on ΓD while the heat flux is prescribed on ΓN . That is,

θ = θD on ΓD × (0, tf) , (10)

∂θ

∂n
= gN on ΓN × (0, tf) , (11)

where n is the outward unit normal vector to ΓN , and θD and gN are given scalar functions.
Let us recall the definition of the Hilbert spaces H1 (Ω) and L2(Ω):

L2(Ω) =

{
f : Ω → R measurable,

∫

Ω

f 2dx < ∞

}
, (12)

H1 (Ω) =

{
f : Ω → R measurable, f,

∂f

∂xi

∈ L2(Ω), i = 1, 2

}
, (13)

and denote by H1
ΓD

(Ω) the closed subspaces of H1 (Ω) defined by

H1
ΓD

(Ω) =
{
z ∈ H1 (Ω) /z|ΓD

= 0
}

.

We also introduce the notations

H1(Ω) = (H1(Ω))2,

H1
Γ(Ω) = {w ∈ H1(Ω) : w = 0 on Γ}.
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Now, multiplying equation (2) by a test function w ∈ H1
Γ(Ω), integrating in Ω and

applying a Green’s formula we easily get a weak formulation for the motion equation.
Similarly, multiplying (1) by a test function q ∈ L2(Ω) and integrating in Ω we obtain a
weak formulation for the incompressibility equation. The whole problem is the following:

PM.− Find v (·, t) ∈ H1
Γ(Ω) and πE (·, t) ∈ L2(Ω) such that

∫

Ω

(v′ + gradvv) · w dx + Pr

∫

Ω

gradv · gradw dx −

∫

Ω

πE div w dx (14)

=

∫

Ω

b · w dx, ∀w ∈ H1
Γ(Ω), ∀t ∈ (0, tf) ,

∫

Ω

div vq dx = 0, ∀q ∈ L2(Ω), ∀t ∈ (0, tf) , (15)

v(x, 0) = v0(x) in Ω, (16)

where b = RaPrθ · (0, 1).
Analogously, multiplying the heat equation (3) by a test function z ∈ H1

ΓD
(Ω), using a

Green’s formula and taking into account the boundary condition (11) we get the following
weak formulation:

PE.− Find a function θ(·, t) ∈ H1 (Ω) such that θ(·, t) = θD(·, t) on ΓD and

∫

Ω

(θ′ + grad θ · v) z dx +

∫

Ω

grad θ · grad z dx =

∫

ΓN

gNz dΓ, (17)

∀z ∈ H1
ΓD

(Ω) , ∀t ∈ (0, tf) ,

θ (x, 0) = θ0 (x) . (18)

4. Time discretization

In this section we consider a second order characteristics scheme for time semidis-
cretization of problems PM and PE.
First, we introduce a second order approximation of the total derivative of v and θ by
using a three points formula. Then, we propose a second order approximation of the
characteristics curves.

4.1. Characteristic curves

For a field φ, we denote by φ̇ the material time derivative. It is defined by

φ̇(x, t) :=
∂

∂t
φ(X(p, t), t)|p=P(x,t), (19)

where X is the motion corresponding to the velocity v and P its reference map. We
recall that, according to the standard formalism of continuum mechanics, x = X(p, t) is
the position at time t of the material point p, while the reference map P(x, t) yields the
material point located at position x at time t. If ϕ is a scalar field then

ϕ̇ =
∂ϕ

∂t
+ v · grad ϕ, (20)
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while for a vector field ϕ we have

ϕ̇ =
∂ϕ

∂t
+ gradϕv. (21)

Let us introduce the characteristic curves, which are simply the trajectories of the motion
associated with the velocity field v. Thus, for given (x, t) ∈ Ω × [0, tf ] the characteristic
curve through (x, t) is defined as the vector function

χ(x, t; ·) : (0, tf) −→ R
2

τ −→ χ(x, t; τ),
(22)

which can be obtained by solving the initial value problem

{
∂χ

∂τ
(x, t; τ) = v (χ(x, t; τ), τ) ,

χ(x, t; t) = x.
(23)

It represents the trajectory described by a material point that is placed at position x at
time t and is driven by the velocity field v. More precisely, χ(x, t; τ) = X(P(x, t), τ).
By using function χ, we can write an alternative expression for the material time derivative
of a field φ at (x, t). Indeed, we have

φ̇(x, t) :=
∂

∂t
φ(X(p, t), t)|p=P(x,t) =

∂

∂τ
[φ(χ(x, t; τ), τ)]|τ=t

. (24)

For the time variable, we introduce the number of time steps, N , and the time step
∆t = tf/N , obtaining the uniform mesh of (0, tf):

tn = n∆t, 0 ≤ n ≤ N. (25)

The solution will be approximated at times tn, n = 1, 2, . . . , N . Throughout this work,
we use the standard notation ψn(x) to denote an approximation of ψ(x, tn).

