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Abstract: The sum range SR[x; X], for a sequence x = (xn)n∈N of elements of a topological vector
space X, is defined as the set of all elements s ∈ X for which there exists a bijection (=permutation)
π : N→ N, such that the sequence of partial sums (∑n

k=1 xπ(k))n∈N converges to s. The sum range
problem consists of describing the structure of the sum ranges for certain classes of sequences. We
present a survey of the results related to the sum range problem in finite- and infinite-dimensional
cases. First, we provide the basic terminology. Next, we devote attention to the one-dimensional case,
i.e., to the Riemann–Dini theorem. Then, we deal with spaces where the sum ranges are closed affine
for all sequences, and we include some counterexamples. Next, we present a complete exposition
of all the known results for general spaces, where the sum ranges are closed affine for sequences
satisfying some additional conditions. Finally, we formulate two open questions.
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1. Basic Definitions

We write N for the set {1, 2, . . . } of natural numbers with its usual order, and

Nn := {k ∈ N : k ≤ n}, n = 1, 2, . . . .

For any set I, a bijection σ : I → I is called a permutation of I; we denote by S(I) the
set of all permutations of I.

For a semigroup (X,+), a natural number n, and a finite sequence xk ∈ X, k = 1, . . . , n

• The sum ∑n
k=1 xk is defined in the usual way;

• It is known that if (X,+) is Abelian, then for every permutation σ ∈ S(Nn), the equality

n

∑
k=1

xσ(k) =
n

∑
k=1

xk

holds.

A (formal infinite) series corresponding to a sequence x = (xn)n∈N of elements of an
additive semigroup (X,+) is the sequence of partial sums(

n

∑
k=1

xk

)
n∈N

. (1)
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The ’multiplicative’ counterpart of the similar concept would be: a (formal) infinite product
corresponding to a sequence x = (xn)n∈N of elements of a multiplicative Abelian semigroup
(X, ·) is the sequence of partial products(

n

∏
k=1

xk

)
n∈N

. (2)

A topologized semigroup is a pair (X, τ), where X is a semigroup, and τ is a topology
in X.

A topological semigroup is a topologized semigroup (X, τ) for which the semigroup
operation is τ-continuous.

A D-convergence space is a pair (X, lim), where X is a set, and lim ⊂ XN × X is a
relation with natural properties, see [1,2].

If (X, lim) is a D-convergence space, s = (sn)n∈N ∈ XN, and a ∈ X, then instead of
(s, a) ∈ lim, we write lim s = a or limn sn = a and say that the sequence s = (sn)n∈N
converges to the element a.

A D-convergence semigroup is a D-convergence space (X, lim), where X is a semigroup.
A series corresponding to a sequence x = (xn)n∈N of elements of a topologized

semigroup (X,+, τ) or a D-convergence semigroup (X,+, lim) is said to be convergent in
X, if there exists an element s ∈ X, such that the sequence(

n

∑
k=1

xk

)
n∈N

converges in (X, τ), respectively, in (X, lim) to s.
If the series corresponding to a sequence x = (xn)n∈N of elements of a topologized or

D-convergence semigroup X converges to an element s ∈ X, then the element s is called a
sum of the series, and we write

s =
∞

∑
k=1

xk or
∞

∑
k=1

xk = s .

Note that Bourbaki uses the notation S∞
k=1xk instead of ∑∞

k=1 xk.
In connection with these notions, the following questions can be posed.

Question 1. Let X be a Hausdorff topological Abelian group and x = (xn)n∈N be a sequence of
elements of X. If the series corresponding to a sequence x = (xn)n∈N is convergent in X, and
σ ∈ S(N) is a permutation, is the series corresponding to the sequence xσ = (xσ(n))n∈N convergent
in X?

Question 2. Let X be a Hausdorff topological Abelian group and x = (xn)n∈N be a sequence of
elements of X. If the series corresponding to a sequence x = (xn)n∈N is convergent in X, and
σ ∈ S(N) is a permutation, such that the series corresponding to a sequence xσ = (xσ(n))n∈N is
convergent in X too, is the equality

∞

∑
k=1

xσ(k) =
∞

∑
k=1

xk

true?

It seems that Augustin-Luis Cauchy (1789–1857) was the first who noticed (in 1833)
that the answer to Question 1, in the case of the set (R,+) of real numbers with the usual
notion of convergence, is negative.

Namely, Cauchy (pp. 57–58, [3]), first indicated (without giving any reference) a
proof of the assertion that the series corresponding to the sequence xn = (−1)n+1 1

n ,
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n = 1, 2, . . . converges in R and then describes a permutation σ : N → N, such that the
series corresponding to the sequence xσ(n), n = 1, 2, . . . does not converge in R.

The second was Peter Lejeune-Dirichlet (1805–1859), who noticed in his 1837 paper
(p. 3, [4]) (without any reference either) that the answers to both Questions 1 and 2 were
negative. See Remark 1 below about Dirichlet’s statements.

Motivated by the abovementioned negative answers to Questions 1 and 2, for any se-
quence x = (xn)n∈N of elements of a topologized semigroup or a D-convergence semigroup
(X,+), we define the subsets

P[x; X], E[x; X]

of S(N) and the subsets
SR[x; X], LPR[x; X]

of X as follows:

• A permutation π : N → N is in P[x; X], if and only if the series corresponding to
(xπ(n))n∈N is convergent in X.

• A permutation π : N → N is in E[x; X], if and only if some subsequence of the
sequence (∑n

k=1 xπ(k))n∈N converges in X.
• An element t ∈ X is in SR[x; X], if and only if ∃π ∈ P[x; X], such that t = ∑∞

k=1 xπ(k).
• An element t ∈ X belongs to LPR[x; X], if and only if ∃π ∈ E[x; X] such that some

subsequence of the sequence (∑n
k=1 xπ(k))n∈N converges in X to t.

The set SR[x; X] is called the sum range for the sequence x = (xn)n∈N (see Definition 2.1.1, [5]),
and the set LPR[x; X] is called the limit-point range of the series corresponding to the
sequence x = (xn)n∈N (see Definition 3.2.1, [5], where this set is denoted by LPR(∑∞

k=1 xk)).
In (p. 95, [6]), instead of LPR[(xn)n∈N; X], the notation C(∑n xn; X) is used.
Evidently,

SR[x; X] ⊂ LPR[x; X]. (3)

It may be that for a sequence x = (xn)n∈N, the set P[x; X] (respectively, the set E[x; X]) is
empty, in which case, SR[x; X] = ∅ (respectively LPR[x; X] = ∅) as well.

In the multiplicative case, of course, we need to say that a permutation π : N→ N be-
longs to P(x), if and only if the infinite product corresponding to (xπ(n))n∈N is convergent
in X, and we define the the product range

PR[x; X]

in a similar way.
The sum range problem can be stated as follows: to describe the structure of the set

SR[x; X] for a sequence x = (xn)n∈N of elements of a topologized semigroup (X,+, τ) or of a
D-convergence semigroup (X,+, lim).

Similarly, we can state the product range problem as follows: to describe the structure
of the set PR[x; X] for a sequence x = (xn)n∈N of elements of a topologized semigroup (X, ·, τ) or
of a D-convergence semigroup (X, ·, lim).

Let us first comment on the case of the set of extended real numbers R = R ∪
{−∞,+∞} with the usual order, addition, and notion of convergence.

For a sequence x = (xn)n∈N in R, for which the set {n ∈ N : xn < 0} is finite, the series
corresponding to a sequence x = (xn)n∈N is always convergent in R; so, the expression

∞

∑
k=1

xk

is always defined.
Surely the following observation was known much earlier, but it is precisely formu-

lated in one of the first papers [7] written by Maurice Fréchet (1878–1973) in 1903.
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Proposition 1. Let X = R+ = {x ∈ R : x ≥ 0} with the usual order, addition, and topology.
Then, X is a compact metrizable topological Abelian monoid, which has the following properties:

(I) For every sequence x = (xn)n∈N of elements of X, the series corresponding to x = (xn)n∈N
is convergent in X.

(II) For every sequence x = (xn)n∈N of elements of X and for every permutation σ : N → N,
the equality

∞

∑
k=1

xσ(k) =
∞

∑
k=1

xk

holds.
(III) For every sequence x = (xn)n∈N of elements of X, the sum range SR[x; X] is a singleton.
(IV) For every x ∈ X, there exists a sequence x = (xn)n∈N of elements of X for which SR[x; X] = {x}.

The following ’multiplicative’ analogue of Proposition 1 is true as well.

Proposition 2. Let X = [0, 1] with the usual multiplication, order, and topology. Then, X is a
compact metrizable topological Abelian monoid, which has the following properties:

(I) For every sequence x = (xn)n∈N of elements of X, the infinite product corresponding to
x = (xn)n∈N is convergent in X.

(II) For every sequence x = (xn)n∈N of elements of X and for every permutation σ : N → N,
the equality

∞

∏
k=1

xσ(k) =
∞

∏
k=1

xk

holds.
(III) For every sequence x = (xn)n∈N of elements of X, the product range PR[x; X] is a singleton.
(IV) For every x ∈ X, there exists a sequence x = (xn)n∈N of elements of X for which PR[x; X] = {x}.

We adopt the following definitions.

Definition 1. The series corresponding to a sequence x = (xn)n∈N in a topologized semigroup
(X,+, τ) or a D-convergence semigroup (X,+, lim) is called unconditionally convergent (Bourbaki
says commutatively convergent [8]) in (X,+, τ), if

P[x; X] = S(N) ;

i.e., if for every permutation σ : N→ N, the series corresponding to xσ = (xσ(n))n∈N is convergent
in (X,+, τ) or in (X,+, lim).

Definition 2. The infinite product corresponding to a sequence x = (xn)n∈N in a topologized
semigroup (X, ·, τ) or a D-convergence semigroup (X, ·, lim) is called unconditionally convergent,
if for every permutation σ : N → N, the infinite product corresponding to xσ = (xσ(n))n∈N is
convergent in (X, ·, τ) or in (X, ·, lim).

Sometimes the series corresponding to a sequence x = (xn)n∈N is called conditionally
convergent or semi-convergent, if it converges but does not converge unconditionally. We
do not use these terms.

The following statement, which in a more general setting was obtained in [9], implies
that the sum range problem has an easy solution in the case of unconditional convergence.

Theorem 1. For a sequence x = (xn)n∈N of elements of a Hausdorff topologized Abelian semigroup
(X,+, τ), the following statements are true.

(a′) If the series corresponding to x is convergent in (X,+, τ), and SR[x; X] is not a singleton,
then there is a permutation λ : N→ N, such that the series corresponding to xλ = (xλ(n))n∈N is
not convergent in (X,+, τ).
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(a) (Commutativity theorem) If the series corresponding to x is unconditionally convergent
in (X,+, τ), then SR[x; X] is a singleton.

