
  
 
 
 
 

 
 
 

 
 
This is an ACCEPTED VERSION of the following published document: 

 
 

 
Maria del Carmen Calvo-Garrido & Carlos Vázquez (2016) A new numerical method for pricing 
fixed-rate mortgages with prepayment and default options, International Journal of Computer 
Mathematics, 93:5, 761-780, DOI: 10.1080/00207160.2013.878024 
 
 
 
 
 

Link to published version: 
https://doi.org/10.1080/00207160.2013.878024 

 
 
 
 
 
 
 
 
 
 
This is an Accepted Manuscript version of the following article, accepted for publication in 
International Journal of Computer Mathematics. [Maria del Carmen Calvo-Garrido & Carlos 
Vázquez (2016) A new numerical method for pricing fixed-rate mortgages with prepayment 
and default options, International Journal of Computer Mathematics, 93:5, 761-780, DOI: 
10.1080/00207160.2013.878024].  
 
It is deposited under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits 
non-commercial re-use, distribution, and reproduction in any medium, provided the original 
work is properly cited, and is not altered, transformed, or built upon in any way. 

https://doi.org/10.1080/00207160.2013.878024


December 16, 2013 19:19 International Journal of Computer Mathematics cv-ijcm-rev

International Journal of Computer Mathematics
Vol. 00, No. 00, December 2013, 1–20

RESEARCH ARTICLE

A new numerical method for pricing Fixed-Rate Mortgages with
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In this paper we consider the valuation of fixed rate mortgages including prepayment and
default options, where the underlying stochastic factors are the house price and the interest
rate. The mathematical model to obtain the value of the contract is posed as a free boundary
problem associated to a PDE model. The equilibrium contract rate is determined by using
an iterative process. Moreover, appropriate numerical methods based on a Lagrange-Galerkin
discretization of the PDE, an augmented Lagrangian active set method and a Newton iteration
scheme are proposed. Finally, some numerical results to illustrate the performance of the
numerical schemes, as well as the qualitative and quantitative behaviour of solution and the
optimal prepayment boundary are presented.

Keywords: Fixed-rate mortgages; option pricing; complementarity problem; numerical
methods; Augmented Lagrangian Active Set formulation
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1. Introduction

A mortgage is a financial contract in which the borrower obtains funds (usually
from a bank or a financial institution) by using a risky asset (in this case a house) as
a collateral. The value of this contract depends on the house price and the interest
rate, as underlying factors. In order to pay the mortgage, monthly payments from
the borrower to the lender are considered so that cancelation occurs when at the
maturity of the loan the debt is totally paid. Thus, the mortgage value is understood
as the present value of the borrower scheduled monthly payments without including
the insurance the lender can have on the loan. Moreover, in the present paper the
possibilities of the remaining mortgage value prepayment and borrower default
are also considered. Prepayment can occur at any time during the life of the loan
(analogously to the exercise in American options) while default only can happen
at any monthly payment date. In fact, at each monthly payment date the borrower
decides either to make the payment or default if the house value is less than the
mortgage price. Thus, if we consider both prepayment and default option, the
pricing problem is equivalent to a sequence of linked American options, one for
each month. Moreover, starting from the final mortgage value at last month, the
final mortgage value at the end of each month is obtained from the mortgage value
for the corresponding next month at the same date.

∗Corresponding author. Email: carlosv@udc.es. Paper funded by Spanish MCINN (Project MTM2010–
21135–C02-01) and by Xunta de Galicia (Ayuda CN2011/004, partially funded with FEDER funds).

ISSN: 0020-7160 print/ISSN 1029-0265 online
c© 2013 Taylor & Francis
DOI: 0020716YYxxxxxxxx
http://www.informaworld.com



December 16, 2013 19:19 International Journal of Computer Mathematics cv-ijcm-rev

2 M.C. Calvo-Garrido & C. Vázquez

At origination, the contract must be in equilibrium, which is achieved if the
value of the mortgage to the lender plus the insurance against default is equal to
the amount of money lent to the borrower, otherwise the contract would not be
arbitrage free. This equilibrium provides the fixed rate of the loan.

In the literature we can distinguish Fixed-Rate Mortgages (FRM) and
Adjustable-Rate mortgages (ARM). In the first case, the interest rate the bor-
rower has to pay is constant while in the second one is floating according to a
specific rate index (LIBOR, for example). In this paper we deal with contracts
of the first type in which the fixed rate is the equilibrium rate and needs to be
adjusted by using an iterative process.

In order to obtain the value of the contract and other components (such as
insurance and coinsurance), option pricing methodology can be applied and leads
to a sequence of backward in time partial differential equation (PDE). The problem
is divided in monthly intervals where the final condition for a given month comes
from the value at the same date of following month. Additionally, the option of
prepayment leads to free boundary problem formulations.

In [13] the properties of the free boundary are studied for the case in which
default is not allowed so that the problem is much simpler as there is only an
stochastic factor (the interest rate). Moreover, in order to solve backwards the
PDE several numerical methods need to be provided. For example, in [12] and [1]
explicit finite-differences schemes have been used. In [17] a semi-implicit Crank-
Nicolson finite-difference scheme to discretize the PDE and a projected successive
over-relaxation (PSOR) method to solve the complementarity problem (associated
to prepayment feature) have been applied. Moreover, a technique based on the
application of singular perturbation theory in order to speed up the calculation is
also established. Basically, for small volatilities, the higher order terms in the PDE
are neglected and the first order PDE is analytically solved. Finally, a comparison
between the two methods is presented. However, some differences between the
solution of first order PDE and the numerical solution of the original PDE are
observed and some comments about the need of using higher order terms in the
asymptotic expansion are pointed out, specially in scenarios with higher volatilities.
In [19] the inclusion of higher order terms for European and American options is
discussed and the corresponding PDE problems require numerical methods of the
same complexity of those ones applied to the original problem.