In order to discretize the material time derivative in equations (14) and (17) we propose
the following second-order backward approximation

y′(tn+1) =
3y(tn+1) − 4y(tn) + y(tn−1)

2∆t
+ O

(
∆t2

)
, (26)

for n ≥ 1 and, for n = 0, the first order backward Euler formula, namely,

y′(t1) =
y(t1) − y(t0)

∆t
+ O (∆t) . (27)

Moreover, for x ∈ Ω let χn(x) and χ̃n−1(x) be defined by

χn(x) := χ(x, tn+1; tn), n = 0, . . . , N − 1, (28)

χ̃n−1(x) := χ(x, tn+1; tn−1), n = 1, . . . , N − 1. (29)

We notice that
χ̃n−1(x) = χn−1(χn(x)). (30)
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Let us introduce the following time semidiscretizations of problems PM and PE.

For n = 0:

PMD1.− Find a vector field v1 ∈ H1
Γ(Ω) and a scalar field π1

E ∈ L2(Ω) such that

1

∆t

∫

Ω

v1 · w dx + Pr

∫

Ω

gradv1 · gradw dx

−

∫

Ω

π1
E div w dx =

∫

Ω

b1 · w dx +
1

∆t

∫

Ω

(
v0 ◦ χ0

)
· w dx, ∀w ∈ H1

Γ(Ω),

(31)

∫

Ω

div v1q dx = 0, ∀q ∈ L2(Ω). (32)

For n ≥ 1:

PMDn+1.− Find two functions vn+1 ∈ H1
Γ(Ω) and πn+1

E ∈ L2(Ω) such that

3

2∆t

∫

Ω

vn+1 · w dx + Pr

∫

Ω

gradvn+1 · gradw dx (33)

−

∫

Ω

πn+1
E div w dx =

∫

Ω

bn+1 · w dx +
2

∆t

∫

Ω

(vn ◦ χn) · w dx

−
1

2∆t

∫

Ω

(
vn−1 ◦ χ̃n−1

)
· w dx, ∀w ∈ H1

Γ(Ω),
∫

Ω

div vn+1q dx = 0, ∀q ∈ L2(Ω). (34)

For n = 0:

PED1.− Find a function θ1 ∈ H1 (Ω) such that θ1(x) = θD(x, t1) on ΓD and

1

∆t

∫

Ω

θ1 z dx +

∫

Ω

grad θ1 · grad z dx =

∫

ΓN

g1
Nz dΓ (35)

+
1

∆t

∫

Ω

(θ0 ◦ χ0)z dx, ∀z ∈ H1
ΓD

(Ω) .

For n ≥ 1:

PEDn+1.− Find a function θn+1 ∈ H1 (Ω) such that θn+1(x) = θD(x, tn+1) on ΓD and

3

2∆t

∫

Ω

θn+1 z dx +

∫

Ω

grad θn+1 · grad z dx =

∫

ΓN

gn+1
N z dΓ (36)

+
2

∆t

∫

Ω

(θn ◦ χn)z dx −
1

2∆t

∫

Ω

(θn−1 ◦ χ̃n−1)z dx, ∀z ∈ H1
ΓD

(Ω) .
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In most cases, Cauchy problem (23) cannot be exactly solved. Instead we propose
the following numerical approximations of χn (x) and χ̃n−1 (x) (see [12]):

• For PMD1: First order explicit Euler scheme

χ0
a (x) = x −△tv0 (x) . (37)

• For PED1: Second order explicit two-step sheme

χ0
a (x) = x −△t

(
2v1 (x) − v0 (x)

)
. (38)

• For n ≥ 1: Second order explicit two-step sheme

χn
a (x) = x −

(
2vn (x) − vn−1 (x)

) (
tn+1 − tn

)
, (39)

χ̃n−1
a (x) = x −

(
2vn (x) − vn−1 (x)

) (
tn+1 − tn−1

)
. (40)

5. Space discretization: finite element method

In this section we propose a space discretization of the above problems PMD and
PED by using finite elements (piecewise quadratic for the thermal problem and piecewise
linear + bubble for the fluid dynamics problem).

