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Álgebra, Geometŕıa y Topoloǵıa, Universidad Complutense, Madrid,
Spain

Abstract

The g-barrelled groups constitute a vast class of abelian topological
groups. It might be considered as a natural extension of the class of
barrelled topological vector spaces.

In this paper we prove that g-barrelledness is a multiplicative prop-
erty, thus we obtain new examples of g-barrelled groups. We also prove
that direct sums and inductive limits of g-barrelled locally quasi-convex
groups are g-barrelled, too. Other permanence properties are consid-
ered as well.
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1 Introduction

Barrelled spaces constitute a well behaved class of locally convex spaces.
They were introduced by Bourbaki in 1950 and one of its main features is
that they are a class of spaces which satisfy the Closed Graph Theorem in
an optimal way. In fact, the following assertion holds: if a locally convex
space E has the property that any linear mapping from E into any Banach
space is continuous provided it has a closed graph, then E is a barrelled
space [24, 4.1.10]. Although one can define barrelled spaces in the broader
class of topological vector spaces, the context of locally convex spaces is a
more natural ground, in which they have richer properties.

The following characterization of barrelledness paves the way to intro-
duce a similar notion for topological abelian groups: “A locally convex space
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X is barrelled if and only if every pointwise bounded subset M of its dual
space X∗ is equicontinuous” [25, IV, 1.6].

The g-barrelled groups constitute the counterpart of barrelled spaces
for the class of abelian topological groups. We need some notation before
giving their formal definition. The unit complex circle is denoted by T. For
an abelian group G, Hom(G,T) denotes the set of all homomorphisms from
G to T (also called characters), which endowed with the pointwise operation
becomes a topological group. If G is further a topological group, the set
of all continuous characters of G constitutes a subgroup CHom(G,T) of
Hom(G,T), denoted by G∧. It is called the dual group of G. Let σ(G∧, G)
denote the weak topology on G∧ with respect to the family of all evaluation
mappings {x̃, x ∈ G} where x̃ : G∧ → T is defined by x̃(χ) := χ(x) for all
χ ∈ G∧. The topology σ(G∧, G) presents some similarity with the so called
weak∗ topology, a standard topology for the dual of a topological vector
space.

An abelian topological group (G, τ) is g-barrelled if any σ(G∧, G)-
compact subset M ⊆ G∧ is equicontinuous with respect to τ . This defi-
nition was first given in [14], where it is also proved that, among others,
locally compact, completely metrizable and Baire separable abelian groups
are g-barrelled. Thus, we can say that g-barrelled groups form a big class
of abelian topological groups. On the other hand, countable abelian nondis-
crete groups with sufficiently many continuous characters are not g-barrelled
(see Proposition 2.9 below).

Later on we will recall the notion of locally quasi-convex topology for an
abelian group. By the time being, let us loosely say that the locally quasi-
convex groups constitute a class of abelian topological groups that contains
the locally convex spaces considered just as groups, forgetting the linear
operation.

The subclass G formed by those g-barrelled groups that are locally quasi-
convex is best fitted inside the abelian topological groups to extend the
Mackey-Arens Theorem. This well known theorem asserts that, for a given
topological vector space (X, τ), the family LC(Xτ ) of all locally convex
topologies on X giving rise to the same dual space as τ , has always a maxi-
mum µ with respect to inclusion. It is called the Mackey topology for (X, τ).
Further, µ can be described as the topology of uniform convergence on the
σ(X∗, X)-compact and absolutely convex subsets of X∗.

Let us now consider for a fixed topological group (G, τ) the family
LQC(Gτ ) of all locally quasi-convex topologies on G giving rise to the same
dual group as τ . Only recently (in [4] and [16] independently), it has been
proved that the family LQC(Gτ ) may not have a maximum with respect to
the order relation ⊆. When such a maximum exists, we call it the Mackey
topology for (G, τ).

The class G is very satisfactory in the following sense: if (G, τ) ∈ G,
then (G, τ) is a Mackey group, i. e. τ is precisely the Mackey topology for
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(G, τ). In other words, the original topology τ is the maximum in LQC(Gτ ).
Further, τ can be described as the topology of uniform convergence on the
σ(G∧, G)−compact quasi-convex subsets of the dual group of G. Thus, τ is
the Mackey topology for (G, τ) in the strongest possible sense.

Since topological vector spaces are in particular abelian topological groups
with respect to their addition operation, it makes sense to study conditions
under which they are g-barrelled groups. It was proved in [14, 5.1] that a
tvs X is a g-barrelled group if and only if every σ(X∗, X)-compact subset
M ⊆ X∗ is equicontinuous. In other words, the vector space X∗ of continu-
ous linear forms on X and the group X∧ of continuous characters on X (each
endowed with the corresponding weak-star topology) play the same role in
proving whether a topological vector space X is a g-barrelled group. Thus,
any barrelled topological vector space is a g-barrelled topological group; the
converse is not true [14, Remark 16].