In the next section, we consider the problem in the case of R. We see in particular that
the converse to Theorem 1(a) is true for X = R, but it fails in general, see Remark 7.

A topological group X is called protodiscrete, if every neighborhood of the neutral
element of X contains an open subgroup of X.

The following assertion shows that for protodiscrete groups, the sum range problem
has an easy solution too.

Proposition 3. Let (X,+, τ) be a topological group and x = (xn)n∈N be a sequence of elements of
X. Consider the statements:

(i) The set SR[x; X] is not empty.
(ii) The sequence x = (xn)n∈N converges in X to the neutral element.
(iii) The series corresponding to x = (xn)n∈N is unconditionally convergent in X.

Then,

(I) (i) =⇒ (ii).
(II) (ii) =⇒ (iii), provided (X,+, τ) is protodiscrete, sequentially complete, and Abelian.
(III) (See (Ch.III, Section 5, Exercise 2) [8], (i) =⇒ (iii) provided (X,+, τ) is protodiscrete

sequentially complete and Abelian.
(IV) If (X,+, τ) is protodiscrete, sequentially complete, Hausdorff, and Abelian, then SR[x; X]

either is empty or is a singleton.

Proof.

(I) This is well-known and is easy to verify.
(II) We fix a permutation σ : N→ N and set un = xσ(n), sn = ∑n

k=1 uk, n = 1, 2, . . . . Since
(ii) is satisfied, it is easy to verify that the sequence u = (un)n∈N also converges in X
to the neutral element. Let us deduce from this that (sn) is a Cauchy sequence in X.
Indeed, let V be an arbitrary neighborhood of zero in X. Since X is protodiscrete, there
is an open subgroup H of X with H ⊂ V. Since limn un = 0, there exists NH ∈ N,
such that un ∈ H for each n > NH . We now fix arbitrarily natural numbers n and m,
such that NH < m < n; then, sn − sm = ∑n

k=m+1 uk ∈ H ⊂ V, and so, (sn) is a Cauchy
sequence in X.
Since X is sequentially complete, the sequence (sn) converges in X, i.e., the series
corresponding to u = (un)n∈N converges in X. Since σ : N → N was an arbitrary
permutation, (II) is proved.

(III) Since (i) is satisfied, by (I), for x = (xn)n∈N, condition (ii) is satisfied too. Hence, by
(II), we obtain that (iii) is true.

(IV) Suppose that the set SR[x; X] is not empty. Then, by (I), condition (ii) is satisfied, and
then by (II), the series corresponding to x = (xn)n∈N is unconditionally convergent in
X. From this, according to Theorem 1(a), we can conclude that SR[x; X] is a singleton.

To formulate a general result related to the sum ranges, let us fix one more notation
that does not directly involve permutations, see (p. 95, [6]).

For sequence x = (xn)n∈N of elements of a topologized Abelian semigroup (X,+, τ)
and for each m = 1, 2, . . . , let

Am[x; X]

be the closure in (X, τ) of the set

{s ∈ X : ∃I ⊂ {m, m + 1, . . . }, I is finite, I 6= ∅ , s = ∑
i∈I

xi},

and



Axioms 2023, 12, 760 6 of 32

A[x; X] =
∞⋂

m=1

Am[x; X] .

Proposition 4. (See (pp. 95–96, [6]); see also [10]) Let X be a metrizable topological Abelian
group and x = (xn)n∈N be a sequence of elements of X for which the set SR[x; X] is not empty. Then,

A[x; X]

is a closed subgroup of X.
Moreover,

A[x; X] + s = LPR[x; X],

for every s ∈ SR[x; X].

It can be said that this proposition is the only result related to the sum range, which is
valid for all metrizable topological Abelian groups. In the next section, we consider the
classical case of real numbers.

2. Riemann–Dini Theorem

Let us reproduce a piece from (p. 3, [4]):

“. . . we respect the essential difference which exists between two kinds of infinite
series. If we regard each value instead of each term or, it being imaginary, its
module, then two cases can happen. Either it is possible to give a finite value
which is greater than the sum of any of however many of these values or moduli,
or this condition cannot be satisfied by any finite number. In the first case, the
series always converges and has a completely defined sum regardless how the
series terms are ordered, . . . ”

It follows that the following result was discovered by Dirichlet in 1837.

Theorem 2. Let x = (xn)n∈N be a sequence of real or complex numbers, such that for some finite
number L, we have ∑n

k=1 |xk| ≤ L, n = 1, 2, . . . ; i.e., in modern terms, the series corresponding to
x = (xn)n∈N is absolutely convergent.

Then, the series corresponding to x = (xn)n∈N is unconditionally convergent, and SR[x;R]
is a singleton.

Dirichlet continues as follows:

“. . . In the second case the series can converge too but convergence is essentially
dependent on the kind of order of terms. Does convergence hold for a specific
order then it can stop when this order is changed, or, if this does not happen, then
the sum of the series might become completely different.

So, for example, of the two series made from the same terms:

1− 1√
2
+

1√
3
− 1√

4
+

1√
5
− 1√

6
+ . . . ,

1 +
1√
3
− 1√

2
+

1√
5
+

1√
7
− 1√

4
+ . . . ,

only the first converges while of the following:

1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ . . . ,

1 +
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+ . . . ,

both converge, but with different sums.”
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Remark 1. Let us formulate Dirichlet’s statements in terms of the present article. We introduce the
sequences of real numbers a = (an)n∈N and c = (cn)n∈N defined for a fixed n ∈ N by the equalities:

an = (−1)n+1 1√
n

, cn = (−1)n+1 1
n

.

Let σ : N→ N be a mapping defined for a fixed n ∈ N by the equalities:

σ(3n− 2) = 4n− 3, σ(3n− 1) = 4n− 1, σ(3n) = 2n .

Clearly, σ is a bijection, i.e., σ ∈ S(N).
We have:

(D1) The series corresponding to the sequence a = (an)n∈N converges in R.
The convergence follows from Leibniz’s alternating series theorem; we have, moreover, that

0 < a1 + a2 <
∞

∑
k=1

ak < a1 = 1, 0 <
2n

∑
k=1

ak <
∞

∑
k=1

ak <
2n−1

∑
k=1

ak < 1, n = 2, 3, . . . .

The exact value of ∑∞
n=1 an seems to be unknown.

(D2) The series corresponding to the sequence (aσ(n))n∈N does not converge in R.
This needs little work; it can be shown that, in fact,

lim
n

n

∑
k=1

aσ(k) = +∞ .

(D3) The series corresponding to the sequence c = (cn)n∈N converges in R.
This follows again from the alternating series theorem. The value of ∑∞

n=1 cn is known; it
is ln 2.

(D4) The series corresponding to the sequence (cσ(n))n∈N converges in R too, and
∞

∑
n=1

cσ(n) =
3
2

ln 2 .

This needs more work.

As we see, Dirichlet’s conclusions are correct. Now, we know that Dirichlet could consider
only one sequence, either a = (an)n∈N or c = (cn)n∈N, to obtain the same conclusions, because the
following statements are true as well:

(D2’) By Riemann’s Theorem 3, there exists σ′ ∈ S(N), such that the series corresponding to
(aσ′(n))n∈N converges in R, but

∞

∑
n=1

aσ′(n) 6=
∞

∑
n=1

an .

(D4’) By Dini’s Theorem 4(c), there exists σ′′ ∈ S(N), such that the series corresponding to
(cσ′′(n))n∈N does not converge in R.

It is not clear in advance that an unconditionally convergent series of real numbers is
absolutely convergent as well. We shall see (Proposition 6 below) that this is in fact true
due to the following Riemann rearrangement theorem, which was first published in 1867:

Theorem 3. Let x = (xn)n∈N be a sequence of real numbers, such that the series corresponding to
it is convergent, but it is not absolutely convergent. Then, SR[x;R] = R.

Let us reproduce Riemann’s (1826–1866) text:

“. . . Dirichlet found a way to solve this problem noting that infinite series form
two essentially distinct classes: those which remain convergent if all their terms
are made positive and those where this is not the case. In the first case the terms
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of a series can be permutated arbitrarily, while in the second case the sum of a
series depends on the order of terms. In fact, let for a series from the second class
the positive terms be

a1, a2, a3, . . . ,

and the negatives be
−b1,−b2,−b3, . . .

Then it is clear that both of the sums ∑ a and ∑ b must be divergent; in fact, if
both of them are convergent, then the given series would be convergent after
making all signs of its terms the same; if only one of them is convergent, then
the given series would be divergent. It is not hard to see that after appropriate
permutation of terms the series may take an arbitrary given value C. In fact, let us
take alternately first positive terms of the series until their sum does not exceed C,
and then the negative terms until the sum will not be less than C; in this way the
deviation of the sum from C will never be greater than the absolute value of the
preceding term whose sign has been changed. But as the values a and b when the
indices increase became infinitely small, we get that the deviation from C after
sufficient continuation of the series will become arbitrarily small, and hence the
series converges to the value C.” (Translated from (Section 3, p. 232, [11]))

“. . . infinite series fall into two distinct classes, depending on whether or not they
remain convergent when all the terms are made positive. In the first class the
terms can be arbitrarily rearranged; in the second, on the other hand, the value is
dependent on the ordering of the terms. Indeed, if we denote the positive terms
of a series in the second class by

a1, a2, a3, . . . ,

and the negative terms by
−b1,−b2,−b3, . . .

then it is clear that ∑ a as well as ∑ b must be infinite. For if they were both
finite, the series would still be convergent after making all the signs the same. If
only one were infinite, then the series would diverge. Clearly now an arbitrarily
given value C can be obtained by a suitable reordering of the terms. We take
alternately the positive terms of the series until the sum is greater than C, and
then the negative terms until the sum is less than C. The deviation from C never
amounts to more than the size of the term at the last place the signs were switched.
Now, since the numbers a as well as the numbers b become infinitely small with
increasing index, so do also the deviations from C. If we proceed sufficiently far
in the series, the deviation becomes arbitrarily small, that is, the series converges
to C.” (See (pp. 226–227, [12]))

According to (p. 19, [13]) Theorem 3 “made its first appearance in the work of
B. Riemann (1854). It was not until after Riemann’s death that a small gap in his reasoning
was discovered and closed by U. Dini (1868).” Here, B. Riemann (1854) is [14], and
U. Dini (1868) is [15]. We could not find any mention of ’a small gap’ either in [15] or
in [16].

These two theorems amount to a complete solution of the sum range problem for R.

Proposition 5. Let x = (xn)n∈N be a sequence of real numbers. Then,

(I) One of the following must be true:

(a) SR[x;R] = ∅.
(b) SR[x;R] is a singleton.
(c) SR[x;R] = R.
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(II) Case (b) takes place if and only if the series corresponding to x = (xn)n∈N is unconditionally
convergent.

Proof.

