
  
 
 
 
 

 
 
 

 
 
This is an ACCEPTED VERSION of the following published document: 

 
 

 
Calvo-Garrido, M. C., & Vázquez, C. (2014). Pricing pension plans under jump–diffusion models 
for the salary. Computers & Mathematics with Applications, 68(12, Part A), 1933-1944. 
https://doi.org/10.1016/j.camwa.2014.10.002 
 
 
 

Link to published version: 
https://doi.org/10.1016/j.camwa.2014.10.002  

 
 
 
 
 
 
 
General rights: 
© 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/ 
 
 
 
 

https://doi.org/10.1016/j.camwa.2014.10.002
https://doi.org/10.1016/j.camwa.2014.10.002


Pricing pension plans under jump-diffusion models for the salaryI

M.C. Calvo-Garridoa, C. Vázqueza

aDepartment of Mathematics, University of A Coruña. Campus Elviña s/n, 15071 – A Coruña (Spain)

Abstract

In this paper we consider the valuation of a defined benefit pension plan in the presence of jumps in
the underlying salary and including the possibility of early retirement. We will consider that the salary
follows a jump-diffusion model, thus giving rise to a partial integro-differential equation (PIDE). After
posing the model, we propose the appropriate numerical methods to solve the PIDE problem. These
methods mainly consists of Lagrange-Galerkin discretizations combined with augmented Lagrangian
active set techniques and with the explicit treatment of the integral term. Finally, we compare the
numerical results with those ones obtained with Monte Carlo techniques.

Keywords: pension plans, jump-diffusion models, option pricing, complementarity problem, numerical
methods, Augmented Lagrangian Active Set formulation

1. Introduction

In many financial settings the use of the geometric Brownian motion processes proposed by Black and
Scholes in [7] or by Merton in [22] do not fit properly market data or certain situations, such as an
abrupt change in the value of the underlying. A list of empirical examples to illustrate this issue and
their requirements from the modelling point of view can be found in Cont and Tankov [11], for example.
In particular, jump-diffusion models later proposed by Merton in [23] and Kou [19] seem be more
appropriate to describe these situations. Both models assume finite jump activity while the CGMY model
proposed in [10] allows infinite jump activity. As explained in Pascucci [25], jump-diffusion processes
are a particular case of the more general class of Levy processes, which also include stable processes,
tempered stable processes (CGMY model), processes obtained by subordination (as Variance-Gamma
process) or hyperbolic processes. Analogously to the case of option pricing under geometric Brownian
motion, the family of Levy process requires the development of specific stochastic calculus tools, Ito
formula and Feynmann-Kac representation leading to partial integro-differential equations (PIDE), see
Pascucci [25] and the references therein, for example.

Following this idea, in the present work we mainly extend the previous works [8, 9] by considering
the possibility of jumps in the underlying salary. Actually, we assume that the salary dynamics can be
modelled by means of a Merton jump-diffusion process. In this new setting, the value of the pension plan
can be obtained as the solution of an initial boundary value problem if early retirement is not allowed or
as the solution of a complementarity problem when there exists the early retirement opportunity. Due
to the presence of jumps, both problems are related to an integro-differential operator of hypoelliptic
type.

There are several papers dealing with the numerical valuation of different financial derivatives when the
underlying follows a jump-diffusion processes. For example, in [14] an implicit method is developed for
the numerical solution of option pricing models where jumps in the underlying following a Merton model
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are assumed and where the integral term is computed using a fast Fourier transform (FFT) method.
In [1] a European option pricing problem is addressed, when assuming Merton and Kou jump-diffusion
models to account with sudden changes in the price of the underlying asset. A penalization method to
handle the American feature is also analyzed in [12]. We notice that when using an implicit scheme, the
integral term leads to a dense matrix and efficient algorithms are required to solve the dense system.
In this sense, for the Kou model this penalty method is compared with an splitting method in [29]
while an alternative front-tracking strategy is proposed in [30]. More recently, under Merton and Kou
models an iterative Brennan-Schwartz algorithm is proposed in [28] for treating the complementarity
problem related to American options. The application of the semilagrangian scheme for the valuation
of American Asian Options under jump diffusion is addressed in [13].

In order to solve the partial integro-differential equation (PIDE) that arises in the presence of jumps
in the salary, we propose a Lagrange-Galerkin discretization for the time and space, combined with an
Augmented Lagrangian Active Set (ALAS) algorithm for solving the inequalities associated with the
free boundary problem and with the explicit treatment of the integral term [11]. This explicit scheme for
the integral term maintains the same sparse matrix structure as in the pure diffusion case and modifies
the second member of the linear system associated with the discretized problem. The results from the
application of these numerical methods are compared with the ones obtained by implementing the Monte
Carlo simulation (see [16], for example) for the case without early retirement and the Longstaff-Schwartz
technique proposed in [21] for the case with early retirement.

This paper is organized as follows. In Section 2 pension plans pricing models based on a Merton jump-
diffusion process for the salary are posed. In Section 3 appropriate numerical methods are applied to
find a solution to the PIDE problem that arises in the presence of jumps and Monte Carlo simulation
techniques for jumps are proposed. Finally in Section 4, the obtained numerical results by using both
procedures, are presented.