In this paper, we numerically solve the original equation by proposing the PDE
discretization with the techniques developed in [4] for Asian options and more
recently applied to pension plans in [5] and [6]. More precisely, we use a charac-
teristics method to discretize first order terms and a Crank-Nicolson scheme that
evaluates the functions at the previous time step in the basis of the characteristics,
which consists on a different approach from the one proposed in [17]. These meth-
ods are particularly well suited for convection dominated problems, as those ones
appearing in the case of small volatilities. If we neglect second order terms, then
we recover the perturbation based solution proposed in [17]. The numerical anal-
ysis of the proposed characteristics Crank-Nicolson time discretization, the fully
discretized problem when combined with Lagrange finite elements and the use of
numerical integration formulas has been addressed in [2] and [3]. Both papers are
applied to general convection-diffusion-reaction equations under certain assump-
tions. Furthermore, the non-linearities associated with the inequality constraints
in the complementarity formulation due to prepayment are treated by means of
the recently introduced Augmented Lagrangian Active Set (ALAS) method [11].

The paper is organized as follows. In Section 2, first we state the mathematical
model by describing the stochastic variables and deriving the PDE that governs the
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valuation of the mortgage components. Then, we establish the final, payment date
and equilibrium conditions, as well as other characteristics of the contract. Also,
the free boundary problem associated with prepayment option is presented. Section
3 contains the description of the numerical techniques. Some numerical results are
presented in Section 4. Finally, some conclusions are discussed in Section 5.

2. Mathematical modeling

2.1 Stochastic initial financial framework

A mortgage can be treated as a derivative financial product, for which the under-
lying state variables are the house price and the term structure of interest rates.

The value of the house at time t, Ht, is assumed to follow the standard log-normal
process (see [14]), that satisfies the following stochastic differential equation:

dHt = (µ− δ)Htdt+ σHHtdX
H
t , (1)

where

• µ is the instantaneous average rate of house-price appreciation,
• δ is the ’dividend-type’ per unit service flow provided by the house,
• σH is the house-price volatility,
• and XH

t is the standardized Wiener process for house price.

Note that this process has an absorbing barrier at zero, meaning that if Ht

reaches at any time the value zero, it remains zero thereafter. The dividend-type
parameter δ is associated to the benefits of owning the house (usage, hiring, ...).
The previous model does not take into account possible jumps in the house price,
which would require the use of jump-diffusion models.

Deriving the risk-neutral process for house price by changing to a risk neutral
probability measure involves replacing the expected drift term µ− δ by µ− δ−λσ,
where λ represents the market price of risk associated to the uncertainty of the
house price [8]. Using risk neutrality arguments, µ − λσ is equal to the risk-free
interest rate rt. So, by substituting this expression in equation (1), we obtain

dHt = (rt − δ)Htdt+ σHHtdX
H
t . (2)

The other source of uncertainty, the interest rate rt at time t, is assumed to
be stochastic and its evolution can be modeled with the following classical Cox-
Ingersoll-Ross (CIR) process [7],

drt = κ(θ − rt)dt+ σr
√
rtdX

r
t , (3)

where

• κ is the speed of adjustment in the mean reverting process,
• θ is the long term mean of the short-term interest rate (steady state spot rate),
• σr is the interest-rate volatility parameter,
• and Xr

t is the standardized Wiener process for interest rate.

Notice that the CIR model is mean-reverting. Moreover, if 2κθ ≥ σ2
r and r0 >

0 then zero is a natural reflecting barrier and negative interest rates cannot be
achieved. In [13] a Vasicek model is considered so that negative interest rates can
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be obtained.
Wiener processes, XH

t and Xr
t can be assumed to be correlated according to

dXH
t dX

r
t = ρdt, where ρ is the instantaneous correlation coefficient.

2.2 Statement of the morgage pricing PDE problem

The price of any asset whose value is a function of house price Ht, interest rate rt
and time t is a stochastic process, Ft = F (t,Ht, rt), where F is a smooth enough
function. Then, by using the dynamic hedging methodology [16], the function F
is the solution of a certain PDE problem. Here, it is assumed that the house price
evolution is described by equation (2) and the interest rate dynamics is governed
by equation (3). So, we can apply Itô’s Lemma (see [9], for example) to obtain the
variation of Ft, dFt, from time t to t+ dt for small dt. Hereafter, we suppress the
dependence on t in order to simplify notation:

dF =
∂F

∂t
dt+

∂F

∂H
dH+

∂F

∂r
dr+

1
2

(
σ2
HH

2 ∂
2F

∂H2
+ 2ρσHσrH

√
r
∂2F

∂H∂r
+ σ2

rr
∂2F

∂r2

)
dt

(4)
At this point, we construct a portfolio Π by buying one unit of the asset F1 with
maturity T1 and selling ∆2 and ∆1 units of the asset F2 with maturity T2 and of
the underlying asset H, respectively. Thus,

Π = F1 −∆2F2 −∆1H (5)

Note that the variation of the portfolio value between t and t+ dt is given by:

dΠ = dF1 −∆2dF2 −∆1dH, (6)

where ∆1 and ∆2 are constant in [t, t+dt]. As it is the case of dividends in options
on assets, the effect of the service flow δ causes the price of the underlying asset
H to drop in value by δH over a time interval [t, t + dt]. Therefore, the portfolio
must change by an amount −δH∆1dt during this time interval. Thus, the correct
change in the value of the portfolio is

dΠ = dF1 −∆2dF2 −∆1(dH + δHdt). (7)

Moreover, Π turns out to be risk-free for the following choice:

∆2 =
∂F1/∂r

∂F2/∂r
, ∆1 =

∂F1

∂H
−∆2

∂F2

∂H
(8)

So, for this choice of ∆, the variation of the risk-free portfolio is given by:

dΠ =
[
∂F1

∂t
+

1
2

(
σ2
HH

2 ∂
2F1

∂H2
+ 2ρσHσrH

√
r
∂2F1

∂H∂r
+ σ2

rr
∂2F1

∂r2

)
− δH ∂F1

dH

−∂F1/∂r

∂F2/∂r

(
∂F2

∂t
+

1
2

(
σ2
HH

2 ∂
2F2

∂H2
+ 2ρσHσrH

√
r
∂2F2

∂H∂r
+ σ2

rr
∂2F2

∂r2

)
− δH ∂F2

dH

)]
dt.
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By using the arbitrage-free assumption, this variation is also given by dΠ = rΠdt.
Thus, we obtain the identity:

1
∂F1/∂r

(
∂F1

∂t
+

1
2
σ2
HH

2 ∂
2F1

∂H2
+ ρσHσrH

√
r
∂2F1

∂H∂r
+

1
2
σ2
rr
∂2F1

∂r2
+ (r − δ)H∂F1

∂H
− rF1

)
=

1
∂F2/∂r

(
∂F2

∂t
+

1
2
σ2
HH

2 ∂
2F2

∂H2
+ ρσHσrH

√
r
∂2F2

∂H∂r
+

1
2
σ2
rr
∂2F2

∂r2
+ (r − δ)H∂F2

∂H
− rF2

)
.