(I) Suppose that SR[x;R] 6= ∅. We fix a permutation π : N → N, such that the series
corresponding to (xπ(n))n∈N is convergent. We write yn = xπ(n), n = 1, 2, . . . and
y = (yn)n∈N. It is clear that

SR[x;R] = SR[y;R]. (4)

If the series corresponding to y = (yn)n∈N is absolutely convergent, then by Theorem 2,
we have that SR[y;R] is a singleton, and by equality (4), we have that the set SR[x;R]
is a singleton too.
If the series corresponding to y = (yn)n∈N is not absolutely convergent, then by
Theorem 3, we have SR[y;R] = R, and by equality (4), we have that the equality
SR[x;R] = R holds, too.

(II) It remains to prove that if the set SR[x;R] is a singleton, then the series correspond-
ing to x = (xn)n∈N is unconditionally convergent. Since SR[x;R] 6= ∅, we can fix
again a permutation π : N→ N, such that the series corresponding to (xπ(n))n∈N is
convergent; we write yn = xπ(n), n = 1, 2, . . . , and y = (yn)n∈N. By equality (4), we
have that the set SR[y;R] is a singleton too; in particular, SR[y;R] 6= R. From this, by
Theorem 3, the series corresponding to y = (yn)n∈N is absolutely convergent. Hence,
by Theorem 2, the series corresponding to y = (yn)n∈N is unconditionally convergent;
so, the series corresponding to x = (xn)n∈N is unconditionally convergent too.

Proposition 6 (Riemann–Dirichlet theorem). For a sequence x = (xn)n∈N of real numbers, the
following statements are equivalent:

(i) The series corresponding to x = (xn)n∈N is unconditionally convergent in R.
(ii) The series corresponding to x = (xn)n∈N is absolutely convergent in R.

Proof. (i) =⇒ (ii). By Theorem 1(a), condition (i) implies that SR[x;R] is a singleton. If
(i) is satisfied, but (ii) is not true, then by Theorem 3, we should have that SR[x;R] = R,
a contradiction.

(ii) =⇒ (i) by Theorem 2.

In what follows, for x ∈ R, we write:

x+ = max(x, 0), x− = max(−x, 0).

The following version of Theorem 3 was proved by Dini in [15] in 1868 and was
included in [16] too.

Theorem 4 (Dini). Let x = (xn)n∈N be a sequence of real numbers.

(a) (Dirichlet) If ∑∞
n=1 x+n < +∞, and ∑∞

n=1 x−n < +∞, then P[x;R] = S(N) ;
(b) If ∑∞

n=1 x+n < +∞, but ∑∞
n=1 x−n = +∞, or ∑∞

n=1 x+n = +∞, but ∑∞
n=1 x−n < +∞, then

P[x;R] = ∅;
(c) If xn → 0, and ∑∞

n=1 x+n = ∑∞
n=1 x−n = +∞, then SR

[
x;R

]
= R; moreover, there exists a

permutation π : N→ N, such that

−∞ ≤ lim inf
n

n

∑
k=1

xπ(k) < lim sup
n

n

∑
k=1

xπ(k) ≤ +∞ ,

where the lower and the upper limits are taken in R.

Remark 2. Note that:
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(1) In Theorem 4(c), unlike in Theorem 2, it is not required in advance that the initial series be
convergent. Theorem 4(c) easily implies Theorem 2, although this is not noted in [15], where,
as we have noted already, the name of Riemann is not mentioned at all.

(2) The conclusion of Theorem 4(a) in [15] reads as follows: the series corresponding to
x = (xn)n∈N is “convergent in whatever order its terms are taken".
As we see, Dini did not write that reorderings do not affect the sum (however, prior to the
formulation of his theorem, he did point this out).

(3) The “moreover” part of Theorem 4(c) in [15] (up to the notation) is as follows: there exists
a permutation π : N → N such that the series corresponding to (xπ(n))n∈N “will also
become indeterminate”.

The following statement is related to Theorem 4; the implication (B) =⇒ (C) is taken
from (Ch. IV, Section 7, Ex. 15 [8]), where the names of Riemann and Dini are not mentioned
in connection with this.

Theorem 5 (Riemann–Dini–Bourbaki). Let x = (xn)n∈N be a sequence of real numbers. Con-
sider the following statements.

(A) The series corresponding to x = (xn)n∈N converges in R, but ∑∞
n=1 |xn| = +∞.

(B) limn xn = 0, and ∑∞
n=1 x+n = ∑∞

n=1 x−n = +∞.
(C) For each two elements a and b of R with a ≤ b, there is a permutation σ of N such that:

(I) lim infn ∑n
k=1 xσ(k) = a and, lim supn ∑n

k=1 xσ(k) = b , where lim inf and lim sup
are taken in R,
and

(II) The set of cluster points of the sequence (∑n
k=1 xσ(k))n∈N coincides with the interval [a, b].

(D) SR[x;R] = R.
Then, the following implications are true:

(A) =⇒ (B) =⇒ (C) =⇒ (D) =⇒ (B) .

Proof. The implication (A) =⇒ (B) is well known.
A proof of (B) =⇒ (C, (I)) is in fact contained in (Theorem 3.54 (p. 76), [17]). We

present a proof of the implication (B) =⇒ (C, (I I)) below.
To prove the implication (C, (I)) =⇒ (D), we fix an arbitrary c ∈ R and apply (C, (I))

for a = b = c. We obtain a permutation σ of N, such that lim infn→∞ ∑n
k=1 xσ(k) = c and

lim supn→∞ ∑n
k=1 xσ(k) = c . Hence, limn→∞ ∑n

k=1 xσ(k) = c. Therefore, c ∈ SR[x;R].
(D) =⇒ (B). From (D), we can find and fix a permutation π : N→ N, such that the se-

ries corresponding to xπ := (xπ(n))n∈N is convergent. Clearly, we have SR[xπ ;R) = SR[x;R].
So, we have also that SR[xπ ;R] = R. From this equality and Theorem 2, we conclude that
the series corresponding to xπ := (xπ(n))n∈N is not absolutely convergent. So, we can apply
the (already proved) implication (A) =⇒ (B) for the sequence xπ := (xπ(n))n∈N and obtain
that limn xπ(n) = 0, and both of the series corresponding to (x+

π(n))n∈N and (x−
π(n))n∈N are

divergent. Hence, we have also that limn xn = 0, and both of the series corresponding to
(x+n )n∈N and (x−n )n∈N are divergent as well.

The following example shows that the implication (D) =⇒ (A) in Theorem 5 is false
in general.

Example 1. Let

an =
1 + 2(−1)n

n
, n = 1, 2, . . . .

Then,

(a) The series corresponding to (an)n∈N does not converge in R (in fact, ∑∞
n=1 an = +∞).

(b) limn an = 0, and ∑∞
n=1 a+n = ∑∞

n=1 a−n = +∞.
(c) SR[(an)n∈N;R] = R.
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Proof. (a) and (b) are easy to verify. (c) follows from (b) by the implication (B) =⇒ (D)
in Theorem 5.

From the following assertion, it becomes clear that the implication (B) =⇒ (C, (I I))
in Theorem 5 is a consequence of the implication (B) =⇒ (C, (I)) in the same Theorem.

Theorem 6. Let x = (xn)n∈N be a sequence of real numbers. Consider the statements:

(B1) limn xn = 0.
(B2) The set of cluster points in R of the sequence

(
n

∑
k=1

xk)n∈N

coincides with the interval [
lim inf

n

n

∑
k=1

xk, lim sup
n

n

∑
k=1

xk

]
,

where the lower and the upper limits are taken in R.

Then, (B1) =⇒ (B2).

We prove Theorem 6 by means of the next two propositions, which are “series free”
and may be of an independent interest.

Proposition 7. Let (sn) be a sequence of real numbers, such that both the sets N+ = {n ∈ N : sn ≥ 0}
and N− = {n ∈ N : sn < 0} are infinite. Consider the following statements:

(1) limn(sn+1 − sn) = 0.
(2) For every sequence (βn) of strictly positive real numbers, the sequence (sn) has a subsequence

(sjn), such that
0 ≤ sjn < βn, n = 1, 2, . . . .

(3) The sequence (sn) has a subsequence (sjn) such that

sjn ≥ 0, n = 1, 2, . . . , and lim
n

sjn = 0 .

Then, (1) =⇒ (2) =⇒ (3).

Proof. (1) =⇒ (2).
We fix a sequence (βn) of strictly positive real numbers. (1) implies the existence of a

sequence (kn) of natural numbers, such that

k ∈ N, k ≥ kn =⇒ |sk+1 − sk| < βn, n = 1, 2, . . . .

Since N+ is an infinite set, we have that {i ∈ N+ : i ≥ k1} 6= ∅; so, we can define

l1 := min{i ∈ N+ : i ≥ k1} .

We have: l1 ≥ k1.
Since N− is an infinite set as well, we have that {i ∈ N− : i > l1} 6= ∅; so,

we can define
m1 := min{i ∈ N− : i > l1} .

We have: m1 > l1, k1 ≤ j1 := m1 − 1 ∈ N \ N− = N+, and

0 ≤ sj1 < sj1 − sm1 = |sj1 − sm1 | < β1 .

In this way, we can inductively construct a sequence (ln) of elements of N+ and a sequence
(mn) of elements of N−, such that
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kn ≤ ln = min{i ∈ N+ : i ≥ kn} , mn = min{i ∈ N− : i > ln}, and n = 2, 3, . . . .

Then, we have:

mn > ln, kn ≤ jn := mn − 1 ∈ N \ N− = N+, n = 1, 2, . . . ,

and
0 ≤ sjn < sjn − smn = |sjn − smn | < βn, n = 1, 2, . . . .

(2) =⇒ (3). From (2) applied for the sequence (βn) with limn βn = 0, we obtain a
subsequence (sjn) of (sn) for which (3) is satisfied.

Proposition 8. Let (tn) be a sequence of real numbers, such that

lim
n
(tn+1 − tn) = 0 .

Then, the set of cluster points of the sequence (tn)n∈N in R is the interval [a, b], where

a := lim inf tn, b := lim sup tn.

(The lower and the upper limits are taken in R.)

Proof. The assertion is clearly true (without the assumption that limn(tn+1 − tn) = 0), if
a = b ∈ R. So, we can suppose that a < b.

We fix c ∈]a, b[ and put
sn = tn − c, n = 1, 2, . . .

We observe that

lim inf
n

sn = lim inf
n

tn − c = a− c < 0, and lim sup
n

sn = lim sup
n

tn − c = b− c > 0 . (5)

Clearly,
(1b) limn(sn+1 − sn) = 0, and (5) implies that
(2b) The sets N+ = {n ∈ N : sn ≥ 0} and N− = {n ∈ N : sn < 0} are infinite.
So, by the implication of (1) =⇒ (3) in Proposition 7, we obtain that (sn) has a

subsequence (sjn), such that limn sjn = 0. Hence,

lim
n

tjn = c,

and since c ∈]a, b[ is arbitrary, Proposition 8 is proved.