2. Mathematical modeling

2.1. A jump-diffusion model for pension plans

As we have pointed out in [8], in some cases of abrupt changes in the salary, Brownian motion is not
appropriate enough to describe the evolution of this underlying factor and it is necessary to adopt
a jump-diffusion model. More precisely, if we denote by St the salary at time t and we define the
logarithmic salary Xt = ln(St) then we assume that the process Xt satisfies the following stochastic
differential equation:

dXt = α(t,Xt) dt + σ(t,Xt) dZt + d

(
Nt∑
i=1

Vi

)
, X0 = ln(S0), (1)

where α represents the growth rate of the logarithmic salary and depends on the time t and Xt, σ is
the volatility of the logarithmic salary, (Nt)t≥0 denotes a Poisson process with parameter λ̃ and (Vi) is
a sequence of square integrable, independent and identically distributed random variables, so that Zt,
Nt and (Vi) are independent.

We notice that according to [16], [20] and [23], for example, the stochastic differential equation can be
formally written in the original variable St in the form

dSt = α(t, St) dt + σ(t, St) dZt + St d

(
Nt∑
i=1

(Yi − 1)

)
, (2)

where α represents the growth rate of the salary, σ is the volatility of the salary and Yi = exp(Vi).

As we are considering that retirement benefits depend on the continuous arithmetic average of the
salary, as in [8] and other derivatives on averages of the underlying, we introduce the following process
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representing the cumulative salary since the last ny years before Tr:

It =

∫ t

0

g (τ, St) dτ, (3)

where the function g has the following expression

g(t, S) =

{
0 if 0 ≤ t < Tr − ny
h(S) if Tr − ny ≤ t ≤ Tr,

(4)

where h is appropriately chosen. Specifically, in this paper we consider the particular case h(S) = k1S,
where the accrual constant k1 that satisfies k1 > 0.

2.1.1. Partial integral differential equation (PIDE)

In [8], a PDE model for pricing pension plans without early retirement and in the absence of jumps is
addressed by using a dynamic hedging technique. In the case of a jump-diffusion model, if we denote the
value of the pension plan under jump-diffusion by Vt = V (t, St, It) then V solves the following partial
differential equation (PIDE):

∂tV + β ∂SV + g ∂IV + 1
2σ

2 ∂SSV − (µd + µw + r)V

+

∫ ∞
−∞

λ̃ [V (t, S exp(y), I)− V (t, S, I)− S(exp(y)− 1)∂SV (t, S, I)] ν(y)dy

= −µdAd − µwAw, (5)

posed in the unbounded domain (0, Tr)×R2
+. In (5) the value β = α−λσ is related to the market price

of risk associated to the uncertainty of the salary, here denoted by λ. Moreover, r is the deterministic
risk-free interest rate, µd and µw are the transition intensities from active to death or withdrawal
respectively, and Ai = αiS, αi ≥ 0, i = d,w, denotes the deterministic benefit paid by the fund in
case of death (i=d) or withdrawal (i=w). In [11] the statement of the equation for a European vanilla
call option under jump-diffusion model is proved.

In order to complete the problem formulation the final condition associated to (5) is defined by [8]:

V (Tr, S, I) =
a

ny
I, (6)

where a ∈ (0, 1) is a given accrual constant and I/ny represents the average salary during last ny years.

Moreover, in order to completely define the model, we must also specify the distribution of jump sizes
ν(y). For this purpose, we will consider Merton model [23], so that (Vi) are taken from the normal
distribution (N(µ, γ2)), with the density

ν(y) =
1

γ
√

2π
exp

(
− (y − µ)2

2γ2

)
, (7)

where µ is the mean jump size and γ is the standard deviation of the jump size. There are other
possibilities that could be taken into account, such as Kou model [19].

As we pointed out before, ν(y) is the probability density function of the jump amplitude Vi, thus∫ ∞
−∞

ν(y)dy = 1.

Moreover,

E[exp(Vi)] =

∫ ∞
−∞

exp(y)ν(y)dy = eµ+γ2/2.
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Therefore, the PIDE (5) can be written as

∂tV + (β − λ̃κS) ∂SV + g ∂IV + 1
2σ

2 ∂SSV −
(
µd + µw + r + λ̃

)
V

+λ̃

∫ ∞
−∞

V (t, S exp(y), I)ν(y)dy = −µdAd − µwAw, (8)

where κ = eµ+γ2/2− 1. There is a new integral term in the equation due to the presence of jumps. This
term makes the PIDE more difficult to solve than the corresponding PDE. In a forthcoming section we
show how to discretize this integral in order to find a numerical solution of the PIDE problem.

As in the absence of jumps in the salary, in what follows we assume that β(t, S, I) = θS and σ(t, S) = σS.
Next, we define the integro-differential operator

LV = ∂tV + (θ − λ̃κ)S∂SV + g∂IV +
σ2S2

2
∂SSV −

(
r + µd + µw + λ̃

)
V

+ λ̃

∫ ∞
−∞

V (t, S exp(y), I)ν(y)dy.

For the case without early retirement, we consider the PIDE problem{ LV = f, in (0, Tr)× R2
+,

V (Tr, S, I) =
a

ny
I, (S, I) ∈ R2

+.
(9)

If we incorporate the possibility of early retirement, the model is posed as the following complementarity
problem max{LV − f,Ψ− V } = 0, in (0, Tr)× R2

+,

V (Tr, S, I) =
a

ny
I, (S, I) ∈ R2

+,
(10)

where

f(t, S, I) = −(µdαd + µwαw)S

and the expression for the obstacle Ψ, which is the amount received for the member of the plan if he/she
decides to retire before the expected date, is given by

Ψ(t, S, I) =

 0 if t < T0,(
1− Tr − t

Tr − T0

)
aI

t− (Tr − ny)
if t ≥ T0.

