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In this paper, a partial differential equation model for the pricing of pension plans
based on average salary is posed by using the dynamic hedging methodology. The
existence and uniqueness of solutions for the resulting initial-value problem asso-
ciated with a Kolmogorov equation is obtained. Moreover, a numerical method
based on a Crank–Nicolson characteristics time discretization combined with
finite elements to approximate the solution is proposed. Finally, some test exam-
ples illustrate the performance of the numerical methods as a tool for pricing
these pension plans.

1 INTRODUCTION

Pension funds are an important aspect of finance in countries with advanced
economies, and they affect the retirement decisions taken by their populations. Pen-
sion plans are generally classified as either defined contribution plans or defined
benefit plans (Bodie (1990)). In the first case, at retirement the employee receives
an annuity whose value depends on the investment earnings and the total contribu-
tions of both employer and employee to the pension plan account of the employee.
Moreover, sometimes the employee can decide among the possible investments of
the account, so that he/she bears the risk. In defined benefit plans, the pension at
retirement depends on several labor-related factors, such as the number of years of
service, the salary or the average salary. A traditional defined benefit pension plan
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pays the salary at retirement multiplied by a number of years and by an accrued
rate, with the resulting amount being paid as a monthly pension or a lump sum.
Final average pay (FAP) schemes, for which the average salary over the last years
before retirement determines the benefit, are most common in the United States. In
the case of defined benefit pension plans, the employer bears the liability, which
is the amount of money that the employer has to set aside to fund the employee’s
retirement pension in the future. The value of this liability is roughly what we refer
to here as the value of the pension plan. Sometimes, however, pension plans also
include integration with social security (integrated plans). In typical integrated plans,
the pension benefit at retirement is a fraction of the average salary minus the social
security benefit. In Perun (2002) it is proved that the proportion of integrated plans is
greater in defined benefit schemes (one-third) than in defined contribution schemes
(one-quarter).

In this paper we use a mathematical modeling approach to obtain the value of
a defined benefit pension plan understood as the value of the liabilities of the plan
with an active member. More precisely, we assume that the amount received by the
employee depends on the average salary corresponding to a certain number of years
before retirement. The departure point in our modeling approach is the consideration
that the salary is stochastic, so that the pension plan can be handled as an option on
the average salary. The dynamic hedging methodology in option pricing can then be
adapted to state a partial differential equation (PDE) model. Indeed, some features
appear that are also found in Asian options and bond pricing PDE models (Wilmott
et al (1993)). In Sherris and Shen (1999), the same kind of models are stated for
pension plans depending on the salary at retirement or on the average salary by using
a risk-neutral probability approach. Previous works in insurance can be found, for
example, in Norberg (1996), Shimko (1989) and Wolthius (1994).

Additionally, we state the existence and uniqueness of solutions by using the
methodology developed by Barucci et al (2001) for these kinds of Kolmogorov equa-
tion (Oleinik and Radkevic (1973)). This methodology is mainly based on Barucci
et al (2001) for the existence of sub- and supersolutions and Aronson and Besala
(1967) for the uniqueness.

Moreover, we provide a numerical method for solving the PDE model by using the
techniques developed in Bermúdez et al (2006c) for Asian option pricing models. The
numerical analysis of the proposed characteristics Crank–Nicolson time discretization
was addressed in Bermúdez et al (2006a). Moreover, Bermúdez et al (2006b) studied
its combination with Lagrange finite elements and considered appropriate different
quadrature formulas required in the practical implementation of the methods for the
fully discretized problem. Both of these works were applied to the general (possibly
degenerated) convection–diffusion–reaction equation under certain assumptions. We
note that these assumptions are not fully verified by the PDE that we are dealing
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with. This explains why the predicted orders of convergence are not achieved in the
academic example presented here, for which the exact solution can be analytically
obtained.

The paper is organized as follows. In Section 2 the mathematical model is posed in
terms of a final value problem associated with a Kolmogorov equation. In Section 3
the mathematical analysis of the model is developed to obtain the existence and
uniqueness of solutions. Section 4 contains the description of the numerical methods,
which are applied after a localization procedure and a variational formulation. In
Section 5 some examples are presented to illustrate the performance of the proposed
numerical method. In Section 6 some conclusions and directions for future work are
given. Finally, Appendix A contains detailed proofs of the theoretical results.

2 MATHEMATICAL MODELING

Let us denote the age of entry of a member in the pension plan by x and the time since
the entry by t , so that t D 0 corresponds to the recruitment date of a person aged x. As
the pension plan is indexed to the salary of the member, let us denote by S.t I x/ the
wage at time t of a member entering the pension plan with an age x. Following Sherris
and Shen (1999), we assume that S.t I x/ is governed by the stochastic differential
equation (SDE):

dS D ˛.t; S I x/ dt C �.t; S/ dZ (2.1)

together with the initial condition S.0I x/ D S0.x/, and the salary growth rate ˛
depends on the time of entry into the plan, the current salary and the age at entry,
where �.t; S/ denotes the volatility of the salary and where Z represents a Wiener
process.

The model that we are using assumes that uncertainty about the salary only depends
on the volatility, and that it follows a diffusion model. This kind of evolution could
correspond to an employee having a variable part of his/her salary (perhaps related
to his/her bonus or the firm benefits). We also point out that, in real situations, some
sudden events could produce abrupt changes in the salary. In that case, a jump-
diffusion model turns out to be more appropriate, so the SDE (2.1) could be replaced
by the following, for example:

dS D ˛.t; S I x/ dt C �.t; S/ dZ C d

� NX
iD1

Ui

�
(2.2)

where N denotes a Poisson process with parameter � and Ui is a sequence of square
integrable, identically distributed random variables, so that Z, N and Ui are inde-
pendent. In all processes, we omit the subscript t for simplicity of notation. For the
case � D 0, the model would include the pure jump case. Although, in this paper,
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we will restrict ourselves to the SDE model (2.1), we point out that model (2.2) leads
to a partial integro-differential equation, so that appropriate numerical techniques,
such as those used in D’Halluin et al (2005) to cope with jumps in the case of Asian
options, could be applied. The analysis and numerical solution of the case (2.2) is
being considered by the authors as an extension of the present work.

Let us denote by V.t; S I x/ the value at time t of the benefits payable to the member
of the plan when he/she is aged x C t and the salary is S . In this section we pose
the mathematical model in terms of a PDE to obtain V , when the retirement benefits
depend on the continuous arithmetic average of the salary during the last ny years,
and early retirement is not allowed.

Moreover, the payment from the fund is assumed to occur in case of the death of a
member, or cancelation of the plan (withdrawal) to move to another plan. Therefore,
we assume three possible states of a member of the plan: active (a), dead (d) and
withdrawal (w). It is considered that retirement occurs at the final age of service
in the pension fund. The transition intensities from active membership to death or
cancelation are denoted by �d.t I x/ and �w.t I x/, respectively. From an actuarial
standpoint, these intensities are understood as forces of decrement acting at time t on
a member aged x C t and can be expressed in terms of the corresponding transition
probabilities from one state to another.