Proof of Theorem 6. Consider the sequence tn = ∑n
k=1 xk, n = 1, 2, . . . Observe that since

(B1) is satisfied, we have limn(tn+1 − tn) = 0. An application of Proposition 8 for (tn)
gives that (B2) holds for (xn).

Using Theorem 5, we can prove the following rearrangement theorem:

Theorem 7. Let x = (xn)n∈N be a sequence of real numbers such that LPR[x;R] 6= ∅. The
following statements are equivalent:

(i) limn xn = 0 .
(ii) SR[x;R] = LPR[x;R].

Proof. (i) =⇒ (ii). Take s ∈ LPR[x;R]. We can find and fix a permutation π : N → N
and a strictly increasing sequence (jn)n∈N of natural numbers, such that the sequence(

∑
jn
k=1 xπ(k)

)
n∈N

converges to s. If the sequence
(

∑n
k=1 xπ(k)

)
n∈N

converges to s, then

s ∈ SR[x;R]. Suppose now that the sequence
(

∑n
k=1 xπ(k)

)
n∈N

does not converge to s.

From these properties, we conclude easily that ∑∞
k=1 x+

π(k) = +∞, and ∑∞
k=1 x−

π(k) = +∞.
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These equalities together with (i) according to implication (B) =⇒ (D) of Theorem 5
implies that SR[x;R] = R; in particular, s ∈ SR[x;R].

(ii) =⇒ (i). The equality (ii) and the condition LPR[x;R] 6= ∅ imply SR[x;R] 6= ∅.
Hence, (i) holds.

We conclude this section with the following theorem, the second item of which can be
considered as a “sign analogue” of Theorem 3.

Theorem 8. For a sequence x = (xn)n∈N of real numbers, the following statements are true.

(Ia) If limn xn = 0 , then there exists a sequence tn ∈ {1,−1}, n = 1, 2, . . . , such that the series
corresponding to the sequence (tnxn) converges in R.

(Ib) Chapter 6, Example 6,[18]) If limn xn = 0 , and the series corresponding to the sequence
(|xn|) does not converge in R, then for every s ∈ R, there exists a sequence tn ∈ {1,−1},
n = 1, 2, . . . , such that the series corresponding to the sequence (tnxn) converges in R and

∞

∑
k=1

tkxk = s .

Proof. (Ia) If ∑∞
n=1 |xn| < +∞, then the assertion is true for every sequence tn ∈ {1,−1},

n = 1, 2, . . . .
If ∑∞

n=1 |xn| = +∞, then the conclusion follows from (Ib).
(Ib) A proof of (Ib) can be seen in (Chapter 6, Example 6 [18]), where the requirements of

(Ib) are used.

Remark 3. Theorem 8(Ia) remains true for a sequence of complex numbers [19].
In a footnote of the Russian translation of (Chapter 6, Example 6 [18]), it is noted

that the following variant of Theorem 8(Ib) is true as well: let x = (xn)n∈N be a se-
quence of complex numbers, such that the series corresponding to the sequence (xn)
converges in C, but ∑∞

n=1 |xn| = +∞. Then, for every s ∈ C, there exists a sequence tn ∈ C,
|tn| = 1, n = 1, 2, . . . , such that the series corresponding to the sequence (tnxn) converges
in C, and ∑∞

n=1 tnxn = s.

3. Levy–Steinitz Theorem

The sum range problem for complex numbers was treated by Paul Pierre Lévy
(1886–1971) in his first article [20] written in 1905 (which contains no separately formulated
theorems). The problem for ’numbers’ belonging to Rd, d = 2, 3, . . . was investigated by
Ernst Steinitz (1871–1928) in his cycle of articles [21–23]. As written in [23], this problem
was proposed to Steinitz by Edmund Landau (1877–1938), who included his version and
proof of the Riemann rearrangement theorem (without mentioning Riemann’s name) in [24],
as Theorem 217.

In this section, we treat the case of Hausdorff topological vector spaces over R.
A general statement which includes Levy’s and Steinitz’s results was published by

Banaszczyk in [25]. To formulate this statement, we first comment on the notion of a nuclear
space (whose definition is not given in [25]).

We follow [26–28]. For a nonempty subset U of a monoid (X,+), let
kU : X → [0, 1] be the functional defined at x ∈ X by the equality

kU(x) = sup{ 1
n

: n ∈ N and nx /∈ U}

(we agree that sup(∅) = 0). Let us call the series corresponding to a sequence x = (xn)n∈N
in a topologized Abelian monoid (X,+, τ) absolutely convergent, if

∞

∑
n=1

kU(xn) < +∞
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for every τ-neighborhood U of the neutral element of (X,+, τ).
It follows from [27] that the series corresponding to a sequence x = (xn)n∈N of

• Real numbers is absolutely convergent, if and only if ∑∞
n=1 |xn| < +∞.

• Elements of a normed space (X, ‖ · ‖) are absolutely convergent, if and only if
∑∞

n=1 ‖xn‖ < +∞.
• Elements of a locally convex topological vector space X are absolutely convergent, if

and only if ∑∞
n=1 ‖xn‖ < +∞ for every continuous semi-norm ‖ · ‖ : X → R+.

The notion of a nuclear locally convex space was introduced in 1953 by Grothendieck in
terms of topological tensor products. We use as a definition the second item of the following
consequence of Grothendieck–Pietsch’s theorem (see (Ch. IV, 10.7, Corollary 2) [28] and the
text following it):

Theorem 9. For a metrizable locally convex topological vector space X over R, the following
statements are equivalent:

(N) X is nuclear.
(GPS) For every sequence x = (xn)n∈N of elements of X, such that the series corresponding

to x = (xn)n∈N is unconditionally convergent in X, we have that the same series is absolutely
convergent as well.

We note that the metrizability assumption in Theorem 9 is essential only for the validity
of the implication (GPS) =⇒ (N).

It follows from the Riemann–Dirichlet theorem that (R,+) with the usual topology
is nuclear. This implies that the spaces (Rd,+), d = 2, 3 . . . and (RN,+) with their usual
topologies are nuclear as well. It follows that any finite-dimensional normed space is
nuclear. For other examples and for the general definition of nuclearity, we refer the reader
to [28].

In what follows, for a topological vector space X over R,

• We write X∗ for the (topological) dual space, which consists of all continuous linear
functionals x∗ : X → R;

• The set X∗ is regarded as a vector space over R with the usual pointwise addition and
multiplication by real scalars.

A topological vector space X is called dually separated or a DS-space, if X∗ separates
the points of X.

The Hahn–Banach theorem implies that a Hausdorff locally convex topological vector
space X over R is a DS-space. There are also DS-spaces, which are not locally convex.

For a sequence x = (xn)n∈N in a topological vector space X over R, let

Γx = {x∗ ∈ X∗ :
∞

∑
n=1
|x∗(xn)| < +∞},

(the set Γx is called in [29] the weak summability domain of x), and let

⊥Γx := {x ∈ X : x∗(x) = 0 ∀x∗ ∈ Γx}

be the inverse polar of Γx in X.
For a sequence x = (xn)n∈N in a topological vector space X over R, the set Γx is a

vector subspace of X∗, while the set ⊥Γx is a closed vector subspace of X.
Let us introduce also, for a sequence x = (xn)n∈N in a topological vector space X,

Steinitz’s range
StR[x; X]

as follows:

StR[x; X] = {s ∈ X : x∗(s) ∈ SR[(x∗(xn))n∈N;R] ∀x∗ ∈ X∗ }.

For a non-empty subset A of a vector space X and an element a ∈ X, we write
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A− a = {x− a : x ∈ A}, A + a = {x + a : x ∈ A}, a + A = {a + x : x ∈ A} .

A subset A of a vector space X over R or over C is called real affine, if

a1 ∈ A, a2 ∈ A, t ∈ R =⇒ ta1 + (1− t)a2 ∈ A .

The empty set is affine. A non-empty subset A of a vector space X over R is real affine, if
and only if for some a ∈ A, the set A− a is a vector subspace of X.

Proposition 9. For a sequence x = (xn)n∈N in a topological vector space X over R, the following
statements are true.

(1) SR[x; X] ⊂ StR[x; X] .
(2) Ref. [30], ([Proposition 2.1(b))

StR[x; X] 6= ∅, s ∈ StR[x; X] =⇒ StR[x; X] = s + ⊥Γx . (6)

In particular, StR[x; X] is always a closed real affine subset of X.
(3) Ref. [31], (Proposition 1)

SR[x; X] 6= ∅, s ∈ SR[x; X] =⇒ StR[x; X] = s + ⊥Γx . (7)

Proof.

(1) This is evident.
(2) Let us show first that

StR[x; X] ⊂ s + ⊥Γx (8)

We fix a ∈ StR[x; X], and we show that a ∈ s + ⊥Γx; i.e., we need to show that
a− s ∈ ⊥Γx. To see this, we fix an arbitrary x∗ ∈ Γx, and we see that x∗(a− s) = 0.
We can find and fix permutations π : N→ N and σ : N→ N, such that

∞

∑
n=1

x∗(xπ(n)) = x∗(s) and
∞

∑
n=1

x∗(xσ(n)) = x∗(a) . (9)

As x∗ ∈ Γx, the series corresponding to (|x∗(xn)|)n∈N converges in R. From this by
Theorem 2, we obtain that SR[(x∗(xn))n∈N;R] is a singleton. This and (9) imply:

x∗(s) = x∗(a) .

Hence, x∗(a− s) = 0, and (b1) is proved.
It remains to prove that

StR[x; X] ⊃ s + ⊥Γx (10)

We fix y ∈ s + ⊥Γx and x∗ ∈ X∗. We need to verify that

x∗(y) ∈ SR[(x∗(xn))n∈N;R] (11)

First, let x∗ ∈ Γx; then, (as y ∈ s + ⊥Γx), we have x∗(y) = x∗(s). As s ∈ StR[x; X], for
some permutation σ : N→ N, we have:

∞

∑
n=1

x∗(xσ(n)) = x∗(s) .

From this, (as x∗(y) = x∗(s)), we obtain:
∞

∑
n=1

x∗(xσ(n)) = x∗(y) .

So, (11) is true in this case.
Now, let x∗ ∈ X∗ \ Γx; then, as StR[x; X] 6= ∅, we have that SR[(x∗(xn))n∈N;R] 6= ∅,
and the series corresponding to (|x∗(xn)|)n∈N is not convergent in R. So by Riemann’s
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theorem, we have SR[(x∗(xn))n∈N;R] = R; hence, x∗(y) ∈ R = SR[(x∗(xn))n∈N;R].
Consequently, (11) is true in this case too.

(3) This follows from (i) and (iii).

Now, we are ready to formulate the result.

Theorem 10 (Wojciech Banaszczyk; Theorem 1, [25]). Let X be a metrizable nuclear locally
convex topological vector space over R and x = (xn)n∈N be a sequence in X.