(11)

In the case without jumps, the mathematical analysis of the model leading to existence and uniqueness
of solution has been addressed in [8] without early retirement and in [9] with early retirement option.
The analogous analysis for the case with jumps is an interesting mathematical open problem.

3. Numerical solution

In [8], we propose a Lagrange-Galerkin method to discretize the PDE model that appears when the
valuation of pension plans based on average salary without early retirement is considered. This Lagrange-
Galerkin method has been analyzed in [4, 5] Then, we include the early retirement option and, in [9],
this numerical method is combined with an augmented Lagrangian active set technique. In this paper,
we extend these numerical techniques including the explicit computation of the integral term in order
to solve the PIDE model associated to the jump-diffusion process. The results obtained with these
numerical methods are compared with the ones got by using Monte Carlo techniques.

The PIDE is initially posed on an unbounded domain, so that we aproximate it by a bounded domain
formulation and also introduce boundary conditions. In the PIDE case, the domain of integration in the
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integral term also needs to be localized. For this purpose, we introduce again the following change in
time variable and notation

τ = Tr − t, x1 = S, x2 = I, x̄1 = log(x1). (12)

Let us consider x∞1 and x∞2 be large enough real numbers and let Ω = (0, x∞1 ) × (0, x∞2 ) be the

computational bounded domain. Moreover, let ∂Ω =
⋃2
i=1(Γ−i

⋃
Γ+
i ), with Γ−i = {(x1, x2) ∈ ∂Ω | xi =

0} and Γ+
i = {(x1, x2) ∈ ∂Ω | xi = x∞i } for i = 1, 2.

The estimation of the error associated to the truncation of the domain is an open problem. In the classical
European vanilla option pricing problem the error analysis has been addressed in [17]. However, to our
knowledge this analysis has not been extended to other financial problems in the literature. The presence
of jumps may require the use of the fundamental solution of the Merton model, which is written in terms
of Gaussian functions.

Then, we write problems (9) and (10) in the bounded domain. In the case of the complementarity
problem, in order to apply the iterative algorithm we propose, we replace the inequality by an identity
and we incorporate the Lagrange multiplier P as a new unknown of the problem, identically to the case
with no jumps (see [9]). Thus, the equivalent problem in the bounded domain for the case without early
retirement is: Find V : [0, Tr]× Ω→ R, such that

∂τV −Div(A∇V ) + ~v · ∇V + lV −

λ̃

∫
ymax

ymin
V̄ (τ, x̄1 + y, x2)ν(y)dy = f in (0, Tr)× Ω (13)

and for the case with early retirement:
Find V and P : [0, Tr]× Ω −→ R, satisfying the partial differential equation

∂τV −Div (A∇V ) + ~v · ∇V + lV −

λ̃

∫
ymax

ymin
V̄ (τ, x̄1 + y, x2)ν(y)dy + P = f in (0, Tr)× Ω (14)

the complementarity conditions

V ≥ Ψ, P ≤ 0, (V −Ψ)P = 0 in (0, Tr)× Ω. (15)

where V̄ (τ, x̄1 + y, x2) = V (τ, exp(x̄1 + y), x2) the involved data in both cases is defined as follows

A(x1, x2) =

(
1
2σ

2x2
1 0

0 0

)
, ~v(τ, x1, x2) =

(
(σ2 − θ + λ̃κ)x1

−g(Tr − τ, x1)

)
, (16)

l(τ, x1, x2) = r + µd + µw + λ̃, f(τ, x1, x2) = (µdαd + µwαw)x1, (17)

Ψ(τ, x1, x2) = Ψ(Tr − τ, x1, x2), g1(τ, x1, x2) = 0, (18)

g2(τ, x1, x2) =
a

ny
. (19)

Moreover, the initial and boundary conditions are

V (0, x1, x2) =
a

ny
x2 in Ω, (20)

∂V

∂x1
= g1 on (0, Tr)× Γ+

1 , (21)

∂V

∂x2
= g2 on (0, Tr)× Γ+

2 . (22)

Remark 3.1. Note that the differential term of the PIDE is computed in the domain [0, x∞1 ]× [0, x∞2 ],
using the discrete grid 0 = x10

, x11
, · · · , x1q

= x∞1 .
Since log(x10) = −∞, we choose ymin = log(x11) and ymax = log(x1q ) as it is proposed in [14].
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3.1. Time discretization

For the time discretization we consider the method of characteristics (also known as semilagrangian
scheme) to approximate the material derivative. A first order version of this method has been introduced
in [26], [15] and [3], for example. This version has been used in [31] for vanilla options and in [13] for
American Asian options with jumps.