Let us suppose Ω is a bounded domain in R
2 with a Lipschitz polygonal boundary. Let

us consider two suitable families of regular triangulations of Ω to be denoted by τM
h for

the fluid dynamics problem PMD and τE
h for the thermal problem PED, both consisting

of elements K of diameter ≤ h. Moreover, we assume the latter is compatible with the
partition of the boundary into ΓD and ΓN .

We define the following polynomial spaces:

P2 (K) =
{
q|K : q : R

2 −→ R polynomial of degree ≤ 2
}

,

P1 (K) =
{
q|K : q : R

2 −→ R polynomial of degree ≤ 1
}

,

Pb (K) =
{
q + αλK

4 : q ∈ P1 (K) , α ∈ R
}

,

being λK
4 = 27

∏3
i=1 λK

i the bubble function of element K, where {λK
1 , λK

2 , λK
3 } denote the

barycentric coordinates with respect to the vertices of element K.
We consider the following spaces of finite elements:

Xh =
{
wh ∈ C0(Ω)2 : wh|K ∈ Pb (K)2 , ∀K ∈ τM

h

}
, (41)

X0h = {wh ∈ Xh : wh = 0 on Γ} , (42)

V 1
h =

{
ϕh ∈ C0(Ω) : ϕh|K ∈ P1 (K) , ∀K ∈ τM

h

}
, (43)

V 2
h =

{
ϕh ∈ C0(Ω) : ϕh|K ∈ P2 (K) , ∀K ∈ τE

h

}
, (44)

V 2
0h =

{
ϕh ∈ V 2

h : ϕh = 0 on ΓD

}
. (45)

In order to obtain fully discrete schemes of problems PMD (respectively, PED) we
use the approximations of functional spaces H1

Γ(Ω) and L2(Ω) (respectively, H1(Ω) and
8



H1
ΓD

(Ω)) given by (42) and (43) (respectively, (44) and (45)).
Thus, we obtain the following fully discrete problems:

PMD1
h.− Find two functions v1

h ∈ X0h and π1
E,h ∈ V 1

h such that

1

∆t

∫

Ω

v1
h · wh dx + Pr

∫

Ω

gradv1
h · gradwh dx −

∫

Ω

π1
E,h div wh dx (46)

= RaPr

∫

Ω

(0, θ0
h) ·wh dx +

1

∆t

∫

Ω

(
v0

h ◦ χ0
a,h

)
· wh dx, ∀wh ∈ X0h,

∫

Ω

div v1
hqh dx = 0, ∀qh ∈ V 1

h , (47)

with

v0
h(a) = v0(a) for all node a of the mesh τM

h , (48)

and where χ0
a,h (x) = x −△tv0

h (x).

PMDn+1
h .− Find two functions vn+1

h ∈ X0h and πn+1
E,h ∈ V 1

h such that

3

2∆t

∫

Ω

vn+1
h · wh dx + Pr

∫

Ω

gradvn+1
h · gradwh dx −

∫

Ω

πn+1
E,h div wh dx (49)

= RaPr

∫

Ω

(0, θn+1
h ) · wh dx +

2

∆t

∫

Ω

(
vn

h ◦ χn
a,h

)
· wh dx

−
1

2∆t

∫

Ω

(
vn−1

h ◦ χ̃n−1
a,h

)
· wh dx, ∀wh ∈ X0h,

∫

Ω

div vn+1
h q dx = 0, ∀qh ∈ V 1

h , (50)

where

χn
a,h (x) = x −

(
2vn

h (x) − vn−1
h (x)

) (
tn+1 − tn

)
,

χ̃n−1
a,h (x) = x −

(
2vn

h (x) − vn−1
h (x)

) (
tn+1 − tn−1

)
.

PED1
h.− Find a function θ1

h ∈ V 2
h such that

1

∆t

∫

Ω

θ1
h zh dx +

∫

Ω

grad θ1
h · grad zh dx =

∫

ΓN

g1
Nzh dΓ (51)

+
1

∆t

∫

Ω

(θ0
h ◦ χ0

a,h)zh dx, ∀zh ∈ V 2
0h,

with
θ0

h(a) = θ0(a), for all node a of the mesh τE
h , (52)

θ1
h(a) = θD(a, t1) for all node a on ΓD, (53)

9



and where χ0
a,h (x) = x −△t (2v1

h (x) − v0
h (x)).