In classic actuarial mathematics, the value of the benefits of the pension plan, V ,
is understood as the value of the provision that the plan promoter should reserve in
order to guarantee the contractual obligations to the active member. By using actuarial
arguments, when assuming deterministic benefits paid to the fund and ignoring any
contributions, the variation of the value of the retirement benefits from time t to
time t C dt is given by Thiele’s differential equation (see, for example, Bowers et al
(1997)):

dV D r.t/V dt �
X
iDd;w

�i .t I x/ŒAi .t; S I x/ � V � dt (2.3)

where r.t/ is the deterministic risk-free interest rate and Ai .t; S I x/ denotes the
deterministic benefit paid by the fund in case of death (i D d) or withdrawal (i D w).
Note that the difference Ai .t; S I x/ � V represents the sum-at-risk associated with
decrement i , so that: X

iDd;w

�i .t I x/.Ai .t; S I x/ � V / dt (2.4)

denotes the expected value of the payments from the fund in the interval Œt; t C dt �.
Following Sherris and Shen (1999, Section 5), we assume that:

Ai .t; S I x/ D ˛iS; ˛i > 0; i D d;w
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so that the death and withdrawal benefits are a constant multiple of the salary, and the
transition intensities �i .t I x/ D �i are nonnegative constants.

As we are assuming that retirement benefits depend on the continuous arithmetic
average of the salary, in an analogous way to the case of Asian options (Wilmott et al
(1993)), we introduce the following variable representing the cumulative function of
the salary of the last ny years before Tr :

I.t I x/ D

Z t

0

g.�; S.� I x// d� (2.5)

with:

g.t; S/ D

(
0 if 0 6 t < Tr � ny
h.S/ if Tr � ny 6 t 6 Tr

(2.6)

where Tr > ny denotes the retirement date and h is appropriately chosen. In this
paper we consider the particular case h.S/ D k1S , with a given accrual constant
k1 > 0. As in the case of Asian options, the variation of I in the interval Œt; t C dt � is
given by:

dI D I.t C dt / � I.t/

D

Z tCdt

t

g.�; S.� I x// d�

D g.t; S/ dt (2.7)

Next, by considering that V D V.t; S; I I x/, we can apply Ito’s lemma jointly with
the Thiele differential equation (2.3) to obtain the variation of V from t to t C dt :

dV D

�
@V

@t
C ˛.t; S I x/

@V

@S
C g.t; S/

@V

@I
C 1

2
�.t; S/2

@2V

@S2

�
dt

C �.t; S/
@V

@S
dZ C

� X
iDd;w

�i .t I x/.Ai .t; S I x/ � V /

�
dt (2.8)

where the first two terms on the right-hand side are associated with the stochastic
variation of the salary, while the third term is related to the expected payments in
.t; t C dt / due to death or withdrawal.

In Sherris and Shen (1999) the PDE model is obtained by arguing that the risk-
adjusted expected change in the liabilities value, after taking into account the benefit
cashflows from the fund related to possible death or withdrawal, should be equal to
the risk-free interest rate. We apply the dynamic hedging methodology to deduce
the PDE model. For this purpose, we consider two pension plans with values Vj ,
j D 1; 2, that pay the quantitiesAjd .t; S I x/ andAjw.t; S I x/ in the cases of death and
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withdrawal, respectively. Moreover, we assume that the intensities�i are independent
of j . Therefore, the variation of each planVj from t to tCdt verifies the corresponding
equation (2.8). At this point, we proceed in a similar manner to the dynamic hedging
methodology used in the case of bonds (Wilmott et al (1993)). Thus, by buying one
unit of plan V1 and selling � units of plan V2, the value of the resulting portfolio is:

˘ D V1 ��V2

Note that the variation of the portfolio value between t and t C dt is given by:

d˘ D dV1 �� dV2 D .� � � / dt C �

�
@V1

@S
��

@V2

@S

�
dZ (2.9)

where .� � � / contains the drift term. Therefore, ˘ turns out to be risk-free for the
following choice:

� D

�
@V1=@S

@V2=@S

�
(2.10)

Moreover, for this choice of �, the variation of the risk-free portfolio is given by:

d˘ D

�
@V1

@t
C 1

2
�2
@2V1

@S2
C g

@V1

@I
C
X
iDd;w

�i .A
1
i � V1/

��

�
@V2

@t
C 1

2
�2
@2V2

@S2
C g

@V2

@I
C
X
iDd;w

�i .A
2
i � V2/

��
dt (2.11)

By using the arbitrage-free assumption, this variation is also given by d˘ D r˘ dt .
So, we obtain the identity:

�
@V1

@S

��1�
rV1 �

@V1

@t
� g

@V1

@I
� 1
2
�2
@2V1

@S2
�
X
iDd;w

�i .A
1
i � V1/

�

D

�
@V2

@S

��1�
rV2 �

@V2

@t
� g

@V2

@I
� 1
2
�2
@2V2

@S2
�
X
iDd;w

�i .A
2
i � V2/

�
(2.12)

Note that (2.12) holds for any considered pair of pension plans. Then we can introduce
the quantity:

ˇ.t; S; I I x/ D

�
@V

@S

��1�
rV �

@V

@t
�g

@V

@I
� 1
2
�2
@2V

@S2
�
X
iDd;w

�i .Ai�V /

�
(2.13)

So, by reordering the terms in (2.13) we obtain the following PDE that governs the
value of the benefits of the pension plan:

@V

@t
C ˇ

@V

@S
C g

@V

@I
C 1

2
�2
@2V

@S2
� .�d C �w C r/V D ��dAd � �wAw (2.14)
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which is initially posed on the unbounded domain .0; Tr/�˝, with˝ D .0;C1/�
.0;C1/.

Assuming that, at retirement date Tr , the owner of the pension plan receives a
fraction of the average salary during the last ny years, Equation (2.14) is completed
with the final condition:

V.Tr ; S; I I x/ D
a

ny
I (2.15)

where a 2 .0; 1/ is a given constant. For simplicity, in the following sections we drop
the dependence on the entry age x in all functions (in particular, V D V.t; S; I /).

Remark 2.1 Note that function ˇ can be related to the market price of the risk
associated with uncertainty about the salary. More precisely, if we introduce:

� D
˛ � ˇ

�
(2.16)

then Equation (2.8) can be equivalently written as:

dV D

�
rV C ��

@V

@S

�
dt C �

@V

@S
dZ (2.17)

so that:

dV � rV dt D �
@V

@S
.� dt C dZ/ (2.18)

Therefore, the extra reward of the pension plan is � dt per assumed risk unit. Then �
can be understood as the market price of the risk associated with uncertainty about
the salary.

3 EXISTENCE AND UNIQUENESS OF SOLUTIONS

So far, the mathematical model for the value of the pension plan has been posed as
a Cauchy problem associated with the backward-in-time equation (2.14) jointly with
the final condition (2.15).