In the characteristics (or semilagrangian) method we first define the characteristics curve Xe(x, τ̄ ; s)
through x = (x1, x2) at time τ̄ , i.e. the integral path associated with the vector field ~v through x, which
verifies

∂sXe(x, τ̄ ; s) = ~v(Xe(x, τ̄ ; s)), Xe(x, τ̄ ; τ̄) = x. (23)

For N > 1 let us consider the time step ∆τ = Tr/N and the time mesh-points τn = n∆τ, n =
0, 1

2 , 1,
3
2 , . . . , N . The material derivative approximation by the characteristics method is given by

DV

Dτ
=
V n+1 − V n ◦Xn

e

∆τ
,

where Xn
e (x) := Xe(x, τ

n+1; τn). In view of the expression of the velocity field and the continuous
function g given by (16) and (4) respectively, the components of Xn

e (x) can be analytically computed.
More precisely, we distinguish the following two cases:

• if (σ2 − θ + λ̃κ) 6= 0 then [Xn]1(x) = x1 exp((θ − σ2 − λ̃κ)∆τ) and

[Xn
e ]2(x) =


x2 if n∆τ > ny,

k1x1

σ2 − θ + λ̃κ

(
1− exp((θ − σ2 − λ̃κ)∆τ)

)
+ x2 if n∆τ ≤ ny;

• if (σ2 − θ + λ̃κ) = 0 then [Xn]1(x) = x1 and

[Xn
e ]2(x) =

 x2 if n∆τ > ny,

k1x1∆τ + x2 if n∆τ ≤ ny.

More recently, a version of the method that combines characteristics and Crank-Nicolson scheme has
been analyzed in [4] and [5] for a general equation, thus extending the work in [27]. More precisely, under
certain assumptions, second order convergence in time is obtained in [4], while second order convergence
in space when combined with piecewise quadratic Lagrage finite elements is proved in [5].

Using this version, as in the case without jumps (see [8]), we consider a Crank-Nicolson scheme around(
X(x, τn+1; τ), τ

)
for τ = τn+ 1

2 in order to discretize the differential term, while the integral term is
computed explicitly using the solution obtained at the preceding iteration. So, for n = 0, . . . , N −1, the
time discretized equation for the case without early retirement (P = 0) can be written as:

• Find V n+1 such that

V n+1(x)− V n(Xn
e (x))

∆τ
− 1

2
Div(A∇V n+1)(x)− 1

2
Div(A∇V n)(Xn

e (x))+

1

2
(l V n+1)(x) +

1

2
(l V n)(Xn(x))− λ̃

∫ ymax

ymin

V̄ n(x̄1 + y, x2)ν(y)dy =

1

2
fn+1(x) +

1

2
fn(Xn

e (x)).

In order to apply finite elements, first we obtain the variational formulation of the semidiscretized
problem in a similar way to the case under no jump diffusion, we multiply equation (24) by a suitable
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test function, integrate in Ω, use the classical Green formula and the following one (see Lemma 3.4 in
[24]): ∫

Ω

Div(A∇V n)(Xn
e (x))Ψ(x)dx =

∫
Γ

(Fne )−T (x)n(x) · (A∇V n)(Xn
e (x))Ψ(x)dx

−
∫

Ω

(Fne )−1(x)(A∇V n)(Xn
e (x)) · ∇Ψ(x)dx

−
∫

Ω

Div((Fne )−T (x))(A∇V n)(Xn
e (x))Ψ(x)dx.

(24)

Note that in the present case we have∫
Ω

Div((Fne )−T (x))(A∇V n)(Xn
e (x))Ψ(x)dx = 0.

After these steps, we can write a variational formulation for the semidiscretized problem as follows:

Find V n+1 ∈ H1(Ω) such that, ∀Ψ ∈ H1(Ω) :∫
Ω

V n+1(x)Ψ(x)dx +
∆τ

2

∫
Ω

(A∇V n+1)(x)∇Ψ(x)dx +
∆τ

2

∫
Ω

lV n+1(x)Ψ(x)dx =∫
Ω

V n(Xn
e (x))Ψ(x)dx− ∆τ

2

∫
Ω

(Fne )−1(x)(A∇V n)(Xn
e (x))∇Ψ(x)dx−

∆τ

2

∫
Ω

lV n(Xn
e (x))Ψ(x)dx +

∆τ

2

∫
Γ

g̃n(x)Ψ(x)dAx +
∆τ

2

∫
Γ1,+

ḡ1
n+1(x)Ψ(x)dAx +

∆τ

2

∫
Ω

fn+1(x)Ψ(x)dx +
∆τ

2

∫
Ω

fn(Xn
e (x))Ψ(x)dx +

∆τ λ̃

∫
Ω

∫ ymax

ymin

V̄ n(x̄1 + y, x2)ν(y)dyΨ(x)dx , (25)

where Fne = ∇Xn
e can be analytically computed, ḡn+1

1 (x) = gn+1
1 (x)a11(x) = 0 and

g̃n(x) =



0 on Γ1,−

−
[
(Fne )−T

]
12

(x)a11(Xn
e (x)) ∂V∂x1

(Xn
e (x)) on Γ2,−[

(Fne )−T
]
12

(x)a11(Xn
e (x)) ∂V∂x1

(Xn
e (x)) on Γ2,+[

(Fne )−T
]
11

(x)a11(Xn
e (x))gn1 (Xn

e (x)) on Γ1,+

(26)

Remark 3.2. We approximate the integral term in the PIDE by using the composite trapezoidal rule
with m+ 1 points in the following way:∫

ymax

ymin
V̄ n(x̄1 + y, x2)ν(y)dy ≈ h

2

[
V̄ n(x̄1 + ymin, x2)ν(ymin)

+V̄ n(x̄1 + ymax, x2)ν(ymax) + 2
∑m−1
j=1 V̄ n(x̄1 + kj , x2)ν(kj)

]
(27)

where kj = ymin+ jh for j = 1, ...,m− 1 and h = ymax−ymin
m .