(I) If SR[x; X] 6= ∅, then
SR[x; X] = s + ⊥Γx

for each s ∈ SR[x; X].
(II) SR[x; X] is always a closed affine subset of X.

Proof.

(I) This can be seen in [25]; see also [5], (Ch.8, Section 3 (pp. 110–117)).
(II) This follows from (I).

The following statement is one of the key points for the proof of Theorem 10(I).

Proposition 10 (Lemma 6, [25]). Let X be a metrizable nuclear locally convex topological vector
space over R and x = (xn)n∈N be a sequence in X for which SR[x; X] 6= ∅; then,

A[x; X] = ⊥Γx

The following surprising complement to Theorem 10(I) is true as well.

Theorem 11 (Wojciech Banaszczyk; [32]). For a metrizable locally convex topological vector
space over R, the following statements are equivalent:

(i) X is nuclear.
(ii) For every sequence x = (xn)n∈N in X such that SR[x; X] 6= ∅, the equality

SR[x; X] = s + ⊥Γx

holds for each s ∈ SR[x; X].

In connection with this theorem, the following question seems very natural.

Question 3 (Remark 3, [32]). Can condition (ii) in Theorem 11 be replaced by the following
condition?

(ii′) For every sequence x = (xn)n∈N in X, the range SR[x; X] is always a closed affine subset
of X.

The question of whether the set SR[x; X] is always convex for every sequence x = (xn)n∈N
in a Banach space X over R was posed by Banach, see (Problem 106, [33]), where a negative
answer was included too. It is conjectured that the corresponding example for the case
X = L2([0, 1]) is due to Marcinkiewicz (see an interesting story in (pp. 31–32, [5])). Our
presentation of this example follows (p. 173, [34]).

Example 2. (Marcinkiewicz’s Example, 1936) For a natural number m, find the nonnegative
integers m′ and m′′ < 2m′ , such that m = 2m′ + m′′, and define the function xm : [0, 1]→ {0, 1}
by the equality:

xm = 1[ m′′
2m′ , m′′+1

2m′
] .
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Now, let y = (yn)n∈N be the sequence defined by

y2n−1 = xn, y2n = −xn, n = 1, 2, . . . .

This sequence has the following properties:

(a0) The series corresponding to y = (yn)n∈N converges in X = L2([0, 1]) to zero; in particular,
0 ∈ SR[y; X].

(a1) 1 ∈ SR[y; X] .
(b) Every element of SR[y; X] is an integer-valued function.
(c) SR[y; X] is not a convex subset of X = L2([0, 1]).

Proof. (a0) follows at once from the observation that limn ‖xn‖2 = 0.
(a1) First, we reproduce the corresponding fragment from (p. 173, [34]): since

y3 + y5 + y2 = y7 + y9 + y3 = · · · = 0 (12)

(it can be verified that these equalities hold almost everywhere on [0, 1]), it follows
that the series corresponding to the sequence

(y1, y3, y5, y2, y7, y9, y3, . . . ) (13)

converges to 1.
From this, since the sequence (13) is indeed a permutation of the sequence y =
(yn)n∈N, we obtain that 1 ∈ SR[y; X].

(b) This is evident.
(c) From (b), we have that 1

2 6∈ SR[y; X] . From this and from (a0) and (a1), we conclude
that the set SR[y; X] is not convex.

It is known that an example of the same type as Example 2 can be constructed in
any infinite-dimensional Banach space X over R (Corollary 7.2.1 (p. 97), [5]). It follows
that if the answer to Question 3 for a Banach space X over R is positive, then X is finite
dimensional and, hence, is nuclear. In general, the answer to this question remains open.

For a sequence x = (xn)n∈N in an infinite-dimensional separable Hilbert space X, the
sum range SR[x; X]

• May not be closed [35] (see also (Example 3.1.3 (p. 31), [5]));
• It seems to be unknown whether it may be affine and non-closed (Remark 3.1.1 (p. 32) [5]);
• It is always an analytic subset of X; see [36] (hence, not any subset of a Hilbert space

“can serve as the sum range of a series”, see (p. 36, [5])). However, it seems to be
unknown whether a sum range is always a Borel subset of X.

Remark 4. Let X and y = (yn)n∈N be as in Example 2. Then,

• SR[y; X] = L2([0, 1];Z), see (Exercise 3.1.4, [5]), where it is noted also that the inclusion
L2([0, 1];Z) ⊂ SR[y; X] was proved by Bogdan in her MSc Thesis (Zaporozhie University,
Ukraine, 1992); see also (Assertion 2, [37]).

• Let Xw := (L2([0, 1]), weak). Then, SR[y; Xw], as a set, coincides with the whole space
X = L2([0, 1], see (Exercise 3.1.6, [5]).

Remark 5. Theorem 10(I) implies that that if X is a metrizable nuclear locally convex topological
vector space over R, then, for every sequence x = (xn)n∈N in X, such that SR[x; X] 6= ∅ and
Γx = {0}, we have SR[x; X] = X. The question of validity of a similar conclusion for the case of an
infinite-dimensional separable Banach space X was posed in (Problem 3 (p.146), [29]). A negative
answer for the case X = L2([0, 1]) was obtained in [38] (see also (Proposition 3.4.4 (p. 84), [39])),
where it was shown that for Marcinkiewicz’s sequence y = (yn)n∈N, the equality Γy = {0} holds;
however, by Example 2(c), we have: SR[y; X] 6= X = L2([0, 1]).
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Remark 6. The question of whether the set SR[x; X) is always convex for every sequence x = (xn)n∈N
in a separable infinite-dimensional Hilbert space X over R was posed (independently from Banach)
and was answered negatively by Hugo Hadwiger [40]. However, in [40], it was conjectured that for
each sequence x = (xn)n∈N, for which SR[x; X] 6= ∅, the sum range SR[x; X] must be a co-set of
an additive subgroup of X. We reproduce an interesting piece from (p. 32, [5]):

“In this section we shall give an example of a series. . . whose sum range consists of two
points . . . This example disproves, in particular, H. Hadwiger’s conjecture that the sum
range of any conditionally convergent series is the coset of some additive subgroup of the
space under consideration. The construction given here belongs to M. I. Kadets; its justifi-
cation was first obtained independently, and about the same time, by P. A. Kornilov [37]
and K. Wozniakowski (see [41]). It is interesting that similar constructions were proposed
at least by two other mathematicians. A. Dvoretzky told us that many years ago he had
such an example, but he, too (like M. I. Kadets), was not able to find a justification. P.
Enflo constructed an example with a complete proof at about the same time [37,41] were
written, but he did not publish it because I. Halperin informed him about the preprint
containing the example presented below."

Note that now we know more: for each finite subset A ⊂ X of an infinite-dimensional separable
Banach space X over R, there exists a sequence x = (xn)n∈N in X, such that SR[x; X] = A [42].

Theorem 10 is applicable for finite-dimensional normed spaces (because they are
nuclear); however, for them, more is also true.

Theorem 12 (Ernst Steinitz). Let X be a finite-dimensional normed vector space over R and
x = (xn)n∈N be a sequence in X. The following statements are true.

(I1) If SR[(x∗(xn))n∈N;R] 6= ∅, for every x∗ ∈ X∗, then SR[x; X] 6= ∅.
(I2) SR[x; X] = StR[x; X].
(I3) If SR[x; X] 6= ∅, and s ∈ SR[x; X], then SR[x; X] = s + ⊥Γx.
(I I) SR[x; X] is a real affine subset of X.

Comments on the Proof. (I1) and (I2) are nontrivial even when dim(X) = 2. According
to [43], (I1) was proved in [23]; however, we did not find its proof in [44] or in [5]. Only
in (Theorem II, [45]) and in [46] can one find some information about this implication (see
also [47]).

(I3) follows from (I2) and Proposition 9.
Direct proofs of (I3) can be seen in [45,48] and in (Chapter 2, Section 1 (pp. 13–20), [5]).

(I I) follows from (I3). (I I) is formulated as Lemma 4 in [49] and proved there for
the first time in the English literature. Proofs of (I I) appeared in Russian for the first time
in [50] and in [51].

Surely, the first attempt to understand and simplify Steinitz’s exposition was carried
out by the Austrian mathematician Wilhelm Gross (Groß) (1886–1918) in his 1917 article [52].
Later, many authors were interested in the proof of Theorem 12 (I I). Among them was
Kurt Gödel (1906–1978), one of the most outstanding logicians of the twentieth century [53]
(see a nicely written account of this work in [54]). In [54], after commenting on [52], the
following was written:

“Other authors, among them Abraham Wald (1933)(=[55]) published a proof of the
theorem which was close to the proof of Gödel, and it may well be that publication of
Wald’s proof lessened Gödel’s interest in the publication of his own manuscript."

Let us note also that Theorem 10(I I) for X = RN was derived from Theorem 12(II)
earlier by Wald [56].

Theorem 12(I I) coincides with (Ch. VII, Section 3, Exercise 2(ii), [57]), where a (rather
complicated) hint of its proof is also given. Surely, a complete realization of Bourbaki’s
claim requires a separate monograph.
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Let us formulate two ingredients of the proof of Theorem 12 (I I), which are of inde-
pendent interest. We follow the terminology of [5,45,48].

Theorem 13. (The polygonal confinement theorem.) There exists a sequence Cm, m = 1, 2, . . .
of strictly positive constants, with C1 = 1 and with Cm < m, m = 2, 3, . . . , for which the following
statement is true.

If X is a finite-dimensional vector space over R with dim(X) = m ≥ 1 and ‖ · ‖ a norm (or
a subadditive positively homogeneous function) on X, then for a natural number n > 1 and for
elements xj ∈ X, j = 1, . . . , n with

n

∑
j=1

xj = 0 ,

there exists a permutation σ : Nn → Nn, such that σ(1) = 1, and

‖
k

∑
j=1

xσ(j)‖ ≤ Cm max
j∈Nn
‖xj‖, k = 1, 2, . . . , n . (14)

A proof of Theorem 13 with Cm = 5
m−1

2 , m = 1, 2, . . . is indicated in (Ch. VII, Section 3,
Exercise 1b, [57]). A version of Theorem 13 with Cm = 2m − 1, m = 1, 2, . . . (without proof
and with references to [23,52]) was formulated as Lemma 1 in [49].

It is remarkable that Theorem 13 holds for every norm given on a vector space X
over R with dim(X) = m ≥ 1. For a fixed m (and concrete norm), the optimal value
of the constant in (14), as well as an elaboration of an optimal algorithm for finding the
corresponding permutation σ, plays a role in scheduling theory [58]. It is conjectured that
in the case of Euclidean norms, the theorem should hold with constants Cm, m = 1, 2, . . .
for which the sequence Cm√

m , m = 1, 2, . . . is bounded [59].
Using Theorem 13, it is possible to prove the following generalization of Theorem 7:

Theorem 14 (see Lemma 2, [49], and the rearrangement theorem (p. 346), [48]). Let X be a
finite-dimensional normed space over R and x = (xn)n∈N be a sequence of elements of X, such that
LPR[x; X] 6= ∅. The following statements are equivalent:

(i) limn xn = 0 .
(ii) SR[x; X] = LPR[x; X].