In this section we study the existence and uniqueness of solutions. In what follows
we assume that � and ˇ are proportional to the salary, so that �.t; S/ D �S and
ˇ.t; S; I / D �S , where � > 0 and � > 0 are given constants. The assumption on �
implies that salary volatility increases with salary, which is a reasonable argument,
mainly in the private sector. Additionally, the joint assumption on the expressions of
both � and ˇ implies that the market price of risk is a constant parameter when a
lognormal evolution for salaries is considered (ie, ˛.t; S I x/ D ˛S ). Moreover, these
assumptions allow for the use of the techniques developed in this section to obtain
the existence and uniqueness of solutions by appropriately transforming the PDE.
Nevertheless, the numerical methods described in the next section could be applied
without the need for these simplifying assumptions.
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Thus, let us consider the following Kolmogorov operator:

LŒV � D
@V

@t
C �S

@V

@S
C g.t; S/

@V

@I
C 1

2
�2S2

@2V

@S2
� .r C �d C �w/V (3.1)

where V denotes a function defined on the domain .0; Tr/�˝. Thus, let us consider
the Cauchy problem:

LŒV � D f for .t; S; I / 2 .0; Tr/ �˝

V.Tr ; S; I / D
a

ny
I for .S; I / 2 ˝

9=
; (3.2)

where f D �.�d˛d C �w˛w/S .
In order to study the existence of solutions we introduce the following change of

variables and unknown:

y1 D S; y2 D
1
2
�2I; � D 1

2
�2.Tr � t /

�.�; y1; y2/ D y
m
1 exp.q�/V

�
Tr �

2�

�2
; y1;

2y2

�2

�

and the following parameters:

m D
�

�2
; q D m2 �mC

2.r C �d C �w/

�2
; T D 1

2
�2.Tr � 0/

After the previous changes, the Cauchy problem (3.2) can be written in terms of the
new unknown as:

L1Œ�� D F for .�; y1; y2/ 2 .0; T / �˝

�.0; �/ D 	 for .y1; y2/ 2 ˝

)
(3.3)

where operator L1 is defined as:

L1Œ�� D
@�

@�
� y21

@2�

@y21
� Ng.�; y1/

@�

@y2
(3.4)

for any function � defined in .0; T / �˝, with:

Ng.�; y1/ D

(
k1y1 if � 6 1

2
�2ny

0 if � > 1
2
�2ny

(3.5)

The second member function in (3.3) is given by:

F.�; y1; y2/ D
2

�2
.�d˛d C �w˛w/ exp.q�/ymC11 (3.6)
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and the initial condition is:

	.y1; y2/ D
2a

�2ny
ym1 y2 (3.7)

Next, we analyze the existence of solutions for (3.3). As indicated in Barucci et al
(2001), the presence of the coefficient y21 in the second-order term leads to a kind
of degeneracy in the equation that cannot be easily avoided by the usual logarithmic
transformation in classical linear Kolmogorov equations. If the change y1 D log.S/
is applied instead of y1 D S , then the exponential term k1 exp.y1/ will appear in the
expression (3.5) of Ng for � 6 1

2
�2ny and the degeneracy problem is shifted to the

first-order term coefficient. Nevertheless, in Marcozzi (2003), for the case of Asian
options, the logarithmic change is applied and the consequent existence results are
obtained from the results appearing in Gencev (1963). We follow the ideas of Barucci
et al (2001), thereby avoiding the use of the logarithmic change in variable S .

In order to state the existence of solutions, for p > 1 we introduce the following
functional space related to the solution of problem (3.3):

Sploc.˝/ D fu 2 L
p
loc.˝/=@� � y1@

2

y2
1

� Ng@y2 2 L
p
loc.˝/g (3.8)

and, for ˛ 2 .0; 1/, we consider the Hölder spaces C˛L1.˝/, C1;˛L1
.˝/ and C2;˛L1

.˝/

defined by the norms (see, for example, Di Francesco et al (2008)):

kukC˛L1 .˝/
D sup

˝

juj C sup
z;y2˝;z¤y

ju.z/ � u.y/j

kz�1 ı yk˛
(3.9)

kuk
C1;˛L1

.˝/
D k@y1ukC˛L1 .˝/

(3.10)

kuk
C2;˛L1

.˝/
D k@2

y2
1

ukC˛L1 .˝/
C k@y2u � @�ukC˛L1 .˝/

(3.11)

Note that the notation C˛L1.˝/ associates the definition to the particular form of the
operator L1 and that u 2 C˛L1.˝/ implies that u is Hölder continuous in the usual
sense. Moreover, some embedding theorems recalled in Di Francesco et al (2008)
state the relationships between spaces Sploc.˝/ and C˛L1.˝/.

In order to state the existence of solutions, we first present a result concerning
the existence of solutions for boundary-value problems associated with second-order
operators with nonnegative characteristic form (Oleinik and Radkevic (1973)). More
precisely, in Manfredini (1997), the following result is stated for the problem:

L1Œu� D G in Q

u D H on @Q

)
(3.12)

where Q is an open bounded set in R3.
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Theorem 3.1 Let Q be an open bounded set of R3 such that NQ � fy1 ¤ 0g,
and let G 2 C.Q/, H 2 C.@Q/. Then the problem (3.12) has a classical solution
u 2 C2;˛.Q/ \ C. NQ/.

Note that, although the hypothesis NQ � fy1 ¤ 0g is not introduced in Manfredini
(1997), it is assumed anyway as we cannot guarantee that the coefficient associated
with the second-order term is bounded from below by some positive constant (see
Barucci et al (2001)). Moreover, although only the homogeneous case G D 0 is
addressed in Manfredini (1997), the extension to G 2 C.@Q/ is straightforward. In
fact, a nonhomogeneous case is stated in Polidoro and Di Francesco (2006, Theo-
rem 4.2). Next, as in Barucci et al (2001), we recall a sufficient condition for the
regularity of the points at the boundary (see Manfredini (1997, Theorems 6.1 and
6.3)) to be used in problem (3.12).

Proposition 3.2 Let ˝ be an open set of R3 such that N̋ � fy1 ¤ 0g, and let
.t0; y01 ; y

0
2/ 2 @˝. Let us consider the problem (3.3). If there exists an outer normal

vector 
 D .
t ; 
y1 ; 
y2/ such that one of

(1) 
y1 ¤ 0 or

(2) 
y1 D 0, but y01
y2 � 
t > 0 and there exists a positive constant ı such that
.y01/

2ı2 6 y01
y2 � 
t and that:

f.t; y1; y2/ 2 R
3=.t � t0 � ı

2
t /
2 C ı2.y1 � y

0
1/
2

C .y2 � y
0
2 � ı

2
y2/
2 6 ı4g � R3 �˝

is satisfied, then .t0; y01 ; y
0
2/ is a regular point.

Next, we introduce the concepts of supersolutions and subsolutions associated with
problem (3.3), which is posed on the unbounded domain .0; T / �˝.

Definition 3.3 A supersolution:

N� 2 Sploc..0; T / �˝/ \ C..0; T / �R2/

of problem (3.3) is a function satisfying:

L1Œ N�� > F for .�; y1; y2/ 2 .0; T / �˝
N�.0; �/ > 	 for .y1; y2/ 2 ˝

)
(3.13)

Moreover, a subsolution � to problem (3.3) is defined simply by considering the
reverse inequalities in (3.13).
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In the following proposition, we shall obtain a supersolution and a subsolution to
problem (3.3).

Proposition 3.4 For ˛1 > 3 and ˛2 > 1, let:

N�.�; y1; y2/ D �y
m
1 y2 exp. Qq�/C

2

�2
.�d˛d C �w˛w/y

mC1
1 exp..q C Qq/�/

C �k1y
mC1
1 exp. Qq�/

(3.14)

where:

q D m2 �mC
2.r C �d C �w/

�2
; Qq D m2 C .˛1 � 1/mC ˛2; � D

2a

�2ny

Then, the function N� is a supersolution to problem (3.3). Moreover, the function � D 0
is a subsolution to problem (3.3).