3.2. Finite elements discretization

As we have already mention, we use finite elements for space discretization. For this purpose, as in
the case without jumps, we consider {τh} a quadrangular mesh of the domain Ω. Let (T,Q2,ΣT ) be a
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family of piecewise quadratic Lagrangian finite elements, where Q2 is the space of polynomials defined
in T ∈ τh with degree less or equal than two in each spatial variable and ΣT the subset of nodes of the
element T . More precisely, let us define the finite elements space Vh by

Vh = {φh ∈ C0(Ω̄) : φhT
∈ Q2,∀T ∈ τh}, (28)

where C0(Ω̄) is the space of continuous functions on Ω̄.

The numerical analysis of the proposed characteristics method with finite elements (Lagrange-Galerkin)
has been carried out in [5].

Note that when using piecewise quadratic finite elements and the treatment of the integral term in the
previous time step we maintain the sparse (pentadiagonal) structure of the matrix. Furthermore, we
use an appropriate lexicographical ordering of the nodes that allows a very efficient implementation of
the ALAS iterative algorithm we propose for solving the complementarity problem (see [6] or [24], for
details).

Remark 3.3. Note that we have a grid in coordinates (x1, x2) and at each time step n + 1, we know
the value of V at the previous time step n in the grid points. So, in order to obtain the value of V̄ n(x̄1 +
y, x2) = V n(exp(x̄1 + y), x2) we carry out a piecewise quadratic interpolation associated to the finite
element discretization.

3.3. Augmented Lagrangian Active Set (ALAS) algorithm

In the presence of jumps and in order to treat the non-linearities associated with the inequality con-
straints in the complementarity formulation when early retirement is allowed, we implement, as in the
case without jumps, the ALAS algorithm proposed in [18] and explained in [9].

3.4. Monte Carlo

In this section we describe how to simulate the underlying salary with jumps. Once we obtain the
salary, Monte Carlo method is applied in a similar way to the case without jumps. For the case with
early retirement opportunity a Longstaff-Schwartz [21] algorithm is implemented as in the case without
jumps too.

In the absence of jumps, the evolution of the salary under the risk neutral measure Q was given by

dSt = β(t, St)dt+ σ(t, St)dZ
Q
t , (29)

where ZQ denotes a Wiener process under this measure, β(t, St) = θS and σ(t, St) = σS. We will
suppose that the salary at initial time is known.

If κ = eµ+γ2/2 − 1 then the process
Nt∑
i=1

Vi − λ̃κt

is a martingale. Having the previous property in view, in the case with jumps and assuming Merton
model, the stochastic differential equation that describes the risk neutral dynamics of the logarithmic
salary (Xt = ln(St)) can be written in the form

dXt = β̄(t,Xt)dt+ σ̄(t,Xt)dZ
Q
t + d

(
Nt∑
i=1

Vi

)
, (30)

where ZQ denotes a Wiener process under this measure, β̄ = (θ − λ̃κ) and σ̄ = σ. In the case without
early retirement the value of the plan is given by the expectation

V (t, St, It) = EQ

[
e−(r+µd+µw)(Tr−t) a

ny
I −

∫ Tr

t

e−(r+µd+µw)(u−t)f(u, Su)du

]
, (31)
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and when early retirement is allowed the value of the plan is written in probabilistic terms as the Snell
envelope

V (t, St, It) = sup
τ∈T (t,Tr)

EQ

[
e−(r+µd+µw)(τ−t)Ψ(τ, Sτ , Iτ )−

∫ τ

t

e−(r+µd+µw)(u−t)f(u, Su)du

]
. (32)

3.5. Simulating at fixed dates

In order to simulate the salary with jumps, we consider the approach in which we simulate the process
at a fixed set of dates 0 = t0 < t1 < ... < tm = Tr without explicitly distinguishing the effect of the
jump and diffusion terms. We simulate X(t) = ln(S(t)) at time t1, · · · , tm in the following way:

X(tj+1) = X(tj) + (θ − 1

2
σ2 − λ̃κ)(tj+1 − tj) + σ

√
tj+1 − tjWj+1) +

N(tj+1)∑
i=N(tj)+1

Vi, (33)

where W1, ...,Wm are independent standard normal random variables. By convention, the product over
i is equal to 1 if N(ti+1) = N(ti). Then, we can exponentiate simulated values of the X(ti) to produce
samples of the S(ti). A general method for simulating (33) from tj to tj+1 comprises the following steps:

1. generate W ∼ N(0, 1)

2. generate N ∼ Poisson(λ̃(tj+1 − tj)); if N = 0, set M = 0 and go to step 4

3. assuming Vi ∼ N(µ, γ2) and
∑n
i=1 Vi ∼ N(µn, γ2n) = µn + γ

√
nN(0, 1), then, generate W2 ∼

N(0, 1); set M = µN + γ
√
NW2

4. set

X(tj+1) = X(tj) + (θ − 1

2
σ2 − λ̃κ)(tj+1 − tj) + σ

√
tj+1 − tjW +M.

4. Numerical results

In this section, some numerical results corresponding to a jump-diffusion model for the salary are shown.

First, we consider a pension plan without the early retirement option. In this case, we present the results
obtained by solving the PIDE model and by implementing the Monte Carlo simulation technique based
on the techniques described in the previous section.