It is known that if for a Banach space X over R, an analogue (of implication (i) =⇒ (ii))
of Theorem 14 is true, then X is finite-dimensional [60].

The following assertion implies in particular that an analogue of Theorem 12(I1) is
not true for all nuclear spaces.

Theorem 15 (Kadets, [43]). For an infinite-dimensional complete separable metrizable topological
vector space X over R, the following statements are equivalent.

(SI) For each sequence x = (xn)n∈N in X, such that

SR[(x∗(xn))n∈N;R] 6= ∅ ∀x∗ ∈ X∗,

we have that SR[x; X] 6= ∅.
(Is) X is topologically isomorphic to RN endowed with the topology of coordinatewise convergence.

The following example shows that a further improvement of Theorem 12(I1) is not
possible even in the two-dimensional case.

Example 3 (Kadets, [43]). Let X be a two-dimensional normed vector space over R. There is a
sequence x = (xn)n∈N in X, such that the set

Kx := {x∗ ∈ X∗ : SR[(x∗(xn))n∈N;R] 6= ∅}
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separates points of X, but the set
SR[(xn)n∈N; X]

is empty.

Proof. Take X = R2. Fix n ∈ N, put

an =
1 + 2(−1)n

n
, bn =

1− 2(−1)n

n
, xn = (an, bn),

and consider the sequences a = (an)n∈N, b = (bn)n∈N, and x = (xn)n∈N. Then,

(1) SR[(an)n∈N;R] = R, and SR[(bn)n∈N;R] = R.
(2) Re∗1 ∪Re∗2 ⊂ Kx, where e∗1 and e∗2 are the first and the second projections from X = R2

onto R, respectively. In particular, Kx separates points of X = R2.
(3) SR[(xn)n∈N; X] = ∅.

(1) This follows from implication (B) =⇒ (D) in Theorem 5.
(2) This follows from (1).
(3) Suppose (3) is not true, i.e., SR[(xn)n∈N; X] 6= ∅. Then, we can find and fix a permuta-

tion σ : N→ N, for which the series corresponding to (xσ(n))n∈N converges in X = R2.
Then, both series corresponding to (aσ(n))n∈N and to (bσ(n))n∈N will converge in R.
This would imply that the series corresponding to (aσ(n) + bσ(n))n∈N will converge in
R too; but this is impossible, as aσ(n) + bσ(n) =

2
σ(n) , n = 1, 2, . . . .

4. Kadets-Type Theorems

The first result for infinite-dimensional Banach spaces was obtained in 1953 by Mikhail
Iosifovich Kadets (1923–2011).

Theorem 16 (Kadets, Lemma I and Theorem II, [61]). Let 1 < p < ∞, (T, Σ, ν) be some
σ-finite positive measure space, X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
, and x = (xn)n∈N be a sequence in

X. Then,
SR[(xn)n∈N; X] = LPR[(xn)n∈N; X],

and the sum range
SR[(xn)n∈N; X]

is a closed affine subset of X, provided the following condition is satisfied:
(KCp) ∑∞

n=1 ‖xn‖min(2,p)
p < +∞.

At the end of [61], it was written: “It is unknown for the author whether the condition
(KCp) is necessary”.

Then, the following more general result appeared:

Theorem 17. (Stanimir Troyanski, [62]) Let X be a uniformly smooth Banach space over R with
a modulus of smoothness ρ. Then, for a sequence x = (xn)n∈N in X, the sum range

SR[(xn)n∈N; X]

is a closed affine subset of X provided the following condition is satisfied:

(TC)
∞

∑
n=1

ρ(‖xn‖) < +∞.

In [62], it is noted also that it is unknown whether the condition (TC) is necessary.

Remark 7. Ref. [62] began with the following definition: “A series of vectors of linear topological
space is called conditionally convergent if two of its permutations have different sums." In view
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of this definition, one can expect that for a sequence x = (xn)n∈N in Hausdorff topological vector
space X, the following statement must be true:

(HM) If SR[(xn)n∈N; X] is a singleton, then the series corresponding to x is unconditionally
convergent in X.

We have:

(a) If X is finite-dimensional, then (HM) is true.
This follows from Steinitz’s Theorem 12(I3).

(b) If X is an infinite dimensional Hilbert space, then (HM) is not true [63].
(c) If X is an infinite dimensional Banach space, then (HM) is not true either [64].
(d) If X = R[0,1] is endowed with the topology of point-wise convergence, then (HM) is not true,

and there even exists a sequence x = (xn)n∈N in X consisting of continuous functions, such
that SR[(xn)n∈N; X] = {0}, and SR[(|xn(t)|)n∈N;R] = ∅, for each t ∈ [0, 1] [65] .

Next was paper [66], which was the first one to be written in English dealing with
infinite-dimensional Hilbert spaces (and containing a conclusion about the sum range in
the line of Steinitz’s Theorem 12(I3)).

Theorem 18 (Vladimir Drobot, Theorem 1, [66]). Let (T, Σ, ν) be [0, 1] endowed with the sigma-
algebra Σ of Lebesgue-measurable sets and the Lebesgue measure ν, X = (L2(T, Σ, ν;R), ‖ · ‖2) be
the Hilbert space over R, and x = (xn)n∈N be a sequence in X with the following properties:

(a) SR[(xn)n∈N; X] 6= ∅.
(b) ∑∞

n=1 ‖xn‖2 = +∞.
(c) ∑∞

n=1 ‖xn‖2
2 < +∞.

(d) The set Γx is closed in X∗ = X.
Then,

SR[(xn)n∈N; X] = s + ⊥Γx,

for some s ∈ SR[(xn)n∈N; X].

Among all the previous works, ref. [66] only mentions Steinitz’s 1913 paper. At the
end of [66], two examples are presented.

Example 1 demonstrates that, in Theorem 18, conditions (a, b, c) may be satisfied,
while condition (d) is not;

Example 2 gives a sequence x = (xn)n∈N in X for which the conditions (a, b, c, d) of
Theorem 18 with Γx = {0} are satisfied; hence, by this theorem, we have that
SR[(xn)n∈N; X] = X.

The last example, together with a version of Theorem 18 in which Γx = {0}, is included
in the monograph [67].

It is a bit strange that in [66] the result is not formulated or proved for an abstract
infinite-dimensional Hilbert space over R, while later in [68], one of the main ingredients
of its proof is formulated and proved for the abstract case.

The first paper, written in Russian, to mention [66] was [69].

Theorem 19 (Vladimir Fonf, Theorem, [69]). Let X be a uniformly smooth Banach space over R
with a modulus of smoothness ρ and x = (xn)n∈N a sequence in X, such that

(a) SR[(xn)n∈N; X] 6= ∅.
(b) ∑∞

n=1 ‖xn‖ = +∞.
(c) ∑∞

n=1 ρ(‖xn‖) < +∞.
Then,

SR[(xn)n∈N; X] = s + ⊥Γx

for some s ∈ SR[(xn)n∈N; X].

Note that this theorem contains and improves Theorem 18, removing condition (d)
from it.
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In 1971, a paper [70] by Evgenii Mikhailovich Nikishin (1945-1986) appeared, where
among other results, it was shown that in Kadets’ Theorem 16, condition (KCp) is in a
sense the best possible when p ≥ 2, and the above considered Banach’s question from the
"Scottish book" was answered negatively without actually knowing it.

Theorem 20 (Nikishin, Corollary 4 (p. 284), [70]). Let 1 ≤ p < ∞. Let (T, Σ, ν) be [−1, 1]
endowed with the sigma-algebra Σ of Lebesgue-measurable sets and the Lebesgue measure ν
X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
Then, there exists a sequence ϕn ∈ X, n = 1, 2, . . . , such that

∞

∑
n=1
‖ϕn‖2+ε

p < ∞ ∀ε > 0 ,

SR[(ϕn)n∈N; X] 6= ∅, and SR[(ϕn)n∈N; X] is not affine.

Now, we formulate several other remarkable results contained in [70,71].

Theorem 21. Let ν be the Lebesgue measure on [0, 1] and X = L0 the vector space over R of
(ν-equivalence classes of) all ν-measurable functions ϕ : [0, 1]→ R; moreover, let Xν be the space
X endowed with the topology of convergence in measure ν and Xν,a.e be the space X endowed with
ν-almost everywhere convergence (sequences from X). For a sequence ϕn ∈ X, n = 1, 2, . . . ,
we write:

SRν[(ϕn)n∈N] := SR[(ϕn)n∈N]; Xν],

and
SRν,a.e[(ϕn)n∈N] := SR[(ϕn)n∈N]; Xν,a.e] .

The following statements are valid.

(I) (Theorem 1, [71]) (see Theorem 7) If for a sequence ψn ∈ X, n = 1, 2, . . . ,

(a) The series corresponding to the sequence (ψ2
n)n∈N converges in R ν-almost everywhere,

and
(b) Some subsequence of the sequence ∑n

k=1 ψk ∈ X, n = 1, 2, . . . converges ν-almost
everywhere to a function ϕ ∈ X,

then ϕ ∈ SRν,a.e[(ψn)n∈N].
(II) (Theorem 2, [71]) If for a sequence ϕn ∈ X, n = 1, 2, . . . , the series corresponding to the

sequence (ϕ2
n)n∈N converges in R ν-almost everywhere, then

(IIa) (Theorem 2, [71]) SRν,a.e[(ϕn)n∈N] is an affine subset of X, which is closed in Xν.
(IIb) SRν,a.e[(ϕn)n∈N] = SRν[(ϕn)n∈N].
(IIc) SRν[(ϕn)n∈N] is a closed affine subset of Xν.
(III) Ref. [70] There exists a sequence ϕn ∈ X, n = 1, 2, . . . , such that the series corresponding

to the sequence (|ϕn|2+ε)n∈N converges in R ν-almost everywhere for every ε > 0, and
SRν,a.e[(ϕn)n∈N] is not an affine subset of X.

Comments on the Proof. (I Ib) The inclusion SRν,a.e[(ϕn)n∈N] ⊂ SRν[(ϕn)n∈N] is true be-
cause the convergence of sequences ν-almost everywhere implies the convergence in measure.

The proof of the inclusion SRν[(ϕn)n∈N] ⊂ SRν,a.e[(ϕn)n∈N] is more delicate. So, we fix
ϕ ∈ SRν[(ϕn)n∈N] and take a permutation σ : N→ N for which the series corresponding
to the sequence (ϕσ(n))n∈N converges in measure to ϕ. Then, it is easy to see that the
assumptions (a) and (b) of (I) are satisfied for the sequence ψn := ϕσ(n), n = 1, 2, . . . , and
from (I), we conclude that

ϕ ∈ SRν,a.e[(ψn)n∈N] = SRν,a.e[(ϕn)n∈N] .