The left hand side of the equality is a function of T1 but not of T2 and the right side
is a function of T2 but not T1. This is only possible if both sides are independent
of maturity date, so that

1
∂F/∂r

(
∂F

∂t
+

1
2
σ2
HH

2 ∂
2F

∂H2
+ ρσHσrH

√
r
∂2F

∂H∂r
+

+
1
2
σ2
rr
∂2F

∂r2
+ (r − δ)H ∂F

∂H
− rF

)
= a(t,H, r), (9)

where it is convenient to write a(t,H, r) = −κ(θ−r), which is a standard procedure
in the literature (see [12], [1], for example).

So, by reordering the terms in (9) we obtain the following PDE that governs the
valuation of any asset depending on house price and interest rate, in particular the
fixed-rate mortgages.

∂F

∂t
+

1
2
σ2
HH

2 ∂
2F

∂H2
+ ρσHσrH

√
r
∂2F

∂H∂r
+

1
2
σ2
rr
∂2F

∂r2
+

+(r − δ)H ∂F

∂H
+ κ(θ − r)∂F

∂r
− rF = 0. (10)

2.3 Mortgage contract

In the fixed-rate mortgage we are considering, the loan is repaid by a series of equal
monthly payments at given dates Tm, m = 1, . . . ,M . Moreover, assuming T0 = 0,
let ∆Tm = Tm − Tm−1 denote the duration of month m. Thus, assuming that M
is the number of months, c is the fixed contract rate and P (0) is the initial loan
(i.e. the principal at t = T0 = 0), the fixed mortgage payment (MP ) is given by
formula:

MP =
(c/12)(1 + c/12)MP (0)

(1 + c/12)M − 1
, (11)

For m = 1, . . . ,M , the unpaid loan just after the (m− 1)th payment is given by

P (m− 1) =
((1 + c/12)M − (1 + c/12)m−1)P (0)

(1 + c/12)M − 1
, (12)

If tm = t−Tm−1 denotes the time elapsed at month m (which starts at t = Tm−1),
we introduce τm = ∆Tm − tm as the time until Tm. This change of time variable
transforms equation (10) into another one associated to an initial value problem.
More precisely, the mortgage value to the lender during month m, V (τm, H, r),
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without including the insurance the lender has on the loan, satisfies the PDE

∂F

∂τm
− 1

2
σ2
HH

2 ∂
2F

∂H2
− ρσHσrH

√
r
∂2F

∂H∂r
− 1

2
σ2
rr
∂2F

∂r2
−

−(r − δ)H ∂F

∂H
− κ(θ − r)∂F

∂r
+ rF = 0, (13)

for 0 ≤ τm ≤ ∆Tm, 0 ≤ H <∞, 0 ≤ r <∞. We clarify a certain abuse of notation:
if F denotes the solution of (10) and F the solution of (13) then F (τm, H, r) =
F (Tm − τm, H, r), .
In the mortgage contract we consider there are two embedded options for the
borrower. On one hand the option to default on the mortgage that can only happen
at payment dates once the borrower decides not to pay the monthly amount MP ,
and on the other hand the option to prepay the mortgage, which can be exercised
at any time during the life of the loan. If the borrower decides to fully amortize the
mortgage at time τm, he/she should pay the total debt payment TD(τm), which
includes an early termination penalty and is given by expression

TD(τm) = (1 + Ψ)(1 + c(∆Tm − τm))P (m− 1), (14)

where Ψ denotes the prepayment penalty factor.
Thus, at each payment date the borrower must decide whether to pay the required

monthly payment or default and hand over the house to the lender. The option to
prepay gives the borrower the right to exercise the prepayment at any time during
the lifetime of the mortgage (American feature).

The mortgage pricing problem starts from the value of the mortgage at maturity
(t = TM ), which just before the last payment is given by

V (τM = 0, H, r) = min(MP,H) (15)

while at the other payment dates, it is given by

V (τm = 0, H, r) = min(V (τm+1 = ∆Tm+1, H, r) +MP,H), (16)

where 1 ≤ m ≤M − 1.
If the borrower defaults, which occurs when the mortgage value is equal to the

house value, the lender will lose the promised future payments. Then, the lender
might have taken an insurance against default which would cover a fraction of
the loss associated to default. As indicated in [17] this asset adds to the lender’s
position in the contract. In order to obtain the value of this insurance to the lender,
denoted by I(τm, H, r), we must solve equation (13) with suitable payment date
conditions. In order to pose them, we assume that in case of default the insurer
accepts to pay a fraction γ of the currently unpaid balance to the lender up to a
maximum indemnity or cap, Γ. By taking this into account, depending if default
occurs or not, the insurance value at the maturity of the loan is

I(τM = 0, H, r) =

{min(γ(MP −H),Γ) (Default)

0 (No default)
(17)

At earlier payment dates, in case of default the value of the insurance is

I(τm = 0, H, r) =

{min(γ[TD(τm = 0)−H],Γ) (Default)

I(τm+1 = ∆Tm+1, H, r) (No default)
(18)
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where 1 ≤ m ≤M − 1.
The fraction of the potential loss not covered by the insurance is referred as

the coinsurance. At each payment date, the coinsurance is the difference between
the values of the potential loss and the insurance coverage. In this case, in order
to price the coinsurance, , CI(τm, H, r), equation (13) must be solved again with
suitable conditions. At maturity, the value of the coinsurance is

CI(τM = 0, H, r) =

{max((1− γ)(MP −H), (MP −H)− Γ) (Default)

0 (No default)
(19)

At earlier payment dates, the value of the coinsurance is

CI(τm = 0, H, r) =

{max((1− γ)[TD(τm = 0)−H], [TD(τm = 0)−H]− Γ) (Default)

CI(τm+1 = ∆Tm+1, H, r) (No default)
(20)

where 1 ≤ m ≤M − 1.