PEDn+1
h .− Find a function θn+1

h ∈ V 2
h such that

3

2∆t

∫

Ω

θn+1
h zh dx +

∫

Ω

grad θn+1
h · grad zh dx =

∫

ΓN

gn+1
N zh dΓ

+
2

∆t

∫

Ω

(θn
h ◦ χn

a,h)zh dx −
1

2∆t

∫

Ω

(θn−1
h ◦ χ̃n−1

a,h )zh dx, ∀zh ∈ V 2
0h,

with
θn+1

h (a) = θD(a, tn+1) for all node a on ΓD, (54)

and where

χn
a,h (x) = x −

(
2vn

h (x) − vn−1
h (x)

) (
tn+1 − tn

)
,

χ̃n−1
a,h (x) = x −

(
2vn

h (x) − vn−1
h (x)

) (
tn+1 − tn−1

)
.

Notice that these problems are decoupled.

Remark 5.1. For a practical implementation of the method we need to use appropri-
ated quadrature formulas to approximate the terms involving the operators χn

a,h and χ̃n
a,h.

Some papers in the literature study the influence of quadrature formulas in both stability
and consistency errors (see for instance [22], [30] and [11]). In order to reduce the time
of calculation we will use quadrature formulas that require a small number of nodes while
maintaining the overall order of convergence.
Hence, in practice, mappings χn

a,h and χ̃n
a,h will be calculated only for quadrature nodes.

This will be specified in Section 6 below. Moreover, from the definition of χn
a,h ( respec-

tively, χ̃n
a,h), we deduce that for some quadrature nodes, ai, i = 1, . . . , num, (respectively,

ãi, i = 1, . . . , ñum), the characteristic curves go out of the computational domain. In
this case, we consider the first order Taylor expansion of vn

h and θn
h around ai (respec-

tively, ãi) to approximate (vn
h ◦ χn

a,h)(ai) and (θn
h ◦ χn

a,h)(ai) (respectively, (vn
h ◦ χ̃n

a,h)(ãi)
and (θh ◦ χ̃n

a,h)(ãi)), namely,

θn
h(χn

a,h(ai)) ≃ θn
h(ai) + grad θn

h(ai) · (χ
n
a,h(ai) − ai),

θn
h(χ̃n

a,h(ãi)) ≃ θn
h(ãi) + grad θn

h(ãi) · (χ̃
n
a,h(ãi) − ãi),

vn
h(χn

a,h(ai)) ≃ vn
h(ai) + gradvn

h(ai)(χ
n
a,h(ai) − ai),

vn
h(χ̃n

a,h(ãi)) ≃ vn
h(ãi) + gradvn

h(ãi)(χ̃
n
a,h(ãi) − ãi).

6. Numerical tests. Problem description

In order to assess the performance of the above numerical methods we solve two
test problems. The first one is the rotating Gaussian hill. The second one is a natural
convection problem in a square cavity whose vertical walls are maintained at different
temperatures.

Example 1: the rotating Gaussian hill
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This is a convection-diffusion problem with variable coefficients (see for instance [27]
and [11]) aiming to compare the computed solution by using first order characteristics
combined with piecewise linear finite elements with the one obtained from the second
order method proposed in this paper.
The spatial domain is Ω = (−1., 1.)×(−1., 1.) and tf = 2π. The “thermal conductivity” is
the tensor kij = σ1δij with σ1 given below. Moreover, v = (−x2, x1) and the source term
f = 0. We also impose appropriate Dirichlet boundary conditions and initial condition
such that the solution of the problem is

θ(x1, x2, t) =
σ2

σ2 + 4σ1t
exp

{
−

(x(t) − xc)
2 + (y(t) − yc)

2

σ2 + 4σ1t

}
(55)

where

x = x1 cos t + x2 sin t, y = −x1 sin t + x2 cos t,

(xc, yc) = (0.25, 0), σ1 = 0.001, σ2 = 0.01. (56)

Moreover, the velocity field does not vanish on the boundary, thus we have artificially
imposed θ = 0 wherever the characteristic curves go out of the computational domain.