(I Ic) follows from (I Ib) and (I Ia).
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As noted in [70], Theorem 21(III) answers negatively, in particular, a question which
(according to [72]) was posed by Banach. The following assertion shows that in Kadets’
Theorem 16 the condition (KCp) is in a sense the best possible one also when 1 < p < 2.

Theorem 22 (Kornilov, see Theorem 1, [73]). Let 1 ≤ p ≤ 2, (T, Σ, ν) be [0, 1] endowed with
the sigma-algebra Σ of Lebesgue-measurable sets and the Lebesgue measure ν,
X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
and let ω :]0, ∞[→]0, ∞[ be a function, such that

lim
t→0

ω(t) = 0 .

Then, there exists a sequence ϕn ∈ X, n = 1, 2, . . . , such that

(1) ∑∞
n=1 ‖ϕn‖p

pω(‖ϕn‖p) < ∞,
(2) 0 ∈ SR[(ϕn)n∈N; X] and 1 ∈ SR[(ϕn)n∈N; X],

but
(3) λ ∈]0, 1[ =⇒ λ 6∈ SR[(ϕn)n∈N; X].

In 1973, the following variant of Theorem 16 was announced, which can be considered
the first infinite-dimensional version of Steinitz’s Theorem 12(I2):

Theorem 23. Let 1 < p < ∞, (T, Σ, ν) be [0, 1] endowed with the σ-algebra Σ of Lebesgue-
measurable sets, and the Lebesgue measure ν and X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
. Let, moreover,

x = (xn)n∈N be a sequence in X, which satisfies the condition (KCp).
Then, the following statements are valid.

(I) (Pecherskii, (Theorem 1, [74])) The equality

StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.
(II) Pecherskii, (Theorem 3, [74]))

∀x∗ ∈ X∗ \ {0} SR[(x∗(xn))n∈N;R] = R =⇒ SR[(xn)n∈N; X] = X .

We note that Theorem 23(II), in the case when p = 2, is included with a complete proof
in (Appendix, Section 6, Theorem 1 (pp. 352–357), [75]).

The first essential improvement of Theorem 16 in case 1 < p < 2 was the following result.

Theorem 24 (Nikishin, Theorem 1, [76]). Let 1 ≤ p < 2, (T, Σ, ν) be [0, 1] endowed
with the sigma-algebra Σ of Lebesgue-measurable sets and the Lebesgue measure ν, and
X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
. Moreover, let x = (xn)n∈N be a sequence in X that satisfies the

following condition.
(NikCp), the series corresponding to the sequence (|xn(t)|2)n∈N, converges inR for Lebesgue’s

almost every t ∈ [0, 1] and (
∞

∑
n=1
|xn|2

) 1
2

∈ X .

Then, for the sequence x = (xn)n∈N, the sum range

SR[(xn)n∈N; X]

is a closed affine subset of X.

In 1977, the following modification Theorem 23 appeared, which takes into account
Nikishin’s Theorem 24 too.

Theorem 25. Let 1 ≤ p < ∞, (T, Σ, ν) be [0, 1] endowed with the σ-algebra Σ of Lebesgue-
measurable sets and the Lebesgue measure ν and X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
. Moreover, let
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x = (xn)n∈N be a sequence in X for which (NikCp) is satisfied when 1 ≤ p < 2, and (KC2) is
satisfied, when 2 ≤ p < ∞. The following statements are true.

(I) (Theorem 1, [77]) The equality

StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.
(II) (Corollary 1, [77]) If

SR[(x∗(xn))n∈N;R] = R ∀x∗ ∈ X∗ \ {0},

then the equality
SR[(xn)n∈N; X] = X

holds too.

The following result is applicable to the non-separable Banach space (l∞, ‖ · ‖∞) of all
bounded real sequences.

Theorem 26 (Barany, Theorems 2 and 3, [78]). Let 1 ≤ p ≤ ∞, c(j) := 23j
,

j = 1, 2, . . . , and X =
(
lp, ‖ · ‖p

)
. Moreover, let xn : N → R, n = 1, 2, . . . be a sequence

in X such that c · xn ∈ X, n = 1, 2, . . . .
Assume further that either
(BaCo∞) p = ∞, and lim supn ‖c · xn‖∞ = 0,
or
(BaCop) 1 ≤ p < ∞, and ∑∞

n=1 ‖c · xn‖p
p < ∞.

Then, for the sequence (xn)n∈N, the sum range,

SR[(xn)n∈N; X]

is a closed affine subset of X.

The result is new when p = ∞. In the case when 1 ≤ p ≤ 2, it is a consequence of
Kadets’ Theorem 16, while in the case when 2 < p < ∞, it is independent from this theorem.

From Theorem 26, unlike the previous results in the present section, it is possible to
derive the following corollary.

Corollary 1 (see Proposition 5). Let (tn)n∈N be a sequence of real numbers. Then, the sum range

SR[(tn)n∈N;R]

can be either empty, a singleton, or R.

Proof. If lim supn |tn| > 0, then clearly SR[(tn)n∈N;R] = ∅. So, let lim supn |tn| = 0.
Consider the sequence xn := tne1 ∈ l∞, n = 1, 2, . . . , where e1 = (1, 0, 0, . . . , 0, . . . ). Clearly,
c · xn = c1tne1, n = 1, 2, . . . , and so, lim supn ‖c · xn‖∞ = c1 lim supn |tn| = 0. Hence,
(BaCo∞) is satisfied for our sequence (xn)n∈N, and then by Theorem 26, SR[(xn)n∈N; X] is
a closed affine subset of X. Clearly,

SR[(xn)n∈N; X] = SR[(tne1)n∈N; X] ⊂ R · e1 = {te1 : t ∈ R} .

From this relation, we conclude that

SR[(tn)n∈N;R]

is a closed affine subset of R.

Of course, it would be interesting to find other sequences c(j), j = 1, 2, . . . for which
Theorem 26 will remain true.
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The first generalizations of Nikishin’s Theorem 24 appeared in [79,80]. To formulate
them, we recall the needed definitions.

For a natural number n, the Rademacher function rn : [0, 1]→ {−1, 1} is defined by
the equality

rn(t) = (−1)[2
nt], t ∈ [0, 1],

where [x] stands for the integer part of x ∈ R.
We say that a sequence x = (xn)n∈N in a Banach space X over R satisfies the (RSC)-

condition, if for Lebesgue’s almost every t ∈ [0, 1], the series corresponding to the sequence
(rn(t)xn)n∈N converges in X.

For a number q ∈ R, q ≥ 2, we say that a Banach space X over R is of cotype q, if for
every sequence x = (xn)n∈N in X satisfying the (RSC)-condition, the series corresponding
to the sequence (‖xn‖q)n∈N converges in R.

Theorem 27 (Theorems 8(a,b) and 9, [79]). Let X be a Banach space X over R and x = (xn)n∈N
a sequence in X, such that

SR[(xn)n∈N; X] 6= ∅ .

If either

(I) X = Lp(T, Σ, ν;R), with 1 ≤ p ≤ 4 and with some σ-finite positive measure space (T, Σ, ν),
and for x = (xn)n∈N, the condition (NikCp) is satisfied,
or

(II) X is of cotype 2, and the sequence x = (xn)n∈N satisfies the (RSC)-condition,
then

(III) The equality
SR[(xn)n∈N; X] = StR[(xn)n∈N; X]

holds.

This theorem contains the promised first generalizations of Nikishin’s Theorem 24. At
the very end of [79], it was conjectured that ((I I) =⇒ (I I I)) in Theorem 27 should be true
for all Banach spaces. Soon, this conjecture was confirmed. See Theorem 30 below.

Theorem 28 (Particular cases of Theorems 1 and 2, [80]). Let 0 ≤ p < ∞, (T, Σ, ν) be some
σ-finite positive measure space, X = Lp(T, Σ, ν;R), and x = (xn)n∈N be a sequence in X.

(I) If for x = (xn)n∈N, the condition (NikCp) is satisfied, then the sum range

SR[(xn)n∈N; X]

is a closed affine subset of X.
(II) If 1 ≤ p < ∞, for x = (xn)n∈N, the condition (NikCp) is satisfied, and StR[(xn)n∈N; X] 6= ∅,

then the equality
SR[(xn)n∈N; X] = s + ⊥Γx

holds for each s ∈ StR[(xn)n∈N; X].

This theorem contains the further generalizations of Nikishin’s Theorem 24. Theorem 28(I I)
also extends Theorem 25(I).

For a number r ∈ R, 1 < r ≤ 2, we say that a Banach space X over R is

• Of type r, if for every sequence x = (xn)n∈N in X, for which the series corresponding
to the sequence (‖xn‖r)n∈N converges in R, the (RSC)-condition is satisfied.

• Of infratype r, if there exists a positive finite constant C, such that for each natural
number n and elements xk ∈ X, k = 1, . . . , n, the inequality

‖
n

∑
k=1

θkxk‖ ≤ C

(
n

∑
k=1
‖xk‖r

) 1
r
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holds for some choice of ’signs’ θk ∈ {−1, 1}, k = 1, . . . , n.

In (Chapter 7, Section 1 (pp. 87–92) [5]), a machinery oriented to obtaining the following
result is developed.

Theorem 29 (Kadets–Ostrovskii [35,81] and Theorem 7.1.2 (p. 92), [5]). Let 1 < r ≤ 2, X be
a Banach space over R having the infratype r, and x = (xn)n∈N be a sequence in X for which

(a) SR[(xn)n∈N; X] 6= ∅, and
(b) The sequence x = (xn)n∈N satisfies the condition:

(KCr) The series corresponding to the sequence (‖xn‖r)n∈N converges in R.
Then, the equality

SR((xn)n∈N) = s + ⊥Γx

holds for each s ∈ SR((xn)n∈N).

Theorem 29 covers Theorem 16 in the case when 1 ≤ p < ∞, as if X =
(

Lp([0, 1]), ‖ · ‖p
)
,

then it is known that X is of type r = min(p, 2).

Theorem 30 (Announced in Theorem 3, [82], and proved in Theorem 5, [31]). Let X be the
Banach space R, and let x = (xn)n∈N be a sequence in X for which

(a) SR[(xn)n∈N; X] 6= ∅, and
(b) The sequence x = (xn)n∈N satisfies the (RSC)-condition.

Then, the equality
StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.

This statement was the first general result valid for all Banach spaces. It does not cover
Theorem 26, when 2 < p ≤ ∞. However, it implies the following final improvement of
Nikishin’s Theorem 24.

Theorem 31 (Announced in Corollary 2, [82], and proved in Corollary 3, [31]). Let
X = Lp(T, Σ, ν;R), with 1 ≤ p < +∞ and with some σ-finite positive measure space (T, Σ, ν),
and let x = (xn)n∈N be a sequence in X for which

(a) SR[(xn)n∈N; X] 6= ∅, and
(b) The series corresponding to the sequence (|xn(t)|2)n∈N converges in R for ν-almost every

t ∈ T, and (
∞

∑
n=1
|xn|2

) 1
2

∈ X .