2.4 Arbitrage free condition

At the time of origination, the value of the contract together with the insurance
and any upfront points must be the same to the lender as the value of the loan
to the borrower. Thus, arbitrage is avoided and the contract is fair for both parts.
Formally,

V (τ1 = ∆T1, Hinitial, rinitial; Ψ, c)+I(τ1 = ∆T1, Hinitial, rinitial; Ψ, c) = (1−ξ)P (0), (21)

where ξP (0) is the value of the upfront points, understood as an arrangement fee.
The arrangement fee, the prepayment penalty Ψ and whether or not the lender
holds an insurance are specified in the contract. So, this equation contains only
one free parameters, the contract rate c. It is necessary to find the value of the
interest rate c which satisfies the equilibrium condition (21) and ensures that the
contract is fair and arbitrage free. It can be obtained by using an iterative method
for nonlinear equations.

2.4.1 Arbitrage equilibrium analysis

In order to give an idea of the equilibrium mortgage contract rate, different
contracts are considered (see [12]):

• Basic contract: in this simple case the arrangement fee ξ = 0 and no insurance
is charged. So, equation (21) reduces to

V (τ1 = ∆T1, Hinitial, rinitial; Ψ, c) = P (0). (22)

The arbitrage condition requires that (Hinitial, rinitial) be a point in state space
where immediate prepayment is an optimal strategy. For all values of c > ĉ the
point (Hinitial, rinitial) is in fact in the interior of the prepayment region. Since
the borrower simultaneously takes the loan and pays it off on the right of ĉ, no
equilibrium is observed when c > ĉ and ĉ is not really a valid solution because
the borrower is indifferent between prepayment and continuation. The practise
of loaning less than the full value of the house in order to reduce the risk of
the loan is a standard one. In our case when P (0) = H no equilibrium could
exists, since it implies that default would also be an optimal strategy and it is
not possible because the borrower could earn the flow of service on the house
until the first payment becomes due.
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• Contract with points: if an arrangement fee, ξ, is introduced into the equation,
the equilibrium equation has this expression:

V (τ1 = ∆T1, Hinitial, rinitial; Ψ, c) = (1− ξ)P (0) (23)

In this case, the equilibrium contract rate c is c1 < ĉ. Then, the problem
of a continuum of values satisfying equation (22) is removed. Now, the point
(Hinitial, rinitial) is in the interior of the continuation region.

• Contract with insurance: now we consider the case where insurance can have
value, but upfront points are no charged (ξ = 0). The expression for the equilib-
rium condition in this case is as follows:

V (τ1 = ∆T1, Hinitial, rinitial; Ψ, c) + I(τ1 = ∆T1, Hinitial, rinitial; Ψ, c) = P (0)
(24)

Now, there is an isolated equilibrium when c = c2 such that, c1 < c2 < ĉ as
well as the continuum, c ≥ ĉ. At these latter value immediate prepayment is the
optimal strategy, so insurance has no value, and in the other case at c2 insurance
has positive value.

• Full contract: this is the general case with insurance and upfront points. The
equilibrium equation is this case is (21). There is an unique value of c = c3

which satisfies the equation. Therefore, it is necessary that c3 ≤ c1 and c3 ≤ c2.

2.5 The free boundary problem

Let us consider the following linear operator,

LV ≡ ∂V

∂τm
− 1

2
σ2
HH

2 ∂
2V

∂H2
− ρσHσrH

√
r
∂2V

∂H∂r
− 1

2
σ2
rr
∂2V

∂r2

−(r − δ)H ∂V

∂H
− κ(θ − r)∂V

∂r
+ rV. (25)

So, the free boundary problem associated with the valuation of the mortgage con-
tract, can be reduced to the linear complementarity problem:

LV ≤ 0, (TD(τm)−V (τm, H, r)) ≥ 0, (LV )(TD(τm)−V (τm, H, r)) = 0. (26)

The option to prepay can be exercised at any time during the lifetime of the
contract. If V = TD then it is optimal for the borrower to prepay, otherwise
LV = 0 and it is optimal to maintain the loan.

3. Numerical methods

In order to obtain a numerical approach of the value of the contract at origination,
we need to solve a free boundary problem for each month to obtain the value of the
mortgage during that month, jointly with an additional initial value problem when
the lender holds an insurance. Once we know the value at origination of the contract
and the insurance, the equilibrium condition (21) is checked to find the interest rate
for which the contract is arbitrage free. For this purpose, a Newton-like method is
implemented. By using the equilibrium rate, we solve another initial value problem
to obtain the coinsurance. For the numerical solution of the PDE, we propose a
Crank-Nicolson characteristics time discretization scheme combined with quadratic
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Lagrange finite element method. Thus, first a localization technique is used to cope
with the initial formulation in an unbounded domain. For the inequality constraints
associated with the complementarity problem, we propose a mixed formulation and
an augmented Lagrangian active set technique.

3.1 Localization procedure and formulation in a bounded domain

In this section we replace the unbounded domain by a bounded one and determine
the required boundary conditions. For this purpose, we introduce the notation:

x0 = τm, x1 =
H

H∞
and x2 =

r

r∞
, (27)

where both H∞ and r∞ are sufficiently large suitably chosen real numbers. Let
Ω = (0, x∞0 ) × (0, x∞1 ) × (0, x∞2 ), with x∞0 = ∆Tm, x∞1 = x∞2 = 1. Then, let us
denote the Lipschitz boundary by Γ = ∂Ω such that Γ =

⋃2
i=0(Γ−i ∪ Γ+

i ), where:

Γ−i = {(x0, x1, x2) ∈ Γ | xi = 0}, Γ+
i = {(x0, x1, x2) ∈ Γ | xi = x∞i }, i = 0, 1, 2.