Example 2: a steady state natural convection problem

We consider a two-dimensional problem of natural convection in a square cavity of side
L. For numerical simulation we use the Boussinesq approximate model (see Section 2),
with Prandtl number Pr = 0.71. The left and right walls are maintained at tempera-
tures θL and θR, respectively, where θL > θR, and the horizontal walls are adiabatic (i.
e. insulated, there is no heat transfer through these walls). The problem is depicted in
Figure 1, where we use the notation introduced in Section 2. The solution to this prob-
lem, namely, velocity, temperature and pressure were obtained for Rayleigh number in
the range 103 ≤ Ra ≤ 107.
By using the nondimensionalizations given in (4), the motion and the heat transfer are

governed by the nondimensional equations (1)-(3).
These equations are subjected to the following initial conditions (see Figure 1),

θ = u = v = 1, at t = 0, (57)

and to the boundary conditions for t > 0,

u = v = 0 θ = 1, for x1 = 0, 0 ≤ x2 ≤ 1, (58)

u = v = 0 θ = 0, for x1 = 1, 0 ≤ x2 ≤ 1, (59)

u = v =
∂θ

∂x2
= 0, for x2 = 0, 1, 0 < x1 < 1. (60)

This problem has been solved by the methods presented in the previous sections. We have
integrated in time step by step as far as to obtain a steady solution. More specifically,
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u = 0, v = 0,
∂θ

∂x2
= 0

u = 0, v = 0,
∂θ

∂x2
= 0

u = 0
v = 0
θ = 0

u = 0
v = 0
θ = 1

t = 0
u = v = θ = 1

Figure 1: Initial and boundary conditions.

the following test has been satisfied in all simulations:

| vn+1
h − vn

h |∞
∆t

≤ 10−8,

where | · |∞ denotes the maximum norm.

7. Numerical results

In practice the inner products in the Galerkin formulation are calculated using nu-
merical quadrature. In general this adds some terms to the final error estimates and, in
some cases, it produces the loss of unconditional stability. There are several papers in
the literature analyzing the effect of numerical integration in Lagrange-Galerkin methods
(see [22], [30], [26], [18], [32], [11]). In particular, in [22] Fourier analysis is developed
for the classical Lagrange-Galerkin method for piecewise linear finite element, applied to
the one dimensional linear convection equation and combined with several quadrature
formulas. Unconditional stability has been shown for trapezoidal rule and unconditional
instability has been proved when the mass matrix is exactly integrated and the term of
characteristics is approximated by using trapezoidal rule (Lemma 2.4 in [22]). Through-
out Appendix A we develop an analogous approach for the classical Lagrange-Galerkin
method for piecewise linear finite element with the strategy given in (61) combined with
vertex quadrature in the first term on the right side (see [23] for more details), applied to
the one dimensional linear convection equation. For this scheme conditional stability is
shown.

Thanks to the experience gained in the use of the proposed numerical methods for aca-
demical test examples, we have reached the conclusion that the most suitable quadrature
formulas are the following:

• The integrals corresponding to the motion equation are exactly calculated except
for the terms of characteristics which has been approximated by using first the

12



following decomposition:
∫

K

(vm
h ◦ χm

a,h) ·wh dx =

∫

K

(vm
h ◦ χm

a,h − vm
h ) · wh dx +

∫

K

vm
h · w dx. (61)

Then the first integral on the right-hand side is calculated by using a quadrature
formula exact for polynomials of degree 1 and the second one by using exact integra-
tion. The same technique is used by replacing χm

a with χ̃n−1
a . With this method we

have obtained satisfactory results, as Example 1 shows. A Fourier stability analysis
showing conditional stability has been shown in the Appendix. Moreover, we recall
that using the vertex quadrature directly in the characteristics term (i.e. in the
term on the left-hand side of (61)) leads to an unconditionally unstable scheme (see
[22]). Another alternative leading to an unconditionally stable scheme consists of
using the vertex quadrature formula not only in the characteristics term but also in
the mass term (see again [22]). In Example 1 we show numerical results comparing
these methods in the scalar case.

• The integrals corresponding to the energy equation were approximated by using an
exact quadrature formula for polynomials of degree 2.

Firstly, we show numerical results for the problem of the rotating Gaussian hill and then
for the problem of natural convection described above.