The proof of Proposition 3.4 is included inAppendixA. Next, we adapt the theorem
appearing in Barucci et al (2001) to our case in order to state the following theorem.

Theorem 3.5 Let 	 2 C.˝/ and F 2 C..0; T / � ˝/. Let N� and � be a
supersolution and a subsolution of problem (3.3), respectively, such that � 6 N� in
.0; T / �˝. Then there exists a classical solution � to problem (3.3), such that:

� 6 � 6 N� in .0; T / �˝ (3.15)

The proof of Theorem 3.5 is detailed in Appendix A.

Theorem 3.6 There exists a classical solution � to problem (3.3). Moreover, the
solution verifies:

0 6 � 6 N� D �ym1 y2 exp. Qq�/C
2

�2
.�d˛d C �w˛w/y

mC1
1 exp..q C Qq/�/

C �k1y
mC1
1 exp. Qq�/

with:

q D m2 �mC
2.r C �d C �w/

�2
; Qq D m2 C 2mC 1; � D

2a

�2ny

The proof of Theorem 3.6 follows directly from Theorem 3.5 and Proposition 3.4
by taking ˛1 D 3 and ˛2 D 1.

Remark 3.7 Note that the choice of supersolutions and subsolutions implies that
any solution satisfies �.�; 0; y2/ D 0.
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In order to study the uniqueness of solutions, we directly apply the following result
taken from Aronson and Besala (1967) to the particular case of problem (3.3). This
result has already been used in Gleit (1978) for Black–Scholes equations associated
with one-factor models.

Theorem 3.8 Let ˝ � Rn be an arbitrary unbounded open domain and let L be
the differential operator:

L D

nX
i;jD1

aij .�; y/@yi @yj C

nX
iD1

bi .t; y/@yi C c � @�

defined in .0; T / �Rn, such that the coefficients of L satisfy:
nX

i;jD1

aij .�; y/�i�j 6 0 for all .�; y/ 2 Œ0; T � �˝; � 2 Rn

and:
jaij j 6 A.jyj2 C 1/; jbi j 6 B.jyj2 C 1/1=2; jcj 6 C

in Œ0; T � �˝ for some positive constants A, B and C . If u is a classical solution of
Lu 6 0 in Œ0; T � �˝, such that:

u > 0 for .�; y/ 2 fŒ0; T � � @˝g [ ff0g � @˝g

and:
u.�; y/ 6 �M expfk log.jyj2 C 1/C 1g2 (3.16)

in Œ0; T � �˝, for some positive constant M and k, then u > 0 in Œ0; T � �˝.

The following result follows directly from the previous theorems and existence
results.

Corollary 3.9 There exists a unique classical solution of problem (3.3) such that
(3.16) is satisfied.

4 NUMERICAL METHODS

In this section we introduce the numerical method for solving problem (3.2). First,
we point out some difficulties in the numerical solution. On the one hand, the spatial
domain ˝ is unbounded. Due to this fact, as in the localization technique used in
the previous section, domain truncation and boundary conditions are proposed. Note
that the particular localization procedure used in the previous section is not practical
for numerical purposes. On the other hand, the diffusion matrix is strongly degener-
ated. So, we propose a combination of the Crank–Nicolson characteristics method for
the time discretization and piecewise quadratic finite element method for the spatial
discretization on the bounded domain. In the literature, we can find different applica-
tions of the classical first-order method of characteristics for the solution of financial
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problems (see, for example, D’Halluin et al (2005) andVázquez (1998)). Higher-order
Crank–Nicolson characteristics methods for general convection–diffusion–reaction
equations (eventually degenerated) were recently proposed and analyzed numeri-
cally in Bermúdez et al (2006a,b). Furthermore, they have been successfully applied
to Asian options pricing in Bermúdez et al (2006c). In this section we apply the
method to the pension plan pricing problem. Although this problem does not satisfy
all of the hypotheses required in Bermúdez et al (2006c) to obtain a second-order
Lagrange–Galerkin scheme, in practice, good numerical results are obtained. It is
important to note that, due to the specific expression of the PDE, in the Lagrangian
step the characteristic curves associated with the convection term in the equation can
be computed exactly, thereby avoiding the use of appropriate ordinary differential
equation solvers to approximate the position of the basis point of the characteristics.

4.1 Localization procedure and formulation in a bounded domain

First, we consider a problem posed in a sufficiently large spatial bounded domain, so
that the solution in the region of financial interest is not affected by the truncation of
the unbounded domain and the required boundary conditions (localization procedure).
This procedure was analyzed in Kangro and Nicolaides (2000) for vanilla options and
Dirichlet boundary conditions. For this purpose, let us introduce the notation:

x0 D t; x1 D S; x2 D I (4.1)

let us consider both x11 and x12 as sufficiently large real numbers suitably chosen,
and let:

˝� D .0; x10 / � .0; x
1
1 / � .0; x

1
2 /

with x10 D Tr . Then, let us denote the Lipschitz boundary by  � D @˝� such that
 � D

S2
iD0.

�;�
i [ 

�;C
i /, where we use the notation:


�;�
i D f.x0; x1; x2/ 2 

� j xi D 0g


�;C
i D f.x0; x1; x2/ 2 

� j xi D x
1
i g

for i D 0; 1; 2.
Then, the PDE in problem (3.2) can be written in the form:

2X
i;jD0

bij
@2V

@xixj
C

2X
jD0

bj
@V

@xj
C b0V D f0 (4.2)
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where the data involved is defined as follows:

B.x0; x1; x2/ D .bij / D

0
B@
0 0 0

0 1
2
�2x21 0

0 0 0

1
CA ; b.x0; x1; x2/ D .bj / D

0
B@ 1

�x1

g.t; x1/

1
CA

(4.3)

b0.x0; x1; x2/ D �.r C �d C �w/; f0.x0; x1; x2/ D �.�d˛d C �w˛w/x1
(4.4)

Thus, following Oleinik and Radkevic (1973), in terms of the normal vector to the
boundary pointing inward ˝�, m D .m0; m1; m2/, we introduce the following sub-
sets of  �:

˙0 D

�
x 2  �

� 2X
i;jD0

bijmimj D 0

�
(4.5)

˙1 D  � �˙0 (4.6)

˙2 D

�
x 2 ˙0

� 2X
iD0

�
bi �

2X
jD0

@bij =@xj

�
mi < 0

�
(4.7)

As indicated in Oleinik and Radkevic (1973), the boundary conditions at ˙1 [ ˙2

for the so-called first boundary-valued problem associated with (4.2) are required.
Note that ˙1 D 

�;C
1 and ˙2 D 

�;C
0 [ 

�;C
2 . Therefore, in addition to the final

condition in (3.2) on  �;C0 , we propose the following conditions:

@V

@x1
D 0 on  �;C1 (4.8)

@V

@x2
D

a

ny
on  �;C2 (4.9)

At this point, the question of the existence of the solution for the previous problem in
the localized domain and the convergence to the solution in the unbounded domain
arises. In general, existence is gained for Dirichlet boundary conditions obtained
from the initial condition (value at the time horizon in the original financial variables
formulation). In Kangro and Nicolaides (2000), a particular study with Dirichlet
conditions for the European multiasset vanilla option was developed. In Jaillet et al
(1990), the existence, uniqueness and convergence for multiasset American options
was addressed. Moreover, in Barles et al (1995), the use of Dirichlet and Neumann
boundary conditions deduced from the payoff function in the framework of viscosity
solutions was analyzed. Taking into account the analogies with European-style Asian
options, we follow the ideas of Kemma and Vorst (1990) and Bermúdez et al (2006c),
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so we impose Neumann boundary conditions obtained from the payoff. In this way, we
avoid imposing that the solution matches the initial condition at the new boundaries
of the bounded domain. We note that the convergence analysis to the solution in the
unbounded domain is an open problem. In view of the numerical results appearing in
a forthcoming section of this paper, numerical evidence of convergence is obtained.