Next, we incorporate the early retirement option and the hereafter presented results correspond to solv-
ing the complementarity problem associated with the PIDE and with the Longstaff-Schwartz technique
[21].

The number of nodes and elements of the quadratic finite element meshes are indicated in Table 1. All
Monte Carlo simulations presented in this section have been performed by using 7000 time steps per
year and 106 paths. Moreover, a variance reduction technique based on antithetic variables has been
considered.

In all the following examples, the retirement date Tr = 40, the number of subintervals in the composite
trapezoidal rule m = 50 and the bounded computational domain defined by the values x∞1 = 40 and
x∞2 = 40 have been considered. Particularly, for the jump-diffusion model we considered the data
estimated in [2] for the underlying associated with European call options:

λ̃ = 0.1, µ = −0.90 and γ = 0.45. (34)

In future work, clearly this data need to be obtained from real data corresponding to salary evolution in
some way, being the estimation from historical data the a priori easiest way to obtain these parameters.
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4.1. Pension plans without early retirement

In this section we show the results obtained when the early retirement option is not allowed. In Table
2 the computed values of the pension plan at origination and mesh point (S, I) = (25, 20) for different
meshes and time steps are indicated in order to illustrate the convergence. Note that the second order
convergence for this scheme is proved in [4, 5] under certain assumptions which do not include the
presence of a nonlocal term as the one associated to jumps. In fact, we use a composed trapezoidal rule
for this term and perhaps an alternative integration formula could improve the convergence.

Next, in Table 3 for different parameters we show the computed values at time t = 0 obtained by solving
the PIDE problem for the same salaries and average salaries considered in [8]. The corresponding values
with the Monte Carlo technique are those ones appearing in Table 4. As in the absence of jumps, note
that only the salary at time t = 0 is known, so that the salary and cumulative salary values are simulated
at the different dates along the path. As expected, the value of the pension plan does not depend on
the cumulative salary I at origination because we only take into account the average salary from time
t = Tr − ny.

The behaviour of the plan at time t = 38 is shown in Tables 5 and 6. The first values are obtained with
de PIDE model and the second ones with Monte Carlo simulation. As in the case without jumps, at
t = 38, the salary and the cumulative salary are known and we simulate the values from this date. In
this case the value of the variable I up to this time is considered and influences the value obtained with
Monte Carlo. In order to obtain the solution of the PIDE model, Mesh 96 and 100000 time steps have
been considered.

Number of elements Number of nodes
Mesh 12 144 625
Mesh 24 576 2401
Mesh 48 2304 9409
Mesh 96 9216 37249

Table 1: FEM meshes data

time steps Mesh 12 Mesh 24 Mesh 48 Mesh 96
100 2.603778 2.604122 2.604051 2.604056
1000 2.598576 2.599026 2.599109 2.599123
10000 2.598018 2.598408 2.598447 2.598455
100000 2.598004 2.598389 2.598421 2.598422

Table 2: Retirement benefits under a jump diffusion process without early retirement at time t = 0 and at mesh point
(S, I) = (25, 20) when the parameters σ = 0.1, θ = 0.025, r = 0.025, a = 0.75, ny = 30, k1 = 0.5, µd = 0.025, µw = 0.2,
αd = 1 and αw = 0, are considered. The 99% confidence interval with Monte Carlo simulation is [2.597423, 2.599365].

4.2. Pension plans with early retirement option

In this section we show the results obtained when the early retirement option is allowed. For this purpose,
we have considered the following model parameters:

σ = 0.1, θ = 0.025, r = 0.025, a = 0.75, Tr = 40, T0 = 15,

ny = 30, k1 = 0.5, µd = 0.025, µw = 0.2, αd = 1, αw = 0

and we set β = 10000 in the ALAS algorithm.

Table 7 illustrates the convergence of the method in the presence of jumps as soon as the mesh is refined
in time and space at t = 38 and the mesh point (S, I) = (25, 20). Note that for all times the point
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ny σ r a (S, I) = (1.2, 15) (S, I) = (1.2, 22.5) (S, I) = (2.4, 30)
30 0.1 0.025 0.75 0.133059 0.133094 0.269216

0.95 0.133132 0.133169 0.269375
0.075 0.75 0.108654 0.108681 0.219359

0.95 0.108859 0.108883 0.219732
0.2 0.025 0.75 0.133175 0.133192 0.269321

0.95 0.133393 0.133421 0.269483
0.075 0.75 0.108771 0.108798 0.219532

0.95 0.108947 0.108991 0.219941
(S, I) = (1.2, 7.5) (S, I) = (1.2, 11.25) (S, I) = (2.4, 15)

15 0.1 0.025 0.75 0.132617 0.132682 0.266294
0.95 0.132745 0.132799 0.266357

0.075 0.75 0.108549 0.108578 0.218003
0.95 0.108974 0.108997 0.218342

0.2 0.025 0.75 0.132691 0.132733 0.266344
0.95 0.132853 0.132894 0.266414

0.075 0.75 0.108697 0.108725 0.218058
0.95 0.109021 0.109086 0.218192

Table 3: Retirement benefits under a jump diffusion process without early retirement at time t = 0 for different (S, I)
points and parameter values

ny σ r a S = 1.2 S = 2.4
30 0.1 0.025 0.75 [0.132979, 0.133173] [0.269018, 0.269421]