In this paper we first collect some properties of g-barrelled groups, either
known or easy to obtain. We enumerate the classes of groups which so far are
known to be g-barrelled. Our main contribution is to prove that arbitrary
products of g-barrelled groups are g-barrelled (Theorem 3.4). We also prove
that direct sums and inductive limits of g-barrelled groups are g-barrelled.
We show that the property of being g-barrelled is not inherited by closed
subgroups. Nevertheless, we prove that if a topological group G contains an
open subgroup A, then A is g-barrelled if and only if G is g-barrelled. We
also show that completions of g-barrelled groups are g-barrelled.

Notation and terminology

If G is an abelian group, the set of all homomorphisms from G to T will be
denoted by Hom(G,T), where T is the unit complex circle. The elements of
Hom(G,T) are called characters and Hom(G,T) has a group structure with
respect to the pointwise operation.

A group duality is a pair 〈G,H〉 where G is an abelian group and H is a
subgroup of Hom(G,T). Given a group duality 〈G,H〉, the weak topology
σ(G,H) is the initial topology on G with respect to the elements of H.

If (G, τ) is a topological abelian group, its dual group G∧ := CHom(G,T)
is the set of all continuous characters ofG. It is a subgroup of Hom(G,T) and
in particular gives rise to the natural duality 〈G,G∧〉. When G∧ separates
points of G, we say that G is MAP (a shorthand for “maximally almost
periodic”). Let A ⊆ G and B ⊆ G∧. The polar set of A is defined by

A. = {χ ∈ G∧ : χ(x) ∈ T+ ∀x ∈ A}

and the inverse polar of B is defined by

B/ = {x ∈ G : χ(x) ∈ T+ ∀χ ∈ B}

where T+ := {e2πit : t ∈ [−1
4 ,

1
4 ]}.
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A subset A ⊆ G is quasi-convex if for every x ∈ G \ A there exists an
element φ ∈ A. such that φ(x) /∈ T+. The quasi-convex hull of a subset
M ⊆ G is the smallest quasi-convex subset of G that contains M . It is
straightforward to prove that it coincides with M./; in particular M is
quasi-convex if and only if M = M./. The topological group (G, τ) is said
to be locally quasi-convex if it admits a basis of neighborhoods of zero
formed by quasi-convex subsets.

If H is a subgroup of G, then H. = H⊥ := {χ ∈ G∧ : χ(H) = {1}}. A
subset S ⊆ G∧ is equicontinuous with respect to τ if and only if S ⊆ U. for
some τ -neighborhood of zero U in G.

Let (G, τ) be a topological abelian group. The quasi-convex neighbor-
hoods of zero in (G, τ) form a basis of neighborhoods of zero for a group
topology Qτ on G. Explicitly, such a basis can be described as the fam-
ily B = {U./, U ∈ N}, where N stands for the τ - neighborhood system
of the neutral element. The topology Qτ is the finest among the locally
quasi-convex group topologies weaker than τ (see [9, Lemma 7]). It will
be called the locally quasi-convex modification of τ . It is easy to prove that
(G,Qτ)∧ = G∧, and that (G,Qτ) is Hausdorff if and only if (G, τ) is a MAP
group.

All precompact Hausdorff topologies on an abelian group G have the
form σ(G,L) where L is a subgroup of Hom(G,T) which separates the points
of G. Moreover L = (G, σ(G,L))∧ [15]. This result will be quoted in what
follows as “Comfort-Ross Theorem”.

Let (G, τ) be a topological abelian group. The dual group of G endowed
with the pointwise convergence topology σ(G∧, G) will be abbreviated to
G∧p whilst G∧co will stand for G∧ endowed with the compact-open topology
τco. We call the latter the Pontryagin dual group of G.

A group topology ν on an abstract abelian group G is said to be com-
patible with the duality 〈G,L〉 if (G, ν)∧ = L. By Comfort-Ross Theorem
the weak topology σ(G,L) is compatible with the duality 〈G,L〉 and it is in
fact the bottom element of the family of all compatible topologies partially
ordered by the relation ⊆.

If (G, τ) is an abelian topological group, a topology compatible with the
duality 〈G,G∧〉 will be also called compatible with τ .

If G and H are topological abelian groups and ϕ : G→ H is a continuous
homomorphism, the adjoint homomorphism ϕ∧ : H∧ → G∧ is defined by
ϕ(χ) = χ ◦ ϕ. Clearly ϕ∧ is continuous if both dual groups H∧ and G∧

are endowed with their respective pointwise convergence topologies, or with
their respective compact-open topologies.