Then, the PDE in problem (13) can be written in the form:

2∑
i,j=0

bij
∂2F

∂xixj
+

2∑
j=0

bj
∂F

∂xj
+ b0F = f0, (28)

where the involved data are defined as follows:

B = (bij) =

0 0 0
0 1

2σ
2
Hx

2
1

1
2ρx1

√
x2/r∞σHσr

0 1
2ρx1

√
x2/r∞σHσr

1
2σ

2
rx2/r∞

 , (29)

~b = (bj) =

 −1
(x2r∞ − δ)x1

κ(θ − x2r∞)/r∞

 , b0 = −x2r∞, f0 = 0. (30)

Thus, following [15], in terms of the normal vector to the boundary pointing inward
Ω, ~m = (m0,m1,m2), we introduce the following subsets of Γ:

Σ0 =

x ∈ Γ/
2∑

i,j=0

bijmimj = 0

 , Σ1 = Γ− Σ0,

Σ2 =

x ∈ Σ0/
2∑
i=0

bi − 2∑
j=0

∂bij
∂xj

mi < 0

 .

As indicated in [15] the boundary conditions at Σ1
⋃

Σ2 for the so-called first
boundary value problem associated with (28) are required. Note that Σ1 = Γ+

1

⋃
Γ+

2
and Σ2 = Γ−0 . Therefore, in addition to an initial condition depending on the
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payment date Γ−0 (see section 2.3), we impose the following Neumann conditions:

∂F

∂x1
= 0 on Γ+

1 , (31)

∂F

∂x2
= 0 on Γ+

2 . (32)

Next, taking into account the new variables we write the equation (13) in divergence
form in the bounded domain. As in [17], we consider the case ρ = 0. Thus, the
initial-boundary value problem for the insurance and coinsurance can be written
in the form: Find J : [0,∆Tm]× Ω→ R such that

∂J

∂τm
+ ~v · ∇J − div(A∇J) + lJ = f in (0,∆Tm)× Ω , (33)

∂J

∂x1
= g1 on (0,∆Tm)× Γ+

1 , (34)

∂J

∂x2
= g2 on (0,∆Tm)× Γ+

2 , (35)

where J = I, CI and the appropriate initial condition for each month is given by
the equations (17) and (18) when we are pricing the insurance and by the equations
(19) and (20) in the case of valuing the coinsurance.

Furthermore, for the complementarity problem associated to the mortgage value
during montn m, we can pose the following mixed formulation:

Find V : [0,∆Tm]× Ω→ R satisfying the partial differential equation

∂V

∂τm
+ ~v · ∇V − div(A∇V ) + lV + P = f in (0,∆Tm)× Ω , (36)

the complementarity conditions

V ≤ TD, P ≥ 0, P (TD − V ) = 0 in (0,∆Tm)× Ω (37)

the boundary conditions

∂V

∂x1
= g1 on (0,∆Tm)× Γ+

1 , (38)

∂V

∂x2
= g2 on (0,∆Tm)× Γ+

2 (39)

and the initial condition for each month, given by the equations (15) or (16).
For both problems, the involved data is defined as follows

A =
(

1
2σ

2
Hx

2
1 0

0 1
2σ

2
r
x2
r∞

)
, ~v =

(
(σ2
H − x2r∞ + δ)x1

(1
2σ

2
r − κ(θ − x2r∞))/r∞

)
(40)

l = x2r∞, f = 0, g1 = 0, g2 = 0. (41)

Next, the qualitative behaviour of the velocity field on the boundaries is studied:
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• On boundary Γ−1 , since x1 = 0 then

~v =
(

0,
(

1
2
σ2
r − κ(θ − x2r∞)

)
/r∞

)
,

so the velocity field is tangential to the boundary.
• On boundary Γ−2 , since x2 = 0 then

~v =
(

(σH + δ)x1,

(
1
2
σ2
r − κθ

)
/r∞

)
,

so as σr ≤
√

2κθ the velocity field either points outward the domain or it is
tangential to the boundary.

• On boundary Γ+
1 , since x1 = 1 then

~v =
(
σH − r∞x2 + δ,

(
1
2
σ2
r − κ(θ − x2r∞)

)
/r∞

)
,

so if (σ2
H + δ) < r∞x2 the velocity field enters the domain, otherwise it points

outward the domain.
• On boundary Γ+

2 , since x2 = 1 then

~v =
(

(σH − r∞ + δ)x1,

(
1
2
σ2
r − κ(θ − r∞)

)
/r∞

)
,

so if 1
2σ

2
r < κ(θ − r∞) the velocity field enters the domain, otherwise it points

outward the domain.

3.2 Time discretization

First, we define the characteristics curve through x = (x1, x2) at time τ̄m,
X(x, τ̄m; s), which satisfies:

∂

∂s
X(x, τ̄m; s) = ~v(X(x, τ̄m; s)), X(x, τ̄m; τ̄m) = x. (42)

For N > 1 let us consider the time step ∆τm = ∆Tm/N and the time mesh
points τnm = n∆τm, n = 0, 1

2 , 1,
3
2 , . . . , N . The material derivative approximation

by characteristics method is given by:

DF

Dτm
=
Fn+1 − Fn ◦Xn

∆τm
,

where F = CI, I , V and Xn(x) := X(x, τn+1
m ; τnm). In view of the expression of
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the velocity field the components of Xn(x) can be analytically computed:

Xn
1 (x) = x1 exp

(
−
(
σ2
H + δ +

σ2
r

2κ
− θ
)

∆τm

)
×

exp
((
−x2r∞
κ

− σ2
r

2κ2
+
θ

κ

)
(exp(−κ∆τm)− 1)

)
Xn

2 (x) =
(
− σ2

r

2κr∞
+

θ

r∞

)
(1− exp(−κ∆τm)) + x2 exp(−κ∆τm)

Next, we consider a Crank-Nicolson scheme around
(
X(x, τn+1

m ; τm), τm
)

for τm = τ
n+ 1

2
m . So, for n = 0, . . . , N − 1, the time discretized equation for

F = I, CI, V and P = 0 can be written as follows:

Find Fn+1 such that:

Fn+1(x)− Fn(Xn(x))
∆τm

− 1
2
div(A∇Fn+1)(x)− 1

2
div(A∇Fn)(Xn(x))+

1
2

(l Fn+1)(x) +
1
2

(l Fn)(Xn(x)) = 0.(43)