Next, in order to state the problem (3.2) as an equivalent initial-boundary-value
problem in divergence form, we distinguish the time-and-space-bounded domains
and introduce the following change-of-time variable and the notation for spatial-like
variables:

� D Tr � t; x1 D S; x2 D I (4.10)

in addition to the notation related to the spatial domain:

˝ D .0; x11 / � .0; x
1
2 /;  D

2[
iD1

.i;� [ i;C/

with:

i;� D f.x1; x2/ 2 =xi D 0g; i;C D f.x1; x2/ 2 =xi D x
1
i g

for i D 1; 2.
Problem (3.2) is then replaced by the following.
Find V W Œ0; Tr � �˝ ! R, such that:

@V

@�
C vrV � div.ArV /C lV D f in .0; Tr/ �˝ (4.11)

V.0; �/ D ' in ˝ (4.12)

@V

@x1
D g1 on .0; Tr/ � 1;C (4.13)

@V

@x2
D g2 on .0; Tr/ � 2;C (4.14)

where the data involved is defined as follows:

A.x1; x2/ D

 
1
2
�2x21 0

0 0

!
; v.x1; x2/ D

 
.�2 � �/x1

�g.Tr � �; x1/

!
(4.15)

l.�; x1; x2/ D r C �d C �w; f .�; x1; x2/ D .�d˛d C �w˛w/x1 (4.16)

'.x1; x2/ D
a

ny
x2; g1.�; x1; x2/ D 0; g2.�; x1; x2/ D

a

ny
(4.17)

Figure 1 on the next page shows the qualitative behavior of the velocity field, v,
at the boundaries for different parameter cases and times. Note that the velocity field
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FIGURE 1 Bounded domain and velocity field, v, at the boundaries.
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(a) � > �2 for � 6 ny . (b) � 6 �2 for � 6 ny . (c) � > �2 for � > ny . (d) � 6 �2 for � > ny .

either enters the domain or vanishes at 2;C, while it is either tangential or it points
outward the domain at 2;�. Also, both the diffusion matrix and the velocity field
vanish at 1;�. The previously discussed requirements of boundary conditions are
closely related to inflow boundaries. Also note that the velocity field is not continuous
with respect to the time variable.

4.2 Time discretization

The method of characteristics is used for the time discretization and it is included
in the more general setting of upwinding methods, which take into account the local
direction of the flux. More precisely, it is based on a finite difference scheme for the
discretization of the material derivative, ie, the time derivative along the characteristic
lines of the convective part of the equation. In this section we will also introduce the
variational formulation for the time-discretized problem.
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First, we define the characteristics curve through x D .x1; x2/ at time N� ,
Xe.x; N� I s/, which verifies:

@

@s
Xe.x; N� I s/ D v.Xe.x; N� I s//; Xe.x; N� I N�/ D x (4.18)

For N > 1, let us consider the time step �� D Tr=N and the time mesh points
�n D n�� , n D 0; 1

2
; 1; 3

2
; : : : ; N . The material derivative approximation by the

characteristics method is given by:

DV

D�
D
V nC1 � V n ıXne

��

whereXne .x/ WD Xe.x; �
nC1I �n/. In view of the expression of the velocity field and

the continuous function g given by expressions (4.15) and (2.6), respectively, the
components of Xne .x/ can be analytically computed. More precisely, we distinguish
the following two main cases.

� If � ¤ �2, then ŒXne �1.x/ D x1 exp..� � �2/��/ and:

ŒXne �2.x/ D

8̂<
:̂
x2 if n�� > ny

k1x1

�2 � �
.1 � exp..� � �2/��//C x2 if n�� 6 ny

� If � D �2, then ŒXne �1.x/ D x1, and

ŒXne �2.x/ D

(
x2 if n�� > ny

k1x1�� C x2 if n�� 6 ny

Next, we consider a Crank–Nicolson scheme around .Xe.x; �nC1I �/; �/ for � D
�nC1=2. So, for n D 0; : : : ; N � 1, the time-discretized equation can be written as
follows. Find V nC1 such that:

V nC1.x/ � V n.Xne .x//

��
� 1
2

div.ArV nC1/.x/

� 1
2

div.ArV n/.Xne .x//C
1
2
.lV nC1/.x/C 1

2
.lV n/.Xne .x//

D 1
2
f nC1.x/C 1

2
f n.Xne .x// (4.19)

In order to obtain the variational formulation of the semidiscretized problem, we
multiply Equation (4.19) by a suitable test function, integrate in ˝, use the classical
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Green formula and the following (see Bermúdez et al (2006c, Lemma 3.4)):Z
˝

div.ArV n/.Xne .x//�.x/ dx

D

Z
�

.F ne /
�T .x/n.x/ � .ArV n/.Xne .x//�.x/ dx

�

Z
˝

.F ne /
�1.x/.ArV n/.Xne .x// � r�.x/ dx

�

Z
˝

div..F ne /
�t .x//.ArV n/.Xne .x//�.x/ dx (4.20)

Note that, in the present case, we have:Z
˝

div..F ne /
�t .x//.ArV n/.Xne .x//�.x/ dx D 0

After these steps, we can write a variational formulation for the semidiscretized prob-
lem as follows.

Find V nC1 2 H 1.˝/ such that, for all � 2 H 1.˝/:Z
˝

V nC1.x/�.x/ dx C 1
2
��

Z
˝

.ArV nC1/.x/r�.x/ dx

C 1
2
��

Z
˝

lV nC1.x/�.x/ dx

D

Z
˝

V n.Xne .x//�.x/ dx � 1
2
��

Z
˝

.F ne /
�1.x/.ArV n/.Xne .x//r�.x/ dx

� 1
2
��

Z
˝

lV n.Xne .x//�.x/ dx C 1
2
��

Z
�

Qgn.x/�.x/ dAx

C 1
2
��

Z
�1;C

Ng1
nC1.x/�.x/ dAx C 1

2
��

Z
˝

f nC1.x/�.x/ dx

C 1
2
��

Z
˝

f n.Xne .x//�.x/ dx (4.21)

where F ne D rX
n
e can be analytically computed, NgnC11 .x/ D gnC11 .x/a11.x/ D 0

and:

Qgn.x/ WD

8̂̂ˆ̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂:

0 on 1;�

�Œ.F ne /
�T �12.x/a11.X

n
e .x//

@V

@x1
.Xne .x// on 2;�

Œ.F ne /
�T �12.x/a11.X

n
e .x//

@V

@x1
.Xne .x// on 2;C

Œ.F ne /
�T �11.x/a11.X

n
e .x//g

n
1 .X

n
e .x// on 1;C

(4.22)
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Remark 4.1 Note that once the characteristics method for time discretization has
been applied, only boundary condition (4.13), which corresponds to the boundary
with a nonvanishing diffusive term, is used to obtain the variational formulation. Note
that condition (4.14) is mainly motivated by the velocity field entering the domain.
Nevertheless, at each time step, the upwinded total derivative term is part of the second
member of the discretized equation.