0.95 [0.133081, 0.133269] [0.269104, 0.269485]
0.075 0.75 [0.108598, 0.108702] [0.219084, 0.219402]

0.95 [0.108792, 0.108898] [0.219536, 0.219853]
0.2 0.025 0.75 [0.133103, 0.133371] [0.269119, 0.269432]

0.95 [0.133311, 0.133609] [0.269213, 0.269547]
0.075 0.75 [0.108705, 0.108873] [0.219253, 0.219598]

0.95 [0.108897, 0,109067] [0.219672, 0.219991]
S = 1.2 S = 2.4

15 0.1 0.025 0.75 [0.132546, 0.132744] [0.266048, 0.266398]
0.95 [0.132664, 0.132869] [0.266123, 0.266476]

0.075 0.75 [0.108499, 0.108601] [0.217887, 0.218197]
0.95 [0.108911, 0.109007] [0.218105, 0.218402]

0.2 0.025 0.75 [0.132619, 0.132854] [0.266176, 0.266497]
0.95 [0.132783, 0.132994] [0.266219, 0.266531]

0.075 0.75 [0.108618, 0.108796] [0.217884, 0.218127]
0.95 [0.108997, 0.109169] [0.218099, 0.218352]

Table 4: The 99% confidence intervals with Monte Carlo simulation under a jump diffusion process at time t = 0 for
different salaries and parameter values

(S, I) = (25, 20) is located at the region where early retirement is not optimal. For the same point, in
Tables 8 and 9 the results for t = Tr − ny = 10 and t = 0, respectively, also illustrate the convergence
with mesh refinement in time and space. Note that the convergence analysis of the characteristics-Crank-
Nicolson scheme for the complementarity problem is an open question. However, numerical experiments
with different meshes seem to provide a first order convergence.

Moreover, the obtained results by solving the PIDE have been compared with those ones of Monte Carlo
simulation techniques. More precisely, we have implemented the Longstaff-Schwartz technique and the
corresponding confidence intervals are indicated in the caption.
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ny σ r a (S, I) = (1.2, 15) (S, I) = (1.2, 22.5) (S, I) = (2.4, 30)
30 0.1 0.025 0.75 0.293409 0.406986 0.586518

0.95 0.358895 0.502986 0.718043
0.075 0.75 0.267828 0.370626 0.535824

0.95 0.327221 0.457491 0.654372
0.2 0.025 0.75 0.293479 0.407026 0.586697

0.95 0.358923 0.503005 0.718192
0.075 0.75 0.267915 0.370697 0.535897

0.95 0.327251 0.457518 0.654429
(S, I) = (1.2, 7.5) (S, I) = (1.2, 11.25) (S, I) = (2.4, 15)

15 0.1 0.025 0.75 0.311833 0.424796 0.622203
0.95 0.382331 0.525624 0.763118

0.075 0.75 0.284386 0.386681 0.567829
0.95 0.348298 0.478046 0.695367

0.2 0.025 0.75 0.311902 0.422867 0.622293
0.95 0.382419 0.525735 0.763386

0.075 0.75 0.284417 0.386872 0.577897
0.95 0.348392 0.478139 0.695471

Table 5: Retirement benefits value under a jump diffusion process without early retirement at time t = 38 for different
(S, I) points and parameter values

ny σ r a (S, I) = (1.2, 15) (S, I) = (1.2, 22.5) (S, I) = (2.4, 30)
30 0.1 0.025 0.75 [0.293376, 0.293429] [0.406964, 0.407012] [0.586451, 0.586546]

0.95 [0.358883, 0.358934] [0.502943, 0.502993] [0.717976, 0.718074]
0.075 0.75 [0.267805, 0.267855] [0.370601, 0.370652] [0.535803, 0.535892]

0.95 [0.327194, 0.327241] [0.457471, 0.457518] [0.654311, 0.654399]
0.2 0.025 0.75 [0.293423, 0.293497] [0.406995, 0.407058] [0.586603, 0.586725]

0.95 [0.358911, 0.358991] [0.502991, 0.503059] [0.718107, 0.718239]
0.075 0.75 [0.267903, 0.267969] [0.370675, 0.370734] [0.535817, 0.535936]

0.95 [0.327213, 0.327284] [0.457501, 0.457568] [0.654356, 0.654497]
(S, I) = (1.2, 7.5) (S, I) = (1.2, 11.25) (S, I) = (2.4, 15)

15 0.1 0.025 0.75 [0.311821, 0.311891] [0.424759, 0.424823] [0.622138, 0.622258]
0.95 [0.382307, 0.382379] [0.525603, 0.525672] [0.763033, 0.763159]

0.075 0.75 [0.284351, 0.284412] [0.386654, 0.386717] [0.567757, 0.567867]
0.95 [0.348272, 0.348333] [0.478011, 0.478077] [0.695321, 0.695441]

0.2 0.025 0.75 [0.311891, 0.311976] [0.422815, 0.422899] [0.622211, 0.622390]
0.95 [0.382385, 0.382483] [0.525701, 0.525798] [0.763303, 0.763464]

0.075 0.75 [0.284389, 0.284469] [0.386821, 0.386895] [0.577779, 0.577935]
0.95 [0.348351, 0.348437] [0.478101, 0.478193] [0.695352, 0.695512]

Table 6: The 99% confidence intervals with Monte Carlo simulation under a jump diffusion process at time t = 38 for
different salaries and parameter values