In order to obtain the variational formulation of the semi-discretized problem, we
multiply equation (43) by a suitable test function, integrate in Ω, use the classical
Green formula and the following one ([4]):

∫
Ω
div(A∇Fn)(Xn(x))Ψ(x)dx =

∫
Γ
(∇Xn)−T (x)n(x) · (A∇Fn)(Xn(x))Ψ(x)dx

−
∫

Ω
(∇Xn)−1(x)(A∇Fn)(Xn(x)) · ∇Ψ(x)dx

−
∫

Ω
div((∇Xn)−T (x))(A∇Fn)(Xn(x))Ψ(x)dx (44)

Note that, in the present case, we have:

div((∇Xn)−T (x)) =

(
0

r∞
κ

(1− exp(κ∆τm))

)
. (45)

After these steps, we can write a variational formulation for the semi-discretized
problem as follows:
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Find Fn+1 ∈ H1(Ω) such that, for all Ψ ∈ H1(Ω):∫
Ω
Fn+1(x)Ψ(x)dx +

∆τm
2

∫
Ω

(A∇Fn+1)(x)∇Ψ(x)dx +

+
∆τm

2

∫
Ω
lFn+1(x)Ψ(x)dx =∫

Ω
Fn(Xn(x))Ψ(x)dx− ∆τm

2

∫
Ω

(∇Xn)−1(x)(A∇Fn)(Xn(x))∇Ψ(x)dx−

−∆τm
2

∫
Ω
lFn(Xn(x))Ψ(x)dx +

∆τm
2

∫
Γ
g̃n(x)Ψ(x)dAx+

+
∆τm

2

∫
Γ1+

ḡn+1
1 (x)Ψ(x)dAx +

∆τm
2

∫
Γ2+

ḡn+1
2 (x)Ψ(x)dAx−

−∆τm
2

∫
Ω
div((∇Xn)−T (x))(A∇Fn)(Xn(x))Ψ(x)dx (46)

where ∇Xn can be analytically computed, ḡ1(x) = g1(x)a11(x) = 0, ḡ2(x) =
g2(x)a22(x) = 0 and

g̃n(x) :=



−
[
(∇Xn)−T

]
21

(x)a22(Xn(x)) ∂F∂x2
(Xn(x)) on Γ−1

0 on Γ−2[
(∇Xn)−T

]
22

(x)a22(Xn(x))gn2 (Xn(x)) on Γ+
2[

(∇Xn)−T
]
11

(x)a11(Xn(x))gn1 (Xn(x))+

+
[
(∇Xn)−T

]
21

(x)a22(Xn(x)) ∂F∂x2
(Xn(x)) on Γ+

1

(47)

3.3 Finite elements discretization

For the spatial discretization we consider {τh} a quadrangular mesh of the domain
Ω. Let (T,Q2,ΣT ) be a family of piecewise quadratic Lagrangian finite elements,
where Q2 is the space of polynomials defined in T ∈ τh with degree less or equal
than two in each spatial variable and ΣT the subset of nodes of the element T .
More precisely, let us define the finite elements space Fh by

Vh = {φh ∈ C0(Ω̄) : φhT
∈ Q2,∀T ∈ τh}, (48)

where C0(Ω̄) is the space of piecewise continuous functions on Ω̄.

3.4 Augmented Lagrangian Active Set (ALAS) algorithm

The Augmented Lagrangian Active Set (ALAS) algorithm proposed in [11] is here
applied to the fully discretized in time and space mixed formulation (36)-(37). More
precisely, after this discretization, the discrete problem can be written in the form:

MhV
n
h + Pnh = bn−1

h , (49)
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with the discrete complementarity conditions

V n
h ≤ TD n

h , Pnh ≥ 0, (TDn
h − V n

h )Pnh = 0, (50)

where Pnh denotes the vector of the multiplier values and TD n
h denotes the vector

of the nodal values defined by function TD.
The basic iteration of the ALAS algorithm consists of two steps. In the first one

the domain is decomposed into active and inactive parts (depending on whether
the constraints are active or not), and in the second step a reduced linear system
associated with the inactive part is solved. We use the algorithm for unilateral
problems, which is based on the augmented Lagrangian formulation.

First, for any decomposition N = I ∪ J , where N := {1, 2, . . . Ndof}, let us
denote by [Mh]II the principal minor of matrix Mh and by [Mh]IJ the co-diagonal
block indexed by I and J . Thus, for each mesh time τmn

, the ALAS algorithm
computes not only V n

h and Pnh but also a decomposition N = J n ∪ In such that

MhV
n
h + Pnh = bn−1

h ,

[Pnh ]j + β [V n
h − TD]j > 0 ∀j ∈ J n,

[Pnh ]i = 0 ∀i ∈ In,
(51)

for a given positive constant β. In the above, In and J n are, respectively, the
inactive and the active sets at time τmn

. More precisely, the iterative algorithm
builds sequences

{
V n
h,k

}
k
,
{
Pnh,k

}
k
, {Ink }k and {J nk }k , converging to V n

h , Pnh , In

and J n, by means of the following steps:

(1) Initialize V n
h,0 = TDn

h and Pnh,0 = max(bnh −MhV
n
h,0, 0) ≥ 0. Choose β > 0.

Set k = 0.
(2) Compute

Qnh,k = max
{

0, Pnh,k + β
(
V n
h,k − TDn

h,k

)}
,

J nk =
{
j ∈ N ,

[
Qnh,k

]
j
> 0
}
,

Ink = {i ∈ N ,
[
Qnh,k

]
i

= 0}.

(3) If k ≥ 1 and Jnk = Jnk−1 then convergence is achieved. Stop.
(4) Let V and P be the solution of the linear system

MhV + P = bn−1,

P = 0 on Ink and V = TD on J nk .
(52)

Set V n
h,k+1 = V, Pnh,k+1 = max{0, P}, k = k + 1 and go to 2.

It is important to note that, instead of solving the full linear system in (52), for
I = Ink and J = J nk the following reduced one on the inactive set is solved:

[Mh]II [V ]I =
[
bn−1

]
I − [Mh]IJ [TD]J ,

[V ]J = [TD]J ,
P = bn−1 −MhV.