Example 1

For this problem we compare numerical results obtained with the classical character-
istics method, denoted by (SLG)1 and the second order method described in the present
paper for the thermal problem, denoted by (SLG)2. Moreover, we present numerical re-
sults showing that with the second order method (SLG)2 the strategy given in (61) lead
to more stable schemes than the classical one. This is illustrated in Table 1 which shows
the L2(Ω) norm of the computed solution for both schemes, when they are combined
with an exact quadrature formula for polynomials of degree 2. In particular, in Table 1
we denote by (SLG)2/classical the scheme (SLG)2 combined with an exact quadrature
formula for polynomials of degree 2 in all the terms, and by (SLG)2/strategy (61), the
scheme (SLG)2 with the strategy given in (61) and combined with an exact quadrature
formula for polynomials of degree 2 in the first term on the right side of (61).

We have also tested the above strategies for the classical order one method (SLG)1.
For this, we have solved the pure convection problem (σ1 = 0) in order to keep the case
analyzed in the Appendix. The results obtained are presented in Table 2 which shows
the L2(Ω) norm of the computed solution for the proposed schemes at time tf = 2π.
More precisely, in Table 2 we denote by (SLG)1/vertex the scheme (SLG)1 combined
with the vertex quadrature in all the terms, by (SLG)1/(61)-vertex, the scheme (SLG)1

with the strategy given in (61) and combined with vertex quadrature in the first term on
the right-hand side of (61) and by (SLG)1/exact − vertex the scheme (SLG)1 combined
with quadrature vertex in the characteristics term (i.e. in the term on the left-hand side
of (61)) and exact integration in the mass matrix. As predicted by Theorem A.1 and by
Lemma 2.4 in [22], the numerical results show that: (1) the scheme (SLG)1/(61)-vertex
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is conditionally stable; (2) the scheme (SLG)1/vertex is unconditionally stable; (3) the
scheme (SLG)1/exact-vertex is unconditionally instable.

In Figures 2, 3 and 4 we compare the numerical results obtained with the classical
characteristics method (SLG)1 and the second order method described above for the
thermal problem, (SLG)2, when both are combined with an exact quadrature formula for
polynomials of degree 2 in all the terms.

In Figure 2 (top) we have fixed a small time step and shown the L∞ ((0, tf); L
2(Ω))

error versus 1/h. In Figure 2 (bottom) we represent the computed L∞ ((0, tf); L
2(Ω))

error versus the number of time steps for a uniform spatial mesh of 133×133 vertices. We
can observe, for fixed h, an increasing error as the time step decreases below a threshold.
This is due to the presence of a term O(hα/∆t), added by the quadrature formula to the
error.

In Figure 3 we can see the exact solution compared with the computed solutions by
using the first order Lagrange-Galerkin method (SLG)1. In Figure 4 the exact solu-
tion is compared with the numerical results obtained by using the second order method
(SLG)2 proposed in the present paper. In both cases a uniform spatial mesh of 133× 133
vertices has been used and we have chosen the number of time step that minimizes
L∞ ((0, tf); L

2(Ω)) error. Clearly, (SLG)2 achieves better results than the correspond-
ing classical first order method.

time (t)
scheme

(SLG)2/classical (SLG)2/strategy (61)

0 0.1253 0.1253
2π/3 0.2014 0.1010
8π/3 17.1745 0.0898
2π 1972.1986 0.1208

Table 1: L2(Ω) norm of the computed solution with h = 1/25, ∆t = π/60, for Example 1 with σ1 = 0.001.

∆t
scheme

(SLG)1/vertex (SLG)1/exact-vertex (SLG)1/(61)-vertex

π/100 0.1035 2.2056E + 108 1.0834E + 045
π/150 0.1032 Infinity 420.5610
π/175 0.1031 Infinity 0.1029
π/200 0.1030 Infinity 0.1029
π/1000 0.1027 Infinity 0.1025

Table 2: L2(Ω) norm of the computed solution with h = 1/133 at time tf = 2π, for Example 1 with
σ1 = 0.
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Figure 3: Exact and computed solution of Example 1 at time tf = 2π with first order (SLG)1 and mesh
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= 133 (in each direction) and ∆t = π/200.
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Figure 4: Exact and computed solution of Example 1 at time tf = 2π with second order (SLG)2 and
mesh parameters Nx1

= Nx2
= 133 (in each direction) and ∆t = π/125.

Example 2

We study the problem of natural convection described in Section 6.