Finally, Table 10 shows a comparison between the values obtained with both techniques, solving the
PIDE and with Monte Carlo and if early retirement is allowed or not. In the first rows the values at
different points with Monte Carlo simulation (MC) and PIDE model (PIDE) when early retirement is
not allowed. Then forth and fifth rows indicate the value of V with Longstaff-Schwartz technique (LS)
and PIDE model (PIDE) when early retirement is allowed. Last row shows the computed multiplier in
the PIDE solution. As in the case without jumps, the value of V is always greater in case of allowing early
retirement and also, the point (S, I) = (4, 10) belongs to the region where early retirement is not optimal
as indicated by the null value of the multiplier. The other points belong to the early retirement region
and the value of the pension plan matches the early retirement value and the value of the multiplier
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time steps Mesh 12 Mesh 24 Mesh 48 Mesh 96
1250 1.695962 1.695863 1.695855 1.696236
2500 1.696683 1.696559 1.696543 1.696944
5000 1.697076 1.696938 1.696919 1.697326
10000 1.697285 1.697128 1.697107 1.697112

Table 7: Retirement benefits under a jump diffusion process with early retirement at time t = 38 at the mesh point
(S, I) = (25, 20) when the parameters σ = 0.1, θ = 0.025, r = 0.025, a = 0.75, ny = 30, k1 = 0.5, µd = 0.025, µc = 0.2,
αd = 1 and αw = 0 are considered. The 99% confidence interval with LS simulation is [1.696812, 1.698176].

time steps Mesh 12 Mesh 24 Mesh 48 Mesh 96
1250 2.756395 2.758438 2.758443 2.758448
2500 2.758234 2.759291 2.759294 2.759297
5000 2.758651 2.760128 2.760134 2.760137
10000 2.760221 2.760392 2.760413 2.760414

Table 8: Retirement benefits under a jump diffusion process with early retirement at time t = 10 and the mesh point
(S, I) = (25, 20) when the parameters σ = 0.1, θ = 0.025, r = 0.025, a = 0.75, ny = 30, k1 = 0.5, µd = 0.025, µc = 0.2,
αd = 1 and αw = 0 are considered. The 99% confidence interval with LS simulation is [2.758998, 2.760943].

time steps Mesh 12 Mesh 24 Mesh 48 Mesh 96
1250 2.598371 2.598801 2.598848 2.598867
2500 2.598153 2.598582 2.598627 2.598671
5000 2.598032 2.598463 2.598507 2.598513
10000 2.598019 2.598408 2.598447 2.598455

Table 9: Retirement benefits under a jump diffusion process with early retirement at time t = 0 and the mesh point
(S, I) = (25, 20) when the parameters σ = 0.1, θ = 0.025, r = 0.025, a = 0.75, ny = 30, k1 = 0.5, µd = 0.025, µc = 0.2,
αd = 1 and αw = 0 are considered. The 99% confidence interval with LS simulation is [2.597937, 2.599538].

is different from zero. In order to obtain these results solving the PIDE model the Mesh 96 and 10000
time steps are considered.
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Figure 1: Free boundary at time t = 38 when the parameters σ = 0.1, θ = 0.025, r = 0.025, a = 0.75, ny = 30, k1 = 0.5,
µd = 0.025, µw = 0.2, αd = 1 and αw = 0 are considered

Moreover, Figure 1 shows the early retirement region in red and the non early retirement region in blue,
the boundary separating both regions is the optimal retirement boundary (free boundary). As expected,
the early retirement region corresponds to low salaries and large cumulative salaries (therefore large
average), while in the region with large salaries and low cumulative salaries it results optimal to continue
at work.

Concerning the comparison between PIDE numerical solution and Monte Carlo simulation in terms of
computational cost, in the case without early retirement, Monte Carlo simulation takes around 3 times
the computing time of PIDE method to arrive to t = 0, the las method providing more information:
the pension plan values for all mesh and time points of the discretization are obtained. In the case with
possibility of early retirement, both Longstaff-Schwartz and PIDE approaches are more time consuming
than without early retirement, the cost of the first one being 1,5 times the cost of the second approach.
So, we can conclude that the PIDE approach results to be more efficient than the alternative Monte
Carlo simulation techniques.

5. Conclusions

In this paper we consider the valuation of pension plans based on average salary where the salary is
supposed to follow a jump-diffusion process. In this case a PIDE arises and we posed the model for
both cases, with and without early retirement. We proposed appropriate numerical methods based on
Lagrange-Galerkin formulation to solve the problems combined with the ALAS algorithm to deal with
the non-linearities associated with the free boundary problem that appears when early retirement is
allowed. The integral term of the PIDE is treated explicitly. The results obtained by means of these
techniques are compared with the ones got by implementing Monte Carlo simulation. In all the examples
shown in this paper the results obtained by solving the PIDE are into the Monte Carlo confidence
intervals.

Finally, after comparing PIDE and Monte Carlo based numerical techniques in terms of computing time,
the PIDE results less time consuming in both cases without and with early retirement opportunity.
Moreover, the PIDE numerical solution provides the value of the pension plan for as many pairs salary-
average salary as the number of nodes of the finite element mesh and for all discretization times. Indeed,
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the use of an appropriate interpolation method allows to approximate also the value for any time, salary
and average salary. So, we can conclude that the PIDE approach results to be more efficient than the
alternative Monte Carlo simulation techniques.
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