Remark 4.2 As a result of the application of the characteristics method, we need
to evaluate functions at the points Xne .x/, which are obtained by upwinding in the
trajectories of the velocity field. Some technical interpolation skills are required when
these points are placed outside the domain, the idea being to use the information at
the boundaries. For the points that enter the domain through 1;C, we use boundary
condition (4.13), while, for those entering through 2;C, we use (4.14).

4.3 Finite element discretization

As mentioned at the beginning of the section, we use the Crank–Nicolson charac-
teristics method for the time discretization jointly with finite elements for spatial
discretization. For this purpose, we consider f�hg a quadrangular mesh of the domain
˝. Let .T;Q2; ˙T / be a family of piecewise quadratic Lagrangian finite elements,
where Q2 is the space of polynomials defined in T 2 �h with degree less than or
equal to 2 in each spatial variable and where˙T is the subset of nodes of the element
T . More precisely, let us define the finite element space Vh as:

Vh D f�h 2 C0. N̋ / W �hT 2 Q2; 8T 2 �hg (4.23)

where C0. N̋ / is the space of continuous functions on N̋ .
For a more general equation, under suitable assumptions on the data, the method is

analyzed in Bermúdez et al (2006b) and proved to be unconditionally stable in the case
of exact integration of the integral terms. Also, for academic cases of constant coef-
ficients convection–diffusion and pure convection equations, a study of the different
quadrature formulas used to compute the integral terms is carried out. Thus, stability
can be proved for the case of trapezoidal or Simpson formulas for the pure convection
equation in one spatial dimension. In the presence of an additional diffusive term,
the stability region is smaller for lower Peclet numbers, so these formulas turn out
to be convenient for convection-dominated problems. These results can be extended
to higher spatial dimensions when products of one-dimensional finite element spaces
and quadrature formulas are considered. Note that the piecewise quadratic finite ele-
ments over quadrangular meshes are a particular case of product finite element spaces.
Noting that they do not correspond to the analyzed academic cases, in all presented
examples in this paper we use a Simpson quadrature formula to approximate all the
integral terms appearing in the fully discretized problem.
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TABLE 1 Errors for different meshes and numbers of time steps (NT) at time � D 40,
when the parameters � D 0.1, � D 0.025, r D 0.025, a D 0.75, ny D 30, k1 D 0.25,
�d D 0.025 and �w D 0 are considered.

NT Mesh 12 Mesh 24 Mesh 48 Mesh 96

100 4.695867�10�2 4.675261�10�2 4.671738�10�2 4.676544�10�2

1 000 6.088001�10�3 5.517705�10�3 5.423675�10�3 5.420425�10�3

10 000 2.592423�10�3 6.473885�10�4 5.812531�10�4 5.483266�10�4

100 000 1.575346�10�3 3.958598�10�4 1.112673�10�4 5.526974�10�5

TABLE 2 Errors for different meshes and numbers of time steps (NT) at time � D 40 when
the parameters � D 0.1, � D 0.025, r D 0.025, a D 0.75, ny D 30, k1 D 0.5, �d D 0.025
and �w D 0.2 are considered.

NT Mesh 12 Mesh 24 Mesh 48 Mesh 96

100 7.172828�10�2 7.159433�10�2 7.153603�10�2 7.138368�10�2

1 000 1.116242�10�2 1.068611�10�2 1.065671�10�2 1.065913�10�2

10 000 2.230513�10�3 1.191936�10�3 1.115101�10�3 1.080565�10�3

100 000 1.547804�10�3 4.176562�10�4 1.117329�10�4 1.020686�10�4

5 NUMERICAL EXAMPLES

First, we consider an academic test with known analytical solution. More precisely,
the appropriate data is imposed, so that the solution is given by:

V e.�;x/ D exp.�x1x2 � 10
�4/; .�;x/ 2 .0; 40/ �˝

with ˝ D .0; 40/ � .0; 40/, for the choice:

f .�;x/ D

8̂<
:̂

exp.�x1x2 � 10
�4/.p.�;x/ � k1x

2
1� � 10

�4/ if � 6 ny

exp.�x1x2 � 10
�4/p.�;x/ if � > ny

(5.1)

with:

p.�;x/ D x1x2 � 10
�4 � �2�x1x2 � 10

�4

� 0:5 � 10�8�2�2x21x
2
2 C .�

2 � �/�x1x2 � 10
�4 C l

Initial and boundary condition data in (4.12)–(4.14) are provided by the exact solution.
The computed l1..0; 40/I l2.˝// errors for different meshes and numbers of time

steps for two different sets of parameters are shown in Table 1 and Table 2. The only
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TABLE 3 Finite element method mesh data.

Number of Number of
elements nodes

Mesh 12 144 625

Mesh 24 576 2 401

Mesh 48 2 304 9 409

Mesh 96 9 216 37 249

TABLE 4 Retirement benefits at mesh point .S; I / D .25;20/ when the parameters
� D 0.1, � D 0.025, r D 0.025, a D 0.75, ny D 30, k1 D 0.5, �d D 0.025, �w D 0.2,
˛d D 1 and ˛w D 0 are considered.

NT Mesh 12 Mesh 24 Mesh 48 Mesh 96

100 2.808332 2.808633 2.808697 2.808645

1 000 2.804451 2.804589 2.804606 2.804609

10 000 2.804144 2.804174 2.804182 2.804184

100 000 2.804103 2.804141 2.804141 2.804141

differences in the data are the value of parameters�w (�w D 0 in Table 1 on the facing
page and �w D 0:2 in Table 2 on the facing page) and k1 (k1 D 0:25 in Table 1 on
the facing page and k1 D 0:5 in Table 2 on the facing page). The number of nodes
and elements of the referred quadratic finite element meshes are shown in Table 3.
The qualitative and quantitative results for both sets of parameters are very close. For
a sufficiently fine fixed mesh in space, a first-order convergence in time is clearly
observed. If the mesh in space is not sufficiently fine, the first-order convergence
appears until the spatial error dominates the total error. For a fixed, sufficiently fine
mesh in time, a second-order convergence in space is illustrated. Also, if the time
mesh is not sufficiently fine, then the second-order convergence appears until the
time error dominates the total error. For the academic cases analyzed in Bermúdez
et al (2006b), a second-order convergence is obtained in both space and time. We note
that the academic cases in Bermúdez et al (2006b) correspond to constant coefficient
equations and certain assumptions on the velocity field. In fact, all theoretical results
stated in Bermúdez et al (2006a,b) assume that the velocity field is continuous with
respect to the time variable, which is not the case in the present example.

After the previous academic test, the results for the first real data set are shown
in Table 4. More precisely, at the point .S; I / D .25; 20/, the values for different
meshes to illustrate the convergence are indicated.

