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Effects of jump-diffusion models for the house price dynamics in the
pricing of fixed-rate mortgages, insurance and coinsurance I

M.C. Calvo-Garridoa, C. Vázqueza

aDepartment of Mathematics, University of A Coruña. Campus Elviña s/n, 15071 – A Coruña (Spain)

Abstract

In the pricing of fixed rate mortgages with prepayment and default options, we introduce jump-diffusion
models for the house price evolution. These models take into account sudden changes in the price (jumps)
during bubbles and crisis situations in real estate markets. After posing the models based on partial-
integro differential equations (PIDE) problems for the contract, insurance and the fraction of the total
loss not covered by the insurance (coinsurance), we propose appropriate numerical methods to solve
them.

Keywords: Fixed-Rate Mortgages, jump-diffusion models, option pricing, complementarity problem,
numerical methods, Augmented Lagrangian Active Set formulation

1. Introduction

A mortgage is a financial contract between two parts, a borrower and a lender, in which the borrower
obtains funds from the lender (a bank or a financial institution, for example) by using a risky asset as
a guarantee (collateral), usually a house. We can stablish a classification in different types taking into
account several characteristics of the contract such as the interest rate, the term of the loan, the amount
and frequency of payments and the prepayment and default options. Moreover, the lender may have an
insurance on the loan as a protection in case of default. Taking into account the interest rate, we can
distinguish between fixed-rate mortgages and adjustable-rate mortgages. In the first case the interest
rate and the scheduled payments are fixed during the life of the loan, whereas in the second one the
contract rate is floating and it is adjusted for some period according to an index such as LIBOR or
EURIBOR, for example. In this work, we focus on fixed rate mortgages with monthly payments where
the interest rate is the equilibrium rate and it needs to be adjusted by using an iterative process. The
loan is reimbursed through monthly payments until the cancellation of the debt at maturity date. Thus,
the mortgage value is understood as the discounted value of the future monthly payments (without
including a possible insurance on the loan by the lender) and the underlying stochastic factors are the
interest rate and the house price. In this paper we follow the previous ones in [7, 27] where prepayment
is allowed at any time during the life of the loan and default only can occur at any monthly payment
date. In both previous papers a log-normal process is assumed for house price evolution so that this
value evolves continuously. The consideration of geometric Brownian motion for house prices has been
commonly used in the literature on mortgage insurance pricing (see [3, 19, 20, 21], among others).

However, under certain situations, such as during the relatively recent bubble or crisis phenomena in
real state markets, the assumption of a geometric Brownian motion for house prices seems no longer so
realistic. For example, in the recent paper [8], the consideration of U.S. national average new home price
returns for single-family mortgage from January 1986 to June 2008 as shown in Figure 1, motivates the
analysis of jump risk in house prices. In the time series of Figure 1, it is observed that the monthly house
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price changes more than 10 percent per month in 14 time moments. Moreover, since the subprime crisis
in 2007 several significant downward jumps appear. In [8] a combination of a geometric Brownian motion
and a compound Poisson process is proposed, the parameters of which are estimated by an expectation-
maximum gradient algorithm from the time series of U.S. pricing data. Thus, the maximum likelihood
ratio test rejects the model without jumps with a 99 percent significance level when considering the
national average for new house, although does not reject the geometric Brownian motion model for the
case of second hand house prices. From the jump-diffusion model, by means of a Esscher transform
technique a closed formula is obtained for mortgage insurance contracts. This approach recovers the
formula for mortgages in [3] for the case without jumps, which is also based on the actuarial approach
in [12] assuming that the present value of the expected loss (plus a gross margin) balances the expected
premium revenues and that the agents in the economy are risk neutral. Moreover, in [8] it is pointed
out that models with two underlying stochastic factors (house price and interest rate) require complex
numerical methods.