(53)
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In [11], it is proved the convergence of the algorithm in a finite number of steps
for a Stieltjes matrix (i.e., a real symmetric positive definite matrix with negative
off-diagonal entries [18]) and a suitable initialization (the same we consider in this
paper). They also proved that Ik ⊂ Ik+1. Nevertheless, a Stieltjes matrix can be
only obtained for linear elements but never for the here used quadratic elements
because we have some positive off-diagonal entries coming from the stiffness matrix
(actually we use a lumped mass matrix). However, we have obtained good results
by using ALAS algorithm with quadratic finite elements.

3.5 Iterative method for the arbitrage free equation

In order to obtain the interest rate which satisfies the equilibrium condition (21), a
Newton method with discrete derivative (secant method) is implemented to solve
f(c) = 0, where f is defined to balance the equilibrium condition in the form

f(c) = V (τ1 = ∆T1, Hinitial, rinitial; Ψ, c)+I(τ1 = ∆T1, Hinitial, rinitial; Ψ, c)− (1−ξ)P (0)

Starting from an initial value c0 and ∆0 the initial increment in c0. Then the value
of the mortgage components involved in the equilibrium condition are calculated
with c0. Next, we check if f(c0) is less than a given tolerance, if this condition is
not satisfied we set c1 = c0 + ∆0 and repeat the process. At iteration i, we check
if f(ci) is less than a tolerance, if it is not the case we compute

∆i = − ∆i−1f(ci)
f(ci)− f(ci−1)

, i ≥ 1 (54)

and update ci+1 = ci + ∆i until the convergence criterium is fulfilled.

4. Numerical results

In order to obtain the solution of the fixed rate mortgage valuation problem we
need to specify a set of parameters, related to the economic environment, contract
characteristics and insurance. All of them, based on the literature are shown in
Table 1 (see [1] and [17]). Moreover, concerning the numerical methods employed
to solve the problem, we consider the parameters collected in Table 2.

Table 1. Fixed parameters in the mortgage valuation model

Economic framework
Steady state spot rate, θ 10 %

Speed of reversion, κ 25 %
House service flow, δ 7.5%

Correlation coefficient, ρ 0

Contract specifications
Initial value of the house, Hinitial 100000e

Ratio of the loan to value 95 %
Initial estimate for contract rate, c0 10%

Prepayment penalty, Ψ 5%

Insurance
Guaranteed fraction of total loss, γ 80%

Cap, Γ 20%Hinitial

In Tables 3, 4, 5 and 6 the influence of different parameters (such as interest rate
and house price volatilities, loan maturity, spot interest rate and arrangement fee)
in the contract rate, mortgage value and insurance and coinsurance is shown.

If we increase the life of the loan the equilibrium interest rate, the insurance and
coinsurance increase, however the value of the mortgage decreases as expected.
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Table 2. Numerical resolution parame-

ters
Computational domain

H∞ 200000e
r∞ 40 %

Finite elements mesh data
Number of elements 576

Number of nodes 2401

Time discretization
Time steps per month 30

ALAS algorithm
Parameter β 10000

Otherwise the effect of increasing the volatilities reduces the value of the mort-
gage and increases the values of the insurance and the coinsurance. This variation
in the volatilities also produces and increment in the contract fixed rate.

Table 3. Contract rate, mortgage, insurance and coinsurance values for σr = 5%, σH = 5% and

different contract specifications

Loan spot rate ξ Contract rate Mortgage value Insurance Coinsurance
(years) r(0) c V I CI

15 8% 0% 9.0839% 94549 449 112
0.5% 8.9911% 94116 410 103
1% 8.8992% 93663 386 96

1.5% 8.8119% 93230 345 86
10% 0% 10.0782% 94656 343 84

0.5% 9.9696% 94208 317 79
1% 9.8634% 93764 288 72

1.5% 9.7579% 93316 260 66
12% 0% 11.1662% 94691 309 76

0.5% 11.0389% 94274 249 62
1% 10.9203% 93870 181 45

1.5% 10.8006% 93422 154 38
25 8% 0% 9.2605% 93961 1039 260

0.5% 9.1876% 93549 974 243
1% 9.1158% 93117 933 233

1.5% 9.0453% 92677 899 225
10% 0% 10.1258% 94314 685 171

0.5% 10.0369% 93878 646 162
1% 9.9440% 93417 632 158

1.5% 9.8551% 92970 604 151
12% 0% 11.1585% 94536 464 116

0.5% 11.0462% 94126 399 101
1% 10.9219% 93667 382 94

1.5% 10.8111% 93240 337 85

Figures 1 to 3 illustrate the values at origination of the contract, insurance and
coinsurance when the arrangement fee is equal to 0.5% and the early prepayment
penalty takes the value of 5%. We consider the fixed parameters of the model shown
in Table 1. In this case the contract rate is 9.3969%, the interest rate volatility is
10%, the house price volatility is 5%, the maturity of the contract is 25 years and
the spot rate is 8%. Moreover, Figure 4 shows the prepayment (coincidence) region
in red and the non early prepayment (non coincidence) region in blue, the curve
separating both regions is the optimal prepayment boundary (free boundary). The
prepayment region coincides with high house prices and low interest rates because
default is unlikely at high house values so the borrower is willing to prepay at high
interest rates.