Research Paper www.risk.net/journal



132 M. C. Calvo-Garrido and C. Vázquez

TABLE 5 Retirement benefits value for different domains when the parameters � D 0.1,
� D 0.025, r D 0.025, a D 0.75, ny D 30, k1 D 0.5, �d D 0.025, �w D 0.2, ˛d D 1 and
˛w D 0 are considered.

.S; I/ D .1.2;15/ .S; I/ D .2.4;30/ .S; I/ D .4.8;30/

˝ D .0;40/ � .0;40/ 0.133451 0.270426 0.546684

˝ D .0;80/ � .0;80/ 0.133371 0.266911 0.535248

˝ D .0;160/ � .0;160/ 0.133376 0.266756 0.533692

˝ D .0;320/ � .0;320/ 0.133375 0.266751 0.533469

It is also important to illustrate the effect of truncation and introduction of boundary
conditions in the obtained values in the financially interesting region. For this purpose,
we consider that S represents salaries in thousands of unit currencies (for example,
S D 1 corresponds to €1,000 or US$1,000). Moreover, we note that average salary
is actually given by:

NS D
1

ny

Z Tr

Tr�ny

S.�/ d� D
I

k1ny
(5.2)

With this in mind, in Table 5 we represent the obtained pension plan values for the
salaries S D 1:2; 2:4; 4:8 (for example, S D 1:2 corresponds to 1200 currency
units) and the average salaries NS D 1; 2 (corresponding to the values I D 15 and
30, respectively). Note the small influence of the location of the boundaries of the
truncated domain in the obtained value.

Table 6 on the facing page shows the behavior of the pension plan value at time
t D 0 in terms of the different involved parameters in the model and for different
.S; I / coordinates. First note that, taking expression (5.2) into account, the number of
years affects the actual average salary. This explains the choice of coordinate I in the
case of ny D 15, in order to maintain the same value of NS as in the case of ny D 30.
First, note that increasing volatility leads to a small increase in benefit of pension
plan value. The same occurs with increasing value of a. As expected, an increase in
risk-free interest rates leads to lower benefit values. The number of years has almost
no influence on the obtained values, as we are maintaining the value of the resulting
average salary. Table 7 on page 134 shows the behavior of the pension plan value at
time t D 38. In order to compare the behavior at time t D 0 and t D 38, we present
Figure 2 on page 135 and Figure 3 on page 135. Note the influence of two factors
(salary and average salary) in the second case, while, in the first case, the value of the
average salary has a very small influence on the pension plan value. This is because
the time t D 0 is before the initial date (Tr � ny D 10) which is used to compute the
average salary that enters in the payoff function.
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TABLE 6 Retirement benefits value at time t D 0 for different .S; I / points and parameter
values.

(a) ny D 30

S D 1.2, S D 1.2, S D 2.4,
r a I D 15 I D 22.5 I D 30

� D 0.1
0.025 0.75 0.133451 0.133598 0.270426
0.025 0.95 0.133488 0.133665 0.271463
0.075 0.75 0.109117 0.109176 0.220036
0.075 0.95 0.109124 0.109185 0.220478

� D 0.2
0.025 0.75 0.133636 0.133838 0.270412
0.025 0.95 0.133736 0.134004 0.271634
0.075 0.75 0.109187 0.109265 0.219801
0.075 0.95 0.109217 0.109319 0.220308

(b) ny D 15

S D 1.2, S D 1.2, S D 2.4,
r a I D 7.5 I D 11.25 I D 15

� D 0.1
0.025 0.75 0.133384 0.133394 0.266849
0.025 0.95 0.133402 0.133415 0.266907
0.075 0.75 0.109098 0.109114 0.218547
0.075 0.95 0.109102 0.109143 0.218623

� D 0.2
0.025 0.75 0.133404 0.133419 0.266844
0.025 0.95 0.133431 0.133448 0.266924
0.075 0.75 0.109103 0.109105 0.218208
0.075 0.95 0.109107 0.109111 0.218223

6 CONCLUSIONS

In this paper the use of a dynamic hedging methodology provides a PDE model asso-
ciated with a Kolmogorov equation that governs the value of liabilities of a defined
benefit pension plan depending on the average salary without early retirement capa-
bility. This methodology allows the price of this liability to be interpreted using the
framework of option pricing theory. Once the PDE model has been posed, the exis-
tence of a solution can be obtained by using analogous tools to those previously used
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TABLE 7 Retirement benefits value at time t D 38 for different .S; I / points and parameter
values.

(a) ny D 30

S D 1.2, S D 1.2, S D 2.4,
r a I D 15 I D 22.5 I D 30

� D 0.1

0.025 0.75 0.29442368 0.40814817 0.58884736

0.025 0.95 0.36005233 0.50410336 0.72010465

0.075 0.75 0.26883814 0.37174032 0.53767628

0.075 0.95 0.32822141 0.45856416 0.65644281

� D 0.2

0.025 0.75 0.29442379 0.40814829 0.58884759

0.025 0.95 0.36005247 0.50410351 0.72010495

0.075 0.75 0.26883824 0.37174042 0.53767649

0.075 0.95 0.32822153 0.45856429 0.65644307

(b) ny D 15

S D 1.2, S D 1.2, S D 2.4,
r a I D 7.5 I D 11.25 I D 15

� D 0.1

0.025 0.75 0.31308212 0.42680661 0.62616424

0.025 0.95 0.38368635 0.52773738 0.76737271

0.075 0.75 0.28572099 0.38862318 0.57144199

0.075 0.95 0.34960635 0.47994911 0.69921269

� D 0.2

0.025 0.75 0.31308234 0.42680684 0.62616465

0.025 0.95 0.38368664 0.52773766 0.76737322

0.075 0.75 0.28572121 0.38862338 0.57144237

0.075 0.95 0.34960661 0.47994937 0.69921317

in the literature for arithmetic Asian options pricing models. Also, the uniqueness of
solutions can be obtained. Moreover, an appropriate numerical method for solving
the model is proposed so that the numerical results can be discussed in terms of the
different model parameters.

The theory and numerical methods can be applied to more general conditions.
In particular, a more general expression for the benefits at retirement can be easily
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FIGURE 2 Retirement benefits at time t D 0 when the parameters Tr D 40, � D 0.1,
� D 0.025, r D 0.025, a D 0.75, ny D 30, k1 D 0.5, �d D 0.025, �w D 0.2, ˛d D 1 and
˛w D 0 are considered.
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FIGURE 3 Retirement benefits at time t D 38 when the parameters Tr D 40, � D 0.1,
� D 0.025, r D 0.025, a D 0.75, ny D 30, k1 D 0.5, �d D 0.025, �w D 0.2, ˛d D 1 and
˛w D 0 are considered.
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addressed. For example, a pension plan that guarantees a minimum amount of money
or that pays at retirement the maximum among a fixed quantity, a proportion of the
final salary and another proportion of the final average salary.
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Future work concerning the possibility of early retirement is being considered by
the authors. In this case, linear complementarity formulations of the resulting free
boundary problem can be analyzed to obtain the existence of solutions, and suitable
numerical methods are required to obtain not only the pension plan value but also the
regions in which it is optimal to retire before the retirement date, as well as at the
optimal retirement boundary. On the other hand, the possibility of including jumps in
the salary could also be considered, leading to partial integro-differential equations
that require an appropriate treatment of the additional nonlocal integral terms.