For Ra = 103 and Ra = 104, the solutions were computed using several uniform meshes
of 9 × 9, 17 × 17 and 33 × 33 vertices (for the motion equation), and 13 × 13, 25 × 25
and 49 × 49 vertices (for the energy equation). For higher Ra values, finer meshes were
necessary. To be more precise, for Ra ≥ 105 the solution we present here was obtained
using non-uniform meshes of 201 × 201 vertices which are finer near the hot and cold
walls. For Ra = 103, Ra = 104 the solutions were computed using uniform meshes with
h = 0.02.

From the point of view of applications one parameter of practical importance is the
heat rate convected from the wall to the fluid. This can be obtained by using the dimen-
sionless magnitudes. More precisely, the local heat flux in the horizontal direction at any
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point in the cavity is

Nu (x1, x2) = uθ −
∂θ

∂x1
.

In the present work we calculate quantities which can be readily compared. In particular,
we calculate the average Nusselt number on the vertical boundary of the cavity at x1 = 0:

Nu0 =

∫ 1

0

Nu(0, x2) dx2,

and the average Nusselt number in the whole cavity:

Nu =

∫ 1

0

∫ 1

0

Nu(x1, x2) dx2 dx1.

These integrals are computed by using compound Simpson quadrature. We calculate the
average Nusselt number on the vertical boundary of the cavity at x1 = 0 for different
temporal/spatial meshes to arrive at a grid-independent solution for Ra = 103. The
results are summarized in Table 3. Table 4 shows the error obtained comparing these
values with the ones obtained by de Vahl Davis [14] which are taken as reference values.
We observe an order of the error varying from 1.43 to 1.80. Moreover, due to numerical
quadrature a O(1/∆t) term is observed fixed h (see [24]). The calculated averages of the

∆t

Meshes
12\8 24\16 48\32

0.04 1.09080 1.11204 1.11822
0.02 1.08521 1.10910 1.11620
0.01 1.08335 1.10589 1.11473
0.005 1.08276 1.10481 1.11308
0.0025 1.08263 1.10437 1.11258
0.00125 1.08259 1.10426 1.11233
0.000625 1.08259 1.10423 1.11227
0.0003125 1.08258 1.10423 1.11226
0.00015625 1.10423
0.000078125 1.08259

Table 3: Grid sensitivity studies : convergence of the average Nusselt number on the vertical boundary
of the cavity at x1 = 0, for Ra = 103.

Nusselt number in the whole cavity are summarized in Table 5 together with the same
values from another investigations, for the purpose of comparison.
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∆t

Meshes
12\8 24\16 48\32

0.04 2.62E − 02 4.96E − 03 1.23E − 03
0.02 3.18E − 02 7.89E − 03 7.95E − 04
0.01 3.36E − 02 1.11E − 02 2.26E − 03
0.005 3.42E − 02 1.22E − 02 3.91E − 03
0.0025 3.44E − 02 1.26E − 02 4.42E − 03
0.00125 3.44E − 02 1.27E − 02 4.66E − 03
0.000625 3.44E − 02 1.28E − 02 4.72E − 03
0.0003125 3.44E − 02 1.28E − 02 4.74E − 03
0.00015625 1.28E − 02 4.74E − 03
0.000078125 3.44E − 02

Table 4: Error for the average Nusselt number on the vertical boundary of the cavity at x1 = 0 for
Ra = 103.

Ra

Ref
Ref. [14] Ref. [21] Ref. [20] Ref. [33] Present study

103 1.118 1.117 1.074 1.117 1.112
104 2.243 2.243 2.084 2.254 2.198
105 4.519 4.521 4.3 4.598 4.465
106 8.800 8.806 8.743 8.976 8.783
107 − 16.40 13.99 16.656 16.46

Table 5: Comparison of the average Nusselt numbers throughout the cavity.

Isotherm, isovelocity, isovorticity and isopressure contours are plotted in Figure 5.
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Figure 5: Natural-convection patterns simulated for 103 ≤ Ra ≤ 107:(a) isotherms;(b) iso−u contours;(c)
iso−v contours; (d) isovorticity contours; (e) isopressure contours.