Finally, Table 7 shows the results for a case with higher volatility in the house
price (20%). We notice that as soon as volatility becomes higher, although it results
much cheaper from the computational point of view, neglecting second order terms
in the PDE as proposed with the perturbation method in [17] can produce very
inaccurate prices. On the other hand, the increase in volatility produces a decrease
in the mortgage value and an increase in the insurance as expected.
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Table 4. Contract rate, mortgage, insurance and coinsurance values for σr = 10%, σH = 5% and different

contract specifications

Loan(years) spot rate ξ Contract rate Mortgage value Insurance Coinsurance
r(0) c V I CI

15 8% 0% 9.3028% 94390 609 152
0.5% 9.1741% 93959 566 141
1% 9.0484% 93523 526 131

1.5% 8.9184% 93064 511 128
10% 0% 10.5172% 94506 494 124

0.5% 10.3544% 94065 459 115
1% 10.1925% 93621 429 107

1.5% 10.0424% 93196 378 95
12% 0% 11.8193% 94610 389 97

0.5% 11.6207% 94161 364 91
1% 11.4324% 93723 327 81

1.5% 11.2617% 93270 305 76
25 8% 0% 9.5142% 93778 1222 306

0.5% 9.3969% 93315 1209 302
1% 9.2833% 92847 1202 300

1.5% 9.1746% 92387 1187 296
10% 0% 10.6232% 94102 898 224

0.5% 10.4877% 93688 836 209
1% 10.3441% 93235 815 203

1.5% 10.2052% 92780 795 198
12% 0% 11.8641% 94344 655 163

0.5% 11.6778% 93885 639 159
1% 11.4993% 93430 620 155

1.5% 11.3534% 93017 557 138

Table 5. Contract rate, mortgage, insurance and coinsurance values for σr = 5%, σH = 10% and

different contract specifications

Loan spot rate ξ Contract rate Mortgage value Insurance Coinsurance
(years) r(0) c V I CI

15 8% 0% 9.0078% 92650 2350 587
0.5% 8.9084% 92242 2282 571
1% 8.8132% 91845 2205 551

1.5% 8.7195% 91446 2129 532
10% 0% 10.0154% 92984 2015 503

0.5% 9.8983% 92565 1960 490
1% 9.7861% 92154 1896 474

1.5% 9.6801% 91748 1826 456
12% 0% 11.1181% 93270 1730 432

0.5% 10.9775% 92849 1676 418
1% 10.8459% 92427 1622 405

1.5% 10.7241% 92015 1559 389
25 8% 0% 9.2191% 91407 3594 898

0.5% 9.1386% 90991 3533 882
1% 9.0585% 90565 3484 870

1.5% 8.9818% 90144 3430 857
10% 0% 10.0815% 91997 3003 751

0.5% 9.9881% 91590 2934 733
1% 9.9022% 91204 2845 711

1.5% 9.8104% 90778 2797 699
12% 0% 11.1048% 92532 2468 624

0.5% 10.9742% 92090 2434 608
1% 10.8564% 91675 2376 592

1.5% 10.7423% 91239 2235 584

5. Conclusions

In this paper we first revise the statement of the PDE model for pricing fixed rate
mortgages with prepayment and default options. Next, a set of numerical tech-
niques for solving the associated to problems to obtain mortgage, insurance and
coinsurance values, as well as the optimal prepayment boundary (free boundary).
Taking into account the convection dominated feature of the PDE, specially in the
case of low volatilities, a time discretization based on the upwinding characteris-
tics Crank-Nicolson scheme is proposed and combined with finite element methods.
For the free boundary mortgage pricing problem associated to prepayment option,
a suitable augmented Lagrangian algorithm is proposed. The equilibrium interest



December 16, 2013 19:19 International Journal of Computer Mathematics cv-ijcm-rev

18 M.C. Calvo-Garrido & C. Vázquez

Table 6. Contract rate, mortgage, insurance and coinsurance values for σr = 10%, σH = 10% and different

contract specifications

Loan(years) spot rate ξ Contract rate Mortgage value Insurance Coinsurance
r(0) c V I CI

15 8% 0% 9.2331% 92591 2409 602
0.5% 9.1019% 92182 2343 586
1% 8.9759% 91779 2271 568

1.5% 8.8473% 91358 2217 554
10% 0% 10.4358% 92933 2066 517

0.5% 10.2713% 92508 2017 504
1% 10.1134% 92086 1963 490

1.5% 9.9619% 91662 1914 479
12% 0% 11.7276% 93237 1762 440

0.5% 11.5309% 92801 1724 431
1% 11.3515% 92376 1674 418

1.5% 11.1841% 91943 1632 408
25 8% 0% 9.4344% 91298 3701 926

0.5% 9.3221% 90862 3663 917
1% 9.2165% 90434 3615 906

1.5% 9.1125% 90001 3574 896
10% 0% 10.5161% 91935 3065 766

0.5% 10.3746% 91492 3033 758
1% 10.2381% 91049 3001 750

1.5% 10.1078% 90608 2966 740
12% 0% 11.7368% 92498 2502 626

0.5% 11.5608% 92048 2476 619
1% 11.3896% 91582 2468 616

1.5% 11.2423% 91149 2426 606

Figure 1. Mortgage value at origination

Table 7. Contract rate, mortgage, insurance and coinsurance values for σr = 10%, σH = 20% and different

contract specifications

Loan(years) spot rate ξ Contract rate Mortgage value Insurance Coinsurance
r(0) c V I CI

15 8% 0% 9.3117% 87941 7059 2036
0.5% 9.1721% 87538 6987 2050
1% 9.0397% 87150 6900 2068

1.5% 8.9103% 86760 6815 2078
10% 0% 10.4659% 88460 6540 1780

0.5% 10.3083% 88068 6457 1788
1% 10.1506% 87664 6386 1790

1.5% 10.0025% 87270 6305 1799
12% 0% 11.7052% 88964 6036 1591

0.5% 11.5177% 88550 5975 1587
1% 11.3434% 88146 5904 1585

1.5% 11.1749% 87738 5837 1584
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Figure 2. Insurance value at origination

Figure 3. Coinsurance value at origination

rate of the loan is obtained by a Newton method. Numerical techniques are differ-
eent from those ones proposed in [17]. Numerical results illustrate the performance
of the proposed numerical techniques and show the expected qualitative behaviour
of the mortgage, insurance and coinsurance values, as well as the optimal prepay-
ment boundary that separates the prepayment and non prepayment regions. The
proposed set of numerical techniques is also suitable for the case of larger volatil-
ities, where the use of perturbation techniques would require the consideration of
higher order terms in the asymptotic expansion, thus increasing the complexity of
the model equations and the computational cost. This is deeply analyzed in [19]
for the vanilla European and American options setting.

As future work, the authors aim the consideration of jumps in the stochastic
process for the house prices by means of a jump-diffusion model, which would lead
to a partial integro-differential equation (PIDE) and perhaps better reflects the
evolution of real state prices in the financial crisis setting in many countries.
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Figure 4. Free boundary at origination
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