APPENDIX A

In this appendix we mainly include the proofs of Proposition 3.4 and Theorem 3.5.

Proof of Proposition 3:4 Clearly, � D 0 is a subsolution to problem (3.3).
In order to state the supersolution properties, first we note that, for � D 0, we

obtain:

N�.0; y1; y2/ D �y
m
1 y2 C .�d˛d C �w˛w/

2

�2
ymC11 C �k1y

mC1
1

> �ym1 y2 (A.1)

So, as:

.�d˛d C �w˛w/
2

�2
ymC11 > 0; �k1y

mC1
1 > 0

the second inequality in (3.13) is satisfied.
Next, in order to verify the first inequality, we calculate:

L1Œ N�� D Qq�y
m
1 y2 exp. Qq�/C

2

�2
.�d˛d C �w˛w/y

mC1
1 .q C Qq/ exp..q C Qq/�/

C Qqk1y
mC1
1 � exp. Qq�/ � �m.m � 1/ym1 y2 exp. Qq�/

�
2

�2
.�d˛d C �w˛w/m.mC 1/y

mC1
1 exp..q C Qq/�/

� k1m.mC 1/�y
mC1
1 exp. Qq�/ � Ng.�; y1/�y

m
1 exp. Qq�/ (A.2)

Then, after some easy computations, we obtain:

L1Œ N�� D . Qq �m.m � 1//�y
m
1 y2 exp. Qq�/

C
2

�2
.�d˛d C �w˛w/.q C Qq �m.mC 1//y

mC1
1 exp..q C Qq/�/

C Œ Qqy1k1 � k1y1m.mC 1/ � Ng.�; y1/��y
m
1 exp. Qq�/ (A.3)

Now, note first that ˛1 > 3 and ˛2 > 1 implies that:

Qq �m.m � 1/ D m2 C .˛1 � 1/mC ˛2 �m
2 Cm > 0
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Secondly, the conditions on ˛1 and ˛2 jointly with inequalities m > 0 and 2.r C
�d C �w/=�

2 > 0 imply that:

m2 C .˛1 � 1/mC ˛2 > 0

m2 C .˛1 � 3/mC
2.r C �d C �w/

�2
C ˛2 > 1

Thus, we have q C Qq �m.mC 1/ > 1 and Qq > 0. On the other hand, as .˛1�2/mC
˛2 > 1, then Qq �m.mC 1/ � 1 > 0, and therefore:

Qqy1k1 � k1y1m.mC 1/ � k1y1 > 0

Next, by using that the product of k1 and y1 is an upper bound for Ng.�; y1/, we have:

Qqy1k1 � k1y1m.mC 1/ � Ng.�; y1/ > Qqy1k1 � k1y1m.mC 1/ � k1y1 > 0

Therefore, the inequalities:

Qq�m.m�1/ > 0; qC Qq�m.mC1/ > 1; Qqy1k1�k1y1m.mC1/� Ng.�; y1/ > 0

hold, so the first inequality in (3.13) is satisfied and the proof is concluded. �

Proof of Theorem 3:5 First, we define a sequence of initial-boundary-value prob-
lems posed on bounded open subsets of .0; T / �˝, ˝k , such that ˝k � ˝kC1 and
[˝k D .0; T / �˝. More precisely, we consider the sequence of bounded sets:

˝k D .0; T / �

�
1

k C 1
; k C 1

�
�

�
1

k C 1
; k C 1

�
with k 2 N

and we consider the sequence of cutoff functions �k W .0;C1/ � .0;C1/ ! R,
�k 2 C.˝/, such that:

�k.y1; y2/ D

8̂̂
<̂
ˆ̂̂:
0 if .y1; y2/ …

�
1

k C 1
; k C 1

�
�

�
1

k C 1
; k C 1

�

1 if .y1; y2/ 2

�
1

k
; k

�
�

�
1

k
; k

� (A.4)

and 0 6 �k.y1; y2/ 6 1 otherwise. In terms of these functions, we define:

	k.�; y1; y2/ D �k.y1; y2/	.y1; y2/C .1 � �k.y1; y2//�.�; y1; y2/ (A.5)

By Theorem 3.1, there exists a classical solutionuk 2 C2;˛.˝k/\C. N̋k/ to problem:

L1Œuk� D F in ˝k

uk D 	k on @˝k

)
(A.6)
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Moreover, from the maximum principle, it follows that:

� 6 uk 6 N� in ˝k (A.7)

Note that functions uk are not defined outside˝k . Next, we use the same arguments
as Barucci et al (2001) to build a solution for problem (3.3). For this purpose, let us
introduce the sets:

Dk D

�
.t; y1; y2/ 2 ˝k

ˇ̌̌
ˇ T3k < t < T

1 � 1=.3k/

�
(A.8)

so that:
.0; T / �˝ D

[
k2N

Dk

Note that, from (A.7), it follows that the sequence fukg is bounded in ND1 and,
from Barucci et al (2001, Proposition 4.1), it is also equicontinuous. Thus, following
the Ascoli–Arzela theorem, there exists a subsequence that converges uniformly to
some function v1 2 C. ND1/. Moreover, v1 is a classical solution of (3.3) in D1 and
� 6 v1 6 N� inD1. Next, we can apply the same argument to the previous subsequence
on the set ND2, thereby obtaining a new subsequence that converges to v2 2 C. ND2/, so
that v2 is the solution of (3.3) inD2, verifies that � 6 v2 6 N� inD2 and v2 coincides
with v1 in D1. The argument can continue by induction and we can define a limit
function u as follows. For .t; y1; y2/ 2 .0; T / � ˝, we choose a natural number n
such that .t; y1; y2/ 2 Dn and define u.t; y1; y2/ D vn.t; y1; y2/. In this way, u is
well-defined and verifies Equation (3.3) and � 6 u 6 N� in .0; T / �˝.

It now remains to prove that the functionu verifies the boundary condition at � D 0.
For this purpose, we verify that, for any .y01 ; y

0
2/ 2 R

C �RC, we have:

lim
.t;y1;y2/!.0;y

0
1
;y0
2
/

u.�; y1; y2/ D 	.y
0
1 ; y

0
2/ (A.9)

Note that the fact that uk.0; y01 ; y
0
2/ D 	.y01 ; y

0
2/ for .0; y01 ; y

0
2/ 2 @˝k does not

guarantee the same result for function u at the boundary. Nevertheless, the use of
a standard argument of barrier functions in the proof of Proposition 3.2 provides an
estimate of the rate of convergence as .t; y1; y2/ tends to .0; y01 ; y

0
2/, which is uniform

with respect to k, allowing us to obtain (A.9). �

Remark A.1 Note that, by construction, ukC1 > 	k so that fukg is an increasing
sequence. On the other hand, if we define:

N	k.�; y1; y2/ D �k.y1; y2/	.y1; y2/C .1 � �k.y1; y2// N�.�; y1; y2/ (A.10)

and we consider it as the boundary condition for problem (A.6). We then obtain a
decreasing sequence of solutions fvkg converging, uniformly on compact sets, to a
solution v of the problem (3.3) that verifies � 6 v 6 N�. In the case where uniqueness
can be proved, both solutions u and v coincide.
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