The problem of natural convection in a square cavity with differentially heated vertical
walls has two different kinds of flow: (1) due to the boundary conditions; (2) a recirculating
motion in the core region. The first is the most important for higher Ra values, whereas
the second dominates for lower Ra numbers. These features can be observed in Figure
5. Two horizontal eddies can be seen in the iso−u contours, for Ra = 103 and Ra = 104.
For higher Rayleigh number these eddies are stretched to the top left and bottom right
corners. Something similar occurs for the iso−v contours; in this case two vertical eddies
appear for Ra = 103. These vertical eddies become closer to the hot and cold walls
with increasing Rayleigh numbers. The different regimes of flow are well depicted in
the isotherms of the Figure 5. At the lowest Rayleigh, the temperature is nearly linear
with the vertical contours; the heat transfer is almost entirely in the form of conduction.
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Increasing Ra, convection becomes increasingly prominent. The horizontal temperature
gradient becomes smaller which shows that heat transfer by conduction is reducing. For
Ra = 105 and higher, the growth of the boundary layer along the wall dominates, the
hot fluid has been carried to the cold wall, and viceversa. As Ra increases, the contours
gradually transform into horizontal except for the immediate neighborhood of the hot and
cold walls which remain parallel to the isothermal vertical walls.

8. Conclusions

In the present work a higher order characteristics finite element method for numer-
ical discretization of natural convection problems has been introduced. For validation
purposes, a numerical study of the problem of bouyancy-driven flow in a square cavity
with differentially heated side walls has been presented. A comparative analysis of the
obtained results with the ones appearing in the literature is developed. Convergence of
the solution has been shown by comparison with a previous benchmark solution. There
is a very good agreement of the isotherm, isovelocity, and isovorticity contours. We have
reported numerical solutions for Rayleigh numbers in the range 103 ≤ Ra ≤ 107, while
the benchmark solution given in [14] was presented for 103 ≤ Ra ≤ 106.

A. Appendix

In this section, we analyze the stability of the classical Lagrange-Galerkin method com-
bined with the technique given in (61), applied to the one-dimensional linear convection
equation with constant coefficients, namely,

θt + v
dθ

dx
= 0, (62)

with v constant.
Thus, we consider the following scheme

∫

Ω

θn+1
h ψj dx =

∫

Ω

(θn
h ◦ χa − θn

h)ψj dx +

∫

Ω

θn
hψj dx, (63)

where χa(x) = x− v∆t and ψj is the j − th basis function of the space finite element. In
the following, we develop Fourier analysis to study the stability of scheme (63). We recall
the definition of the Courant number: µ = |v|∆t/h.

Theorem A.1. The scheme (63) with linear elements on a uniform mesh is stable for
CLF numbers µ ≤ 1/3 when the mass matrix and the second term on the right side are both
exactly integrated and the first term on the right side is evaluated by vertex quadrature.

Proof. Firstly, let us compute the terms appearing in the j − th equation. We use the
notation θn

j := θh(xj, tn) for a meshpoint (xj , tn).
The mass matrix and the second term on the right side of (63) are both exactly integrated
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giving rise to
∫

Ω

θn+1
h ψj dx =

h

6

(
θn+1

j+1 + 4θn+1
j + θn+1

j−1

)
=

h

6

(
θn+1

j+1 − 2θn+1
j + θn+1

j−1

)
+ hθn+1

j

=
h

6
δ2θn+1

j + hθn+1
j ,

∫

Ω

θn
hψj dx =

h

6
δ2θn

j + hθn
j ,

where δ2θn+1
j = θn+1

j+1 − 2θn+1
j + θn+1

j−1 .
We shall consider CFL numbers µ ∈ [0, 1] and v ≤ 0, the case v > 0 is handled by
analogous argument. Then, the first term on the right side of (63) when it is approximate
by vertex quadrature, depends on µ in the form

∫

Ω

(θn
h(x − v∆t) − θn

h(x))ψj(x) dx = h
(
(1 − µ)θn

j + µθn
j+1 − θn

j

)

= −hµ
(
θn

j − θn
j+1

)
.

Hence, the scheme becomes, in operator notation

h

6
δ2θn+1

j + hθn+1
j = −hν

(
θn

j − θn
j+1

)
+

h

6
δ2θn

j + hθn
j .

Replacing θn
j by Eneiξjh gives

(
1 −

2s2

3

)
λ = −2ν(s2 − isc) + 1 −

2s2

3
,

where s = sin(ξh/2) and c = cos(ξh/2), and λ is the amplification factor. For stability
we require |λ|2 ≤ 1 for all ξ ∈ [−π, π] which holds for µ ≤ 1/3.
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