Thus, although geometric Brownian motion has been mainly assumed in the literature, it becomes
necessary to adopt jump-diffusion models to account with the arrival of additional information in real
estate markets (abnormal events, economic and financial crisis, etc) that produce sudden changes in the
value of the house. This is the main innovative point of the present paper. In the quantitative finance
literature, there are several examples of the valuation of financial derivatives when the underlying assets
follow a jump-diffusion process (see [25], for example). Among all of them, in the present we assume
that the house price dynamics is governed by Merton [24] and Kou [22] jump-diffusion models and
we consider a finite number of jumps following a Poisson process. Once the particular jump-diffusion
model has been chose, as in the case without jumps (see [7], the dynamic hedging methodology leads
to partial integro-differential equations (PIDE) problems. In the case of fixed rate mortgages, in order
to obtain the value of the mortgage, the insurance and the coinsurance a sequence of PIDE problems
(one for each month) are obtained. Moreover, the prepayment option leads to free boundary problems
associated to the mortgage value, so that not only the value of the mortgage has to be obtained but
also the combinations of rates and house prices for which it is optimal or not to prepay (prepayment
and non prepayment regions) have to be determined. The unknown boundary separating both regions is
known as optimal prepayment boundary and constitutes the free boundary associated to the problem.

Concerning the numerical methods for solving PIDE problems arising in finance, in [14] the authors
propose a semi-Lagrangian method for pricing American Asian options assuming jump-diffusion models
for the underlying asset while in [9] an implicit finite difference method to obtain the value of options
on two assets under jump-diffusion process is considered. Moreover, in order to avoid the solution of
linear system with dense matrix they combine a fixed point iteration with a FFT technique. In [2], the
authors obtain the value of European vanilla options under jump-diffusion models for the underlying.
More precisely, they solve the PIDE for Merton and Kou models.

In some cases, the numerical schemes employed to solve the PIDE leads to a dense matrix due to the
presence of jumps, so that, appropriate methods are required to solve the system as the one proposed
in [26]. The complementarity problems that arise in the valuation of products of American type have
been solve in the literature with different methods. For example, in [13] they propose a penalty method
and in [17] they present an operator splitting method.

For solving the inequalities associated with the free boundary problem in the contract valuation problem
we propose a Lagrange-Galerkin method for time and space discretization [5, 6], combined with an
Augmented Lagrangian Active Set (ALAS) algorithm jointly with the explicit treatment of the integral
term [11], thus maintaining the same matrix than in the absence of jumps for the house value. For solving
the PIDE problems associated to insurance and coinsurance pricing we consider the same Lagrange-
Galerkin method with the same explicit treatment of the integral term. The equilibrium interest rate is
obtained by the solution of a nonlinear equation with a variable secant method.

This paper is organized as follows. In Section 2 we briefly describe the pricing model under consideration
as well as the mortgage contract related aspects. In Section 3 we describe the different numerical solution
techniques. Finally, in Section 4 we present some numerical results allowing to compare the two different
jump-diffusion models.
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2. Mathematical modelling under jump-diffusion processes

2.1. Models for the underlying stochastic factors

In order to model the evolution of the logarithmic house price at time t, Xt = ln(Ht), where Ht denotes
the house value, we consider the following stochastic differential equation (SDE):

dXt = (µ− σ2
H

2
− δ) dt + σHdZ

H
t + d

(
Nt∑
i=1

Vi

)
, (1)

where µ, δ and σH denote the house-price appreciation average rate, the dividend yield provided by
the house (by hiring or using it, for example) and the house price volatility respectively, while ZHt is
the Wiener process. Moreover, in the jump part of the model (Nt)t≥0 denotes a Poisson process with
parameter λ̃ and (Vi) is a sequence of square integrable, independent and identically distributed random
variables, so that ZHt , Nt and (Vi) are independent. We notice that according to [14], [23] and [24], for
example, the stochastic differential equation can be written in the original variable Ht in the form

dHt = (µ− δ)Ht dt + σHHtdZ
H
t + Ht d

(
Nt∑
i=1

(Yi − 1)

)
, (2)

where Yi = exp(Vi).

Under a risk neutral probability measure, we can obtain the equivalent SDEs in the logarithmic house
price and in the house price respectively:

dXt = (rt −
σ2
H

2
− δ − λ̃κ̃) dt + σHdZ

H
t + d

(
Nt∑
i=1

Vi

)
, (3)

dHt = (rt − δ − λ̃κ̃)Ht dt + σHHt dZ
H
t + Ht d

(
Nt∑
i=1

(Yi − 1)

)
, (4)

where κ̃ = E[exp(Vi)]− 1.