For a topological abelian group G, we denote by αG : G → (G∧co)
∧

and βG : G → (G∧p )∧ the corresponding evaluation maps. We will use the
symbols αG and βG regardless of the topologies considered on their ranges.
Observe that for every M ⊆ G one has α−1G (M..) = β−1G (M..) = M./.

A topological abelian group G is said to be reflexive if αG is a topological
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isomorphism from G to (G∧co)
∧
co. The celebrated Pontryagin-van Kampen

Theorem asserts that every locally compact abelian group is reflexive. After
this result appeared, many other classes of groups have been shown to satisfy
this important property. (A survey of results in this direction can be found
in [11].)

On the other hand, by Comfort-Ross Theorem, (G∧p )∧ ∼= G if G is a MAP
group, and βG is always continuous from G to (G∧p )∧p . It is a topological
isomorphism if and only if G is precompact.

If (Gi)i∈I is a family of abelian groups, we will denote by
⊕

i∈I Gi its
direct sum, i.e. the subgroup of the product

∏
i∈I Gi formed by those x =

(xi)i∈I such that xi = 0 for almost all i ∈ I.
If (Gi)i∈I is a family of topological abelian groups, the symbol

∏
i∈I Gi

will stand for the product group endowed with the product topology. On the
other hand, whenever we refer to the direct sum

⊕
i∈I Gi as a topological

group, the topology implicitly considered is Kaplan’s asterisk topology [19],
which is in general finer than the one induced by the product. Taking these
conventions into account, we have the following natural isomorphisms [6,
Proposition 14.11]:

(i) (
∏
i∈I

Gi)
∧
co
∼=
⊕
i∈I

(Gi)
∧
co, (ii) (

⊕
i∈I

Gi)
∧
co
∼=
∏
i∈I

(Gi)
∧
co (1)

In particular, the product and the direct sum of a family of reflexive
groups are both reflexive.

The classical Glicksberg theorem [17] states that for a locally compact
abelian group (G, τ), the family of τ -compact subsets of G coincides with
that of σ(G,G∧)–compact subsets of G. This result was generalized in [8]
to the wider class of nuclear groups and later in [3] to the even wider class
of Schwartz groups. Nuclear groups constitute a class of topological groups
which includes all locally compact abelian groups and all nuclear locally
convex spaces, and is closed under formation of subgroups, Hausdorff quo-
tients and products. The notion of a Schwartz group, based upon that of a
Schwartz vector space, was introduced in [5]. The class of Schwartz groups
contains the nuclear groups and all the free abelian groups over a kω-space.
It is also closed under formation of subgroups, Hausdorff quotients and prod-
ucts. In particular dual groups of metrizable topological abelian groups are
kω-spaces and therefore they are Schwartz groups.

The following fact will be used in the sequel:

Proposition 1.1. [2, Proposition 3.5] Let G be a topological abelian group
and U a neighbourhood of zero in G. Then U. is compact in G∧co. In
particular, σ(G∧, G) and τco induce the same topology on any equicontinuous
subset of G∧.
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2 Definition and first properties of g-barrelled groups

The notion of g-barrelled group was first given in [14], where it is highligthed
that g-barrelled groups constitute a vast class of topological groups.

Definition 2.1. A Hausdorff topological abelian group (G, τ) is said to be
g-barrelled if every σ(G∧, G)-compact subset of G∧ is τ -equicontinuous.

We next give some general properties of g-barrelled groups.

Proposition 2.2. Let (G, τ) be a g-barrelled group. The following claims
hold:

(a) The canonical mapping αG : G→ (G∧co)
∧
co is continuous.

(b) The group G∧co satisfies Glicksberg’s Theorem.

(c) If K ⊆ G∧ is σ(G∧, G)-compact, then its σ(G∧, G)−quasi-convex hull
K/. is compact in τco. In particular, it is also σ(G∧, G)-compact.

Proof. The proof is straightforward using Proposition 1.1.

Proposition 2.3. (a) Let (G, τ) be a MAP topological abelian group. Then
(G, τ) is g-barrelled if and only if (G,Qτ) is g-barrelled.

(b) Let (G, τ) be a precompact abelian group. Then (G, τ) is g-barrelled if
and only if every σ(G∧, G)−compact subset of G∧ is finite.

Proof. (a) follows from the fact that (G, τ) and (G,Qτ) have the same dual
group and the same equicontinuous subsets. To prove (b), note that the
only equicontinuous subsets of the dual group of a precompact group are
the finite ones.

The following result collects the properties which currently are known
to imply g-barrelledness.