Then, the equality
StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.

Comments on the Proof. This follows from Theorem 30 due to the following theorem by
Jorgen Hoffman-Jorgensen (1942-2017): (b) holds if and only if the sequence x = (xn)n∈N
satisfies the (RSC)-condition (Corollary 2(b) to Theorem 5.5.2 (pp. 323–324), [83]).

Remark 8. We fix r ∈]1, 2] and a Banach space X over R. Let us note:

(1) If X is of type r, then Theorem 29 follows from Theorem 30.
(2) If 1 < r < 2, and X is of infratype r, then X is of type r too [84]. From this and (1), we

conclude that if 1 < r < 2, and X is of infratype r, then again Theorem 29 follows from
Theorem 30.

(3) Ref. [85] showed the existence of X of infratype 2, which is not of type 2. Consequently, in the
case of p = 2, Theorem 29 does not follow from Theorem 30.
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To formulate an important generalization of Theorem 30, it would be convenient to
provide a definition.

We say that a sequence x = (xn)n∈N in the Banach space (or the topological vector
space) X over R satisfies the (PSC)-condition, if for every permutation σ : N→ N, there
exists a sequence of ’signs’ θn ∈ {1,−1}, n = 1, 2, . . . , such that the series corresponding to
the sequence (θnxσ(n))n∈N converges in X.

Theorem 32. Let X be a Banach space over R and x = (xn)n∈N be a sequence in X, which satisfies
the (PSC)-condition.

Then,

(I) (Theorem 1, [86]) The equality

StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.
(II) (Corollary 2, [86]) The equality

SR[(xn)n∈N; X] = X

holds, if and only if

SR[(x∗(xn))n∈N;R] = R ∀x∗ ∈ X∗ \ {0} . (15)

In particular, if (15) is satisfied, then SR[(xn)n∈N; X] 6= ∅.

Theorem 32(I) implies Theorem 30 because, as proved in (Proposition 1, [86]) in a
somewhat sophisticated way, the (RSC)-condition implies the (PSC)-condition. Note also
that Theorem 32 would imply Theorem 29 in the case when p = 2 too, if the following
conjecture is true.

Conjecture 1 (Infratype 2 conjecture; see Conjecture (p. 92), [5]). Let X be a Banach space of
infratype 2. Then, for every sequence x = (xn)n∈N in X for which the series corresponding to the
sequence (‖xn‖2)n∈N converges in R, there exists a sequence of ’signs’ θn ∈ {1,−1}, n = 1, 2, . . . ,
such that the series corresponding to the sequence (θnxn)n∈N converges in X.

The following, weaker version, of Theorem 32(I) was announced (independently
of [86]) in [87] and is included in [5] as “Pecherskii’s theorem”.

Theorem 33 (Announced in Theorem 4, [87], and proved in Theorem 2.3.1, [5]). Let X be a
Banach space over R and x = (xn)n∈N be a sequence in X for which

(a) SR[(xn)n∈N; X] 6= ∅, and
(b) The sequence x = (xn)n∈N satisfies the (PSC)-condition.

Then, the equality
StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.

In (p. 23, [5]), the following observation is included after the formulation of Theorem 33:

(1) “This assertion provides the most general of the known sufficient conditions for
linearity of the sum range of a series in an infinite-dimensional space”.

(2) “In the finite-dimensional case Theorem 2.3.1 is identical to Steinitz’s theorem. . . ”

(1) This is not completely true, as above, we state here too: Theorem 33 would imply
Theorem 29 in the case when p = 2, if the infratype 2 conjecture were true.

(2) This is true due to the following result.
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Theorem 34 (Dvoretzky–Hanani theorem, [19] in the case when dim(X) = 2 and Theo-
rem 2.2.1 (p. 22), [5], in general). Let X be a finite-dimensional normed space over R and
x = (xn)n∈N be a sequence in X, which converges to zero in X. Then, there exists a sequence of
’signs’ θn ∈ {1,−1}, n = 1, 2, . . . , such that the series corresponding to the sequence (θnxn)n∈N
converges in X.

We note that this result is presented on p. 24 of the Russian edition of [44] as
Exercise 1.3.7; then, on p. 28 after Exercise 2.1.2, it is noted that it is equivalent to the
following theorem.

Theorem 35 ( [19] in the case when dim(X) = 2 and Lemma 2.2.1 (p. 21), [5], in general; see
also [59]). There exists a sequence Dm, m = 1, 2, . . . of strictly positive constants, with D1 = 1
and with Dm ≤ 2m− 1, m = 2, 3, . . . , for which the following statement is true.

Let X be a finite-dimensional vector space over R with dim(X) = m ≥ 1, and let ‖ · ‖ be a
norm on X. Then, for a natural number n > 1 and for elements xj ∈ X, j = 1, . . . , n, there exist
’signs’ θj ∈ {−1, 1}, j = 1, . . . , n, such that

‖
k

∑
j=1

θjxj‖ ≤ Dm max
j∈Nn
‖xj‖, k = 1, 2, . . . , n . (16)

The following version of Theorem 35 (without proof and with a reference to [88]) was
formulated as Lemma 10 in [49].

There exists a sequence Dm, m = 1, 2, . . . of strictly positive constants for which the following
statement is true.

If X = Rm with m ∈ N and with the maximum norm ‖ · ‖ on X, then for a bounded sequence
of elements xj ∈ X, j = 1, 2, . . . , there exist ’signs’ θj ∈ {−1, 1}, j = 1, 2, . . . , such that

‖
k

∑
j=1

θjxj‖ ≤ Dm sup
j∈N
‖xj‖, k = 1, 2, . . . . (17)

However, in [88] it is hard to find such a statement. It seems that in the case when m > 2,
the first proof of Theorem 35 is Grinberg’s proof, which appeared on pp. 178–179 of the
Russian edition of [44] as a solution to Exercise 2.1.2.

It is conjectured (as in the case of Theorem 13) that for Euclidean norms, the theorem
should hold with constants Dm, m = 1, 2, . . . for which the sequence Dm√

m , m = 1, 2, . . . is
bounded [59].

The following result covers some cases of metrizable topological vector spaces, which
may not be locally convex.

Theorem 36 (Giorgobiani). Let X be a metrizable topological vector space over R, and let
x = (xn)n∈N be a sequence in X, which satisfies the (PSC)-condition.

Assume further that
(GiCo) the topology of X can be generated by a translation invariant metric d, such that

inf
{

d(2x, 0)
d(x, 0)

: x ∈ X \ {0}
}

> 1 .

Then, the following statements are valid.

(a) (Theorem 1.2.1 (p. 34), [39]) SR[(xn)n∈N; X] = LPR[(xn)n∈N; X].
(b) (Announced in (Remark (p. 45), [87]), and proved in [89]; see also (Theorem 1.3.1 (p. 41), [39])

SR[(xn)n∈N; X] is a closed affine subset of X.

This theorem covers Theorem 28(I). Does Theorem 36 remain true for all metrizable
topological vector spaces? The answer is unknown yet. The following result covers the
general case of metrizable locally convex topological vector spaces.
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Theorem 37 (Maria-Jesus Chasco–Sergei Chobanyan). Let X be a metrizable locally convex
topological vector space over R and x = (xn)n∈N be a sequence in X, which satisfies the (PSC)-
condition. Then, the following statements are valid.

(a) (Theorem 2, [90]) SR[(xn)n∈N; X] = LPR[(xn)n∈N; X].
(b) (Announced in (Theorem 5 (p. 15), [91]), also in [92], and proved in (Theorem 3, [90]); see

also (Theorem 1.3.2 (p. 45), [39])
If SR[(xn)n∈N; X] 6= ∅, then the equality

StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.

The following inequality plays a key role in the proof of Theorem 37.

Proposition 11 (Lemma 1, [90]). Let n ≥ 2 be a natural number, let X be a vector space over R,
‖ · ‖ be a seminorm on X, and ak ∈ X, k = 1, 2, . . . , n. Moreover, let

(1) π : Nn → Nn be an ’optimal’ permutation in the following sense: for any permutation
λ : Nn → Nn, the inequality

max
1≤k≤n

‖
k

∑
j=1

aπ(j)‖ ≤ max
1≤k≤n

‖
k

∑
j=1

aλ(j)‖

holds, and
(2) σ : Nn → Nn be the permutation associated with π as follows

σ(k) = π(n− k + 1), k = 1, 2, . . . , n

Then,

max
1≤k≤n

‖
k

∑
j=1

aπ(j)‖ ≤ ‖
n

∑
j=1

aj‖+ max
1≤k≤n

‖
k

∑
j=1

θjaσ(j)‖

for every choice of ’signs’ θj ∈ {1,−1}, j = 1, 2, . . . , n.

Theorem 37 would imply Banaszczyk’s Theorem 10, if the following conjecture is true.

Conjecture 2 ((p. 109), [6], and (p. 615), [90]). Let X be a complete metrizable nuclear locally
convex topological vector space over R and x = (xn)n∈N be a sequence in X, which converges to
zero in X. Then, there exists a sequence of ’signs’ θn ∈ {1,−1}, n = 1, 2, . . . , such that the series
corresponding to the sequence (θnxn)n∈N converges in X.

Conjecture 2 is true when X is finite dimensional by Theorem 34, when X = RN

(Theorem 2, [49]), and for some other nuclear spaces [93]. The following result, related to
this conjecture, is true.

Theorem 38 (Wojciech Banaszczyk, [94]; announced in (Remark 10.15 (pp. 106–107), [6])).
For a complete metrizable locally convex topological vector space X over R, the following statements
are equivalent:

(i) X is nuclear.
(ii) For every sequence x = (xn)n∈N of elements of X, which converges to zero in X, there exists

a sequence of ’signs’ θn ∈ {1,−1}, n = 1, 2, . . . and a permutation σ : N → N, such that
the series corresponding to the sequence (θnxσ(n))n∈N converges in X.

After [90], a remarkable paper by Bonet and Defant [95] and a paper by Sofi [96] ap-
peared. The first one deals with Banaszczyk’s type rearrangement theorems for (not
necessarily metrizable) nuclear locally convex spaces. The second one contains Chasco–
Chobanyan-type results imposing conditions on series different from the (PSC)-condition.
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5. Additional Comments

During our expositions, we have indicated several problems, which would be interest-
ing to solve. In connection with Chasco–Chobanyan’s theorem, it would be interesting to
answer also the following questions.

Question 4. Is Theorem 37(b) true without the assumption that SR[(xn)n∈N; X] 6= ∅?

Question 5. Let X be as in Theorem 37 and x = (xn)n∈N and y = (yn)n∈N be two sequences in
X, which satisfy the (PSC)-condition. Does their sum (xn + yn)n∈N satisfy the (PSC)-condition?
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