Additionally, we assume that the interest rate follows the CIR following process [10]:

drt = κ(θ − rt) dt + σr
√
rt dZ

r
t , (5)

where κ denotes the speed of mean reversion to the long term rate θ and σr is the interest rate volatility.
Wiener processes ZHt and Zrt could be correlated with correlation coefficient ρ (i.e. dZHt dZ

r
t = ρdt) to

incorporate possible correlation between interest rate and house price. Time dependent correlation can
be also considered in the same way, while stochastic correlation would imply an additional spatial-like
variable in the forthcoming PIDE formulation.

2.1.1. Partial integral differential equation (PIDE) formulation

In the case without jumps, by using a dynamic hedging technique in [7], a partial differential equation
(PDE) model for pricing any asset depending on house price and interest rate is posed. In the here
treated jump-diffusion models for house prices, if we denote the value of any asset depending on house
price and interest rate by Ft = F (t,Ht, rt) then standard techniques based on Ito formulas for jump-
diffusion process prove that the function F satisfies the following PIDE (see Cont and Tankov [11], for
example):

∂tF +
1

2
σ2

HH
2∂HHF + ρσHσrH

√
r∂HrF +

1

2
σ2

rr∂rrF + (r − δ)H∂HF + κ(θ − r)∂rF − rF

+

∫ ∞
−∞

λ̃ [F (t,H exp(y), r)− F (t,H, r)−H(exp(y)− 1)∂HF (t,H, r)] ν(y)dy = 0,

(6)
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where subindexes in symbol ∂ indicate partial derivatives.

Moreover, in order to completely define the model, we must also specify the distribution of jump sizes.
For this purpose, we will consider either Merton model [24] or Kou model [22]. More precisely, under
Merton model (Vi) are taken from the normal distribution (N(µj , γ2

j )), with the density

ν(y) = νm(y) =
1

γj
√

2π
exp

(
− (y − µj)2

2γ2
j

)
, (7)

where µj is the mean jump size and γj is the standard deviation of the jump size, whereas under Kou
model the set (Vi) corresponds to a distribution with double-exponential density

ν(y) = νk(y) =

{
qα2 exp(α2y), y < 0
pα1 exp(−α1y), y ≥ 0,

(8)

where p, q, α1 and α2 are positive constants such that p+q = 1 and α1 > 1. Note that, p and q represent
the probabilities of upward and downward jumps, respectively.

Since ν(y) is the probability density function of the jump amplitude Vi, then∫ ∞
−∞

ν(y)dy = 1.

Moreover, we can compute the expectations for Merton and Kou models

Em[exp(Vi)] =
∫ ∞
−∞

exp(y)νm(y)dy = eµj+γ2
j /2,

Ek[exp(Vi)] =
∫ ∞
−∞

exp(y)νk(y)dy =
pα1

α1 − 1
+

qα2

α2 + 1
.

Therefore, the PIDE (6) can be written in the form

∂tF +
1
2
σ2
HH

2∂HHF + ρσHσrH
√
r∂HrF +

1
2
σ2
rr∂rrF

+(r − δ − λ̃κ̃)H∂HF + κ(θ − r)∂rF − (r + λ̃)F + λ̃

∫ ∞
−∞

F (t,H exp(y), r)ν(y)dy = 0,

(9)

where κ̃ = eµj+γ2
j /2 − 1 or κ̃ = pα1

α1−1 + qα2
α2+1 − 1 for Merton or Kou models, respectively.

Note that with respect to the PDE model in [7], there is an integral term in the equation due to the
presence of jumps. This term makes the PIDE more difficult to solve than the corresponding PDE. In a
forthcoming section we show how to discretize this integral in order to find a numerical solution of the
PIDE problem.