Theorem 2.4. Let G be a topological abelian group satisfying any of the
following properties:

(a) G is separable and a Baire space

(b) G is metrizable and all its closed separable subgroups are Baire spaces

(c) G is Čech-complete

(d) G is pseudocompact

(e) G is precompact bounded torsion and a Baire space

Then G is g-barrelled.
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Proof. For (a) and (b) see [14, Corollary 1.6]. (c) is a consequence of The-
orems 2.3 and 1.1 in [23]. (d) follows from [18, Proposition 4.4]. (e) follows
from [13, Theorem 3.3].

In [21] it was proved that ω-bounded groups are g-barrelled. This was
the first new class of g-barrelled groups after the ones given in [14]. Note
that ω-bounded groups are included in (d) of the previous theorem.

Since g-barrelled groups were first defined in the context of Mackey
topologies for groups, let us briefly revisit this important connection in a
way convenient for our purposes. We start with a general fact:

Lemma 2.5. Let (G, τ) be a topological abelian group. The evaluation map-
ping βG : G → (G∧, σ(G∧, G))∧ is a homomorphism onto, and it is open
from (G,Qτ) to (G∧, σ(G∧, G))∧co.

Proof. By Comfort-Ross Theorem, βG is onto.
In order to see that βG : (G,Qτ) → (G∧, σ(G∧, G))∧co is open, take a

quasi-convex neighborhood of zero U in G. The set K := U. is a σ(G∧, G)-
compact subset of G∧ by Proposition 1.1, thus K. is a neighborhood of zero
in (G∧, σ(G∧, G))∧co. Hence, it is enough to show that K. ⊆ βG(U). Indeed,
taking into account that βG is onto, fix βG(g) ∈ K. = U... We have that
g ∈ U./ = U .

Proposition 2.6. Let (G, τ) be a topological abelian group. The following
properties are equivalent:

(a) (G, τ) is g-barrelled.

(b) The evaluation mapping βG : (G, τ)→ (G∧, σ(G∧, G))∧co is continuous.

(c) The evaluation mapping βG : (G,Qτ) → (G∧, σ(G∧, G))∧co is continu-
ous.

If moreover (G, τ) is MAP (resp. locally quasi-convex), these properties are
also equivalent to

(d) The evaluation mapping βG : (G,Qτ) → (G∧, σ(G∧, G))∧co (resp. βG :
(G, τ)→ (G∧, σ(G∧, G))∧co) is a topological isomorphism.

Proof. (a)⇒(c): Fix a σ(G∧, G)-compact K ⊆ G∧. By hypothesis it is
equicontinuous. Hence there exists a τ -neighborhood of zero U such that
K ⊆ U.. Thus U./ ⊆ K/, or in other words, βG(U./) ⊆ K.. Since K was
arbitrary, this proves continuity.

(d)⇒(c)⇒(b) is trivial.
(b)⇒(a): Fix a σ(G∧, G)-compact subset K ⊆ G∧; let us see that K is

equicontinuous. Since K. is a neighborhood of zero in (G∧, σ(G∧, G))∧co and
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βG is continuous, K/ = β−1G (K.) is a τ -neighborhood of zero. This means
that K is equicontinuous.

Assume that (G, τ) is MAP. To prove (c)⇒(d) it suffices to take into
account that the evaluation mapping βG is injective and apply Lemma 2.5.

Note that (a)⇔(d) in Proposition 2.6 is a slight improvement of Propo-
sition 8.35 in [21].

The next results lead to the proof that whenever there exists a g-barrelled
topology in the family of all compatible topologies, it is necessarily the
Mackey topology.

Proposition 2.7. Let (G, τ) be a g-barrelled, MAP topological abelian group.
Let ν be a group topology on G which is compatible with τ. Then,

(a) Qν ≤ Qτ

(b) if moreover Qτ ≤ ν, then ν is also g-barrelled and has the same locally
quasi-convex modification as τ.

Proof. (a) By Proposition 2.6 the evaluation mapping βτ : (G,Qτ) →
(G∧, σ(G∧, G))∧co is continuous. Since ν is compatible with τ, we ob-
tain the same group (G∧, σ(G∧, G))∧co if we consider the topology ν on
G instead of τ. By Lemma 2.5 the evaluation mapping βν : (G,Qν)→
(G∧, σ(G∧, G))∧co is open and onto; since (G, ν) is MAP, it is also in-
jective. We deduce that β−1ν ◦ βτ is continuous. But this composite
mapping is simply the identity from (G,Qτ) to (G,Qν). The result
follows.

(b) We have Qτ ≤ Qν by the assumption, and Qν ≤ Qτ by (a). Thus
Qτ = Qν. Since ν is compatible with τ, they give rise to the same
dual group (G∧, σ(G∧, G))∧co. By (a)⇔(c) in Proposition 2.6, ν is g-
barrelled.

In the class of precompact groups, g-barrelledness is a very restrictive
property (see for instance Proposition 2.3 (b)). However it does not imply
pseudocompactness, as we next prove.

Example 2.8. A family of precompact g-barrelled groups that are not pseu-
docompact.

Proof. Denote by tT the torsion part of T. It is a divisible subgroup, there-
fore T can be decomposed as an algebraic direct sum, say T = tT ⊕ G, for
some subgroup G ≤ T. If G is endowed with the topology induced by that
of T, it is of the second category in T. Otherwise, taking into account that
tT is countable and the above decomposition of T, we would contradict the
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fact that T is a Baire space. Now, by [20, Proposition 9.8], the topological
group G is a Baire space, and by Theorem 2.4 (a), it is g-barrelled.

As G is a proper, infinite subgroup of T, it is precompact and non-
compact. On the other hand any metrizable pseudocompact space must be
compact. Thus, we obtain that G is not pseudocompact.

Clearly, all possible direct summands G complementing tT in T have the
same properties.

Next we present a class of topological groups which are not g-barrelled.

Proposition 2.9. Any countable, MAP g-barrelled group is discrete.

Proof. Let (G, τ) be a countable, MAP g-barrelled group. From the natural
embedding (G∧, σ(G∧, G)) ↪→ TG we deduce that (G∧, σ(G∧, G)) is metriz-
able. Since it is also precompact, it has the same Pontryagin dual group as
its completion ([2, 4.10] or [10]). This implies that (G∧, σ(G∧, G))∧co is dis-
crete. From (a)⇔(d) in Proposition 2.6 we deduce that (G,Qτ) is discrete.
Hence (G, τ) is also discrete.

Since locally quasi-convex, g-barrelled groups are always “dual” groups
(Proposition 2.6 (d)), it is natural to study reflexivity in the class G, formed
by the latter. We first state a general fact, whose proof is straightforward
taking into account that the quasi-convex hull of a finite subset of a MAP
group is finite [2, 7.11].

Lemma 2.10. For a MAP topological group (G, τ) the following facts are
equivalent:

(a) The τ -compact subsets of G are finite.

(b) The compact-open topology on G∧ coincides with σ(G∧, G).

Proposition 2.11. Let G be a g-barrelled, locally quasi–convex group. Con-
sider the following properties:

(a) The τ -compact subsets of G are finite.

(b) G∧p is reflexive.

(c) (G, τ) is reflexive.

Then (a)⇔ (b)⇒ (c).

Proof. By Proposition 2.6(d) and Lemma 2.10 it is clear that (a) ⇒ (c).
The converse does not hold as G = R endowed with the euclidean topology
shows.
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Let us prove now that (a)⇒ (b). From Proposition 2.6(d), we have

(G∧p )∧co
∼= (G, τ)

Taking dual groups on both sides

((G∧p )∧co)
∧
co
∼= G∧co

Now by Lema 2.10 applied to the right-hand side of the isomorphism, we
get

((G∧p )∧co)
∧
co
∼= G∧p

.
For the converse (b)⇒ (a), starting with

((G∧p )∧co)
∧
co
∼= G∧p

and taking into account that G is g-barrelled and locally quasi-convex we
apply Proposition 2.6(d) to the left-hand side of the isomorphism to obtain

(G, τ)∧co
∼= G∧p

Again by Lemma 2.10 we obtain that the τ -compact subsets of G are finite.

3 Permanence properties of g-barrelled groups

In this section we obtain new classes of g-barrelled groups by establishing
permanence properties.

In order to prove that g-barrelledness is a multiplicative property, we
first consider countable products.

Lemma 3.1. Let Hn (n ∈ N) be a sequence of g-barrelled groups. Then∏
Hn is a g-barrelled group.

Proof. Let τn be the topology on each Hn and let τπ denote the product
topology. By Proposition 2.6, we need to show that the evaluation map

(
∏

Hn, τπ)→
(⊕

H∧n , σ(
⊕

H∧n ,
∏

Hn)
)∧
co

is continuous. We will express it as the composition of three continuous
mappings, as follows:

Step 1. Consider the evaluation mapping βHn : (Hn, τn)→ (H∧n , σ(H∧n , Hn))∧co
for all n ∈ N and denote by j the product mapping:

j : (
∏

Hn, τπ)→
∏

(H∧n , σ(H∧n , Hn))∧co

10



By Proposition 2.6, βHn is continuous for all n ∈ N, therefore j is continuous.
Step 2. As mentioned in the formula (1)(ii), there is a natural isomor-

phism ∏
(H∧n , σ(H∧n , Hn))∧co

∼=
(⊕

(H∧n , σ(H∧n , Hn))
)∧
co

Step 3. It is easy to see that the topological groups
⊕

(H∧n , σ(H∧n , Hn))
and (

⊕
H∧n , σ(

⊕
H∧n ,

∏
Hn)) are algebraically the same and have the same

dual group
∏
Hn. Let us see that they also have the same compact subsets.

Indeed, the nontrivial part is to show that every σ(
⊕
H∧n ,

∏
Hn)-compact

set is compact in
⊕

(H∧n , σ(H∧n , Hn)). But
⊕

(H∧n , σ(H∧n , Hn)) is a nuclear
group, as a countable sum of precompact groups [6, Proposition 7.8]. Since
nuclear groups satisfy Glicksberg theorem [8], all weakly compact subsets
(i. e. σ(

⊕
H∧n ,

∏
Hn)-compact sets) of this group are compact.

We conclude that the identity mapping(⊕
(H∧n , σ(H∧n , Hn))

)∧
co
→
(⊕

H∧n , σ
(⊕

H∧n ,
∏

Hn

))∧
co

is continuous.

Leaning on Lemma 3.1 we can prove now that an arbitrary product of
g-barrelled groups is g-barrelled. To this end we give several lemmas.

For an arbitrary index set I, and for all i ∈ I, let Gi be a topological
abelian group and G :=

∏
i∈I Gi. We first prove that equicontinuous subsets

of G∧ are “contained” in finite products and the same happens to σ(G∧, G)-
compact subsets of G∧, provided that each Gi is g-barrelled. In the following
Lemmas, we denote by pj :

∏
i∈I Gi → Gj and πj :

⊕
i∈I G

∧
i → G∧j the

corresponding projections for every j ∈ I.

Lemma 3.2. Let G :=
∏
i∈I Gi where Gi is a topological abelian group for

every i ∈ I, and G has the corresponding product topology. Any equicontin-
uous subset M ⊆ G∧ satisfies πi(M) = {0} for almost all i ∈ I.

Proof. Let M be an equicontinuous subset of G∧. It must be contained
in the polar of a 0-neighborhood V . Since V contains a set of the form⋂
i∈F p

−1
i ({0}) where F is a finite subset of I, clearly for every j ∈ I \ F we

must have πj(M) = 0.

Lemma 3.3. Let G =
∏
i∈I Gi, where Gi is a g-barrelled group, and I

an arbitrary index set. Every σ(G∧, G)-compact subset M ⊆ G∧ satisfies
πi(M) = {0} for almost all i ∈ I.

Proof. Assume by contradiction that M ⊆ G∧ is σ(G∧, G)-compact and
πi(M) 6= {0} for all i ∈ J ⊆ I being |J | = ℵ0. Denote by H :=

∏
i∈J Gi and

correspondingly H∧ =
⊕

i∈J G
∧
i .
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Define
Φ :
⊕
i∈I

G∧i →
⊕
i∈J

G∧i

as the natural projection.
Clearly Φ is continuous from the σ(G∧, G) topology to the σ(H∧, H)

topology of the range space. Thus Φ(M) is σ(H∧, H)-compact.
By Lemma 3.1, the product of countably many g-barrelled groups is g-

barrelled and therefore Φ(M) is equicontinuous. By Lemma 3.2, πi(Φ(M)) =
{0} for almost all i ∈ J , which contradicts our choice of J ⊆ I.

Theorem 3.4. Let G =
∏
i∈I Gi be an arbitrary product of abelian topo-

logical groups. Then G is g-barrelled if and only if Gi is g-barrelled for all
i ∈ I.

Proof. Assume that each Gi is g-barrelled. Fix a σ(G∧, G)-compact subset
M ⊆ G∧. By Lemma 3.3 there exists a finite subset F ⊆ I such that
M ⊆

∏
i∈F G

∧
i ×

∏
i/∈F {0}. Thus M can be identified with a subset of∏

i∈F G
∧
i , call it M ′, and let us work in the finite subproduct corresponding

to the indexing set F . Since
∏
i∈F G

∧
i is the dual group of

∏
i∈F Gi which by

Lemma 3.1 is g-barrelled, there must exist a zero neighborhood U =
∏
i∈F Oi

in
∏
i∈F Gi such that M ′ ⊆ U.. Now clearly M ⊆ (

∏
i∈F Oi ×

∏
i∈I\F Gi)

..

Therefore M is equicontinuous in G∧ with respect to the product topology
on G. Thus, G is g-barrelled.

Next we show that each Gi is g-barrelled if G is g-barrelled. Let M be
a σ(G∧i , Gi)-compact subset of G∧i . Clearly

W := M ×
∏
j 6=i
{0} ⊆

⊕
i∈I

G∧i

is σ(G∧, G)-compact.
By the assumption on G, W is equicontinuous and hence there exists

a neighborhood of zero, V such that ϕ(V ) ⊆ T+ for all ϕ ∈ W . Since all
ϕ ∈ W have the form ϕ := (ϕj)j∈I where ϕi ∈ M and ϕj = 0 for every
j 6= i, then ϕ(x) = ϕi(xi) ∈ T+ for all x ∈ V and all ϕi ∈ M . Hence
M ⊆ (πi(V ))..

In [22] several attempts were done in order to prove that products of
Mackey groups are again Mackey. Positive results were achieved there for
”small products” (less or equal than c factors) of separable locally compact
abelian groups. Now, by means of Theorem 3.4 we can prove it in greater
generality.

Corollary 3.5. Let {(Gi, τi), i ∈ I} be an arbitrary family of locally compact
abelian groups. The product

∏
i∈I Gi endowed with the product topology is a

Mackey group.

12



Proof. Just take into account Theorem 3.4, together with the fact that a
g-barrelled group carries the Mackey topology.

The following question remains open:

Question 3.6. If Gi is a Mackey group for every i ∈ J , is the product∏
i∈J Gi also a Mackey group?

Next we are going to obtain the stability of g-barrelledness for direct
sums, quotients and inductive limits.

Proposition 3.7. Let I be an arbitrary index set. Let Gi be a g-barrelled
topological abelian group for each i ∈ I. The direct sum

⊕
i∈I Gi, endowed

with Kaplan’s asterisk topology, is g-barrelled.

Proof. Let G be the direct sum
⊕

i∈I Gi. Then G∧ =
∏
i∈I G

∧
i .

For each i ∈ I, the projection πi : (G∧, σ(G∧, G)) → (G∧i , σ(G∧i , Gi)) is
continuous. Therefore if we take a σ(G∧, G)-compact set K, its image πi(K)
is σ(G∧i , Gi)-compact and then by hypothesis equicontinuous for each i ∈ I.

Let us take for each i ∈ I a neighborhood of zero Ui in Gi such that
πi(K) ⊆ U.i . It is not difficult to prove that

∏
i∈I U

.
i ⊆ (

⊕∗
i∈I Ui)

., where⊕∗
i∈I Ui is the zero neighborhood in G associated to the family of neighbor-

hoods {Ui} (see [12, Lemma 20]). Therefore K ⊆
∏
i∈I πi(K) ⊂

∏
i∈I U

.
i ⊆

(
⊕∗

i∈I Ui)
. and consequently G is g–barrelled.

Proposition 3.8. Let G be a g-barrelled group and let H be a closed sub-
group of G. Then G/H is g-barrelled.

Proof. Let ϕ : G→ G/H be the quotient mapping. Its adjoint mapping ϕ∧ :
((G/H)∧, σ((G/H)∧, G/H))→ (G∧, σ(G∧, G)) defined by ϕ∧(χ) = χ ◦ ϕ is
clearly continuous. Choose a σ((G/H)∧, G/H)−compact set K ⊆ (G/H)∧.
The set ϕ∧(K) is σ(G∧, G)−compact. Since G is g-barrelled by hypothesis,
there exists a neighborhood of zero U in G with ϕ∧(K)(U) ⊆ T+. This can
be rewritten as K(ϕ(U)) ⊆ T+ and since ϕ(U) is a neighborhood of zero in
G/H, we conclude that K is equicontinuous.

Before dealing with inductive limits let us first recall the definition of
the coproduct topology.

Definition 3.9. Let I be an arbitrary index set, Gk an abelian locally quasi-
convex topological group for each k ∈ I and let jk : Gk →

⊕
i∈I Gi be the

inclusion mapping. The coproduct topology in
⊕

i∈I Gi is the finest group
topology making the inclusions {jk}k∈I continuous.

As proved in [12, Corollary 22] the locally quasi-convex modification
of the coproduct topology of an arbitrary family of locally quasi-convex
groups is the Kaplan asterisk topology. Therefore, using Proposition 3.7
and Proposition 2.3(a) we can now claim the following:

13



Corollary 3.10. Let I be an arbitrary index set and let Gi be a g-barrelled
locally quasi-convex group for each i ∈ I. Then, the group

⊕
i∈I Gi with the

coproduct topology is g-barrelled.

Proposition 3.11. The direct limit of an arbitrary family of locally quasi-
convex g-barrelled groups is a g-barrelled group.

Proof. The standard construction of the inductive limit in the category of
Hausdorff abelian groups is the following:

lim−→Gi ∼= (
⊕
i∈I

Gi)/H,

where
⊕

i∈I Gi has the coproduct group topology with respect to the inclu-
sions ik : Gk →

⊕
i∈I Gi and H is a fixed closed subgroup. Therefore by the

preceding corollary and Proposition 3.8 we obtain that lim−→Gi is g-barrelled.

The property of being g-barrelled is not inherited by closed subgroups
and neither by dense subgroups, as shown next:

Example 3.12. An example of a pseudocompact group with closed sub-
groups that are not g-barrelled.

Let G be a pseudocompact abelian group with |G| = c and such that all
its countable subgroups are closed [26, Example 4.5]. Then G is g-barrelled
by Theorem 2.4(d). However, any infinite countable subgroup H ≤ G is
closed and (by Proposition 2.9) not g-barrelled.

The hereditary behavior improves for open subgroups. Let G be a topo-
logical group that contains an open subgroup A. As happens with other
properties like reflexivity, g-barrelledness of A is equivalent to the same
property for G. In order to prove this assertion we need some auxiliary
facts.

Facts 3.13. 1. An open subgroup A of a topological group G is dually
embedded in G [7, Lemma 2.2(b)]. This means that the dual mapping
of the inclusion j : A ↪→ G, j∧ : G∧ → A∧ is a surjective homomor-
phism.

2. The mapping j∧ : G∧p → A∧p is a continuous homomorphism. Its

kernel A⊥ is compact by Proposition 1.1. The induced continuous
isomorphism φ : G∧p /A

⊥ → A∧p is a topological isomorphism. This
derives from the fact that both the initial group and the target group
are precompact with the same dual A (just observe that A⊥⊥ can be
identified with A, since the second orthogonal is taken with respect to
(G∧p )∧ ∼= G).
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3. The canonical quotient mapping q : G∧p → G∧p /A
⊥ is compact covering

by [1, 4.6.22]. Therefore the composition φ ◦ q : G∧p → A∧p is also
compact covering. Let us call r := φ◦ q which clearly is the restriction
mapping j∧.

Theorem 3.14. Let G be a topological group that contains an open subgroup
A. Then G is g-barrelled if and only if A is g-barrelled.

Proof. Assume first that G is g-barrelled. Let S be a σ(A∧, A)-compact
subset of A∧. We need to prove that it is equicontinuous with respect to A.
Since r : G∧p → A∧p is compact covering, there exists a σ(G∧, G)-compact
subset K ⊆ G∧ such that r(K) = S. By the assumption on G, K is an
equicontinuous set relative to G. Thus, there exist a neighborhood of zero
U in G such that K ⊆ U.. If V := U ∩A, then V is a neighborhood of zero
in A such that S ⊆ V .. (Observe that an element χ of S has the form r(χ1)
for χ1 ∈ K and for every v ∈ V ∩ A, χ(v) = χ1(v) ∈ T+.) Therefore S is
equicontinuous with respect to A, which proves that A is g-barrelled.

For the converse implication, assume that A is g-barrelled and pick a
σ(G∧, G)−compact subset M ⊆ G∧. Clearly r(M) is σ(A∧, A)-compact
and by the assumption it is equicontinuous with respect to A. Thus, a
neighborhood of zero W in A can be found, so that r(M) ⊆ W .. Since
A ⊆ G is open, W is also a 0-neighborhood in G, and it is clear that
M ⊆W .. This proves that M is equicontinuous with respect to G, therefore
G is g-barrelled.

A dense subgroup of a g-barrelled group may not be g-barrelled, as shown
by the group of rational numbers Q considered as a dense subgroup of R with
respect to the euclidean topology. By Theorem 2.4 (a), R is g-barrelled and
by Proposition 2.9, Q is not g-barrelled. However, the converse statement
holds:

Proposition 3.15. Let G be a topological group that contains a dense g-
barrelled subgroup H. Then G is g-barrelled. In particular, the completion
of a g-barrelled group is g-barrelled.

Proof. Observe that the dual groups of H and G may be identified by means
of the adjoint j∧ : (G∧, σ(G∧, G))→ (H∧, σ(H∧, H)) of the inclusion map-
ping j : H → G, which is a continuous isomorphism. Fix a σ(G∧, G)-
compact K ⊆ G∧. Since σ(G∧, H) ≤ σ(G∧, G) we have that K is σ(G∧, H)-
compact too, therefore equicontinuous as a set of characters of H. If U
denotes a 0-neighborhood in H such that K ⊆ U., we have that the closure
of U in G, say U , is a 0-neighborhood in G such that K ⊆ U

.
. Thus G is

g-barrelled.
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