2.2. Mortgage contract

Following the same notation as in [7], the equal monthly payment dates are denoted by Tm, m = 1, ...,M ,
where M is the number of months. Assuming that T0 = 0, let ∆Tm = Tm−Tm−1 the duration of month
m, c is the fixed contract rate and P (0) is the initial loan (i.e. the principal at t = T0 = 0), the fixed
mortgage payment (MP ) is given by:

MP =
(c/12)(1 + c/12)MP (0)

(1 + c/12)M − 1
, (10)

For m = 1, ...,M , the unpaid loan just after the (m-1)th payment date is

P (m− 1) =
((1 + c/12)M − (1 + c/12)m−1)P (0)

(1 + c/12)M − 1
. (11)
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If tm = t− Tm−1 denotes the time elapsed at month m (which starts at t = Tm−1), let τm = ∆Tm − tm
be the time until Tm. This change of variable transforms equation (9) into another one associated with
an initial value problem. More precisely, the mortgage value to the lender during month m, V (τm, H, r),
without including the insurance the lender has on the loan, satisfies the PIDE

−∂τmF +
1
2
σ2
HH

2∂HHF + ρσHσrH
√
r∂HrF +

1
2
σ2
rr∂rrF

+(r − δ − λ̃κ̃)H∂HF + κ(θ − r)∂rF − (r + λ̃)F + λ̃

∫ ∞
−∞

F (τm, H exp(y), r)ν(y)dy = 0

(12)

for 0 ≤ τm ≤ ∆Tm, 0 ≤ H < ∞, 0 ≤ r < ∞. We clarify a certain abuse of notation: if F denotes the
solution of (9) and F the solution of (12) then F (τm, H, r) = F (Tm − τm, H, r).
Next, we will take into account the prepayment and default options. The option to default only happens
at payment dates when the borrower does not pay the monthly amount MP . The option to prepay can
be exercise at any time during the life of the loan. If the borrower fully amortizes the mortgage at time
τm by paying the amount (which includes the total remaining debt plus an early termination penalty):

TD(τm) = (1 + Ψ)(1 + c(∆Tm − τm))P (m− 1), (13)

where Ψ is the prepayment penalty factor.

Hereafter we denote by V , I and CI the functions defining the values of the mortgage, the insurance and
the coinsurance, respectively. Clearly, they can be considered as particular cases of assets depending on
interest rate and house price. The option of early prepayment implies that V satisfies a complementarity
problem associated to the PIDE, while C and CI satisfy a PIDE with the appropriate conditions at
monthly payment dates.

The mortgage pricing problem starts from the value of the mortgage at maturity (t = TM ), just before
the last payment, given by

V (τM = 0, H, r) = min(MP,H) (14)

while at the other payment dates, it is given by

V (τm = 0, H, r) = min(V (τm+1 = ∆Tm+1, H, r) +MP,H), (15)

where 1 ≤ m ≤M − 1.

If the borrower defaults, which occurs when the mortgage value is equal to the house value, the lender
will lose the promised future payments. Then, the lender might have taken an insurance against default
which would cover a fraction of the loss associated with default. This asset has no value for the borrower.
Actually, it is part of the lender’s portfolio, as indicated in [27] this asset adds to the lender’s position
in the contract. In order to obtain the value of the insurance to the lender, denoted by I(τm, H, r),
we must solve equation (12) with suitable payment date conditions. In order to pose them, we assume
that in case of default the insurer accepts to pay a fraction γ of the currently unpaid balance up to a
maximum indemnity, Γ. Therefore, depending on if default occurs or not, the insurance value at the
maturity of the loan is

I(τM = 0, H, r) =


min(γ(MP −H),Γ) (Default)

0 (No default)
(16)

At earlier payment dates, the value of the insurance is

I(τm = 0, H, r) =


min(γ[TD(τm = 0)−H],Γ) (Default)

I(τm+1 = ∆Tm+1, H, r) (No default)
(17)

where 1 ≤ m ≤M − 1.

5



The fraction of the potential loss not covered by the insurance is referred as the coinsurance. At each
payment date, the coinsurance is the difference between the values of the potential loss and the insurance
coverage. In this case, in order to price the coinsurance, CI(τm, H, r), equation (12) must be solved again
with suitable conditions. At maturity, the value of the coinsurance is

CI(τM = 0, H, r) =


max((1− γ)(MP −H), (MP −H)− Γ) (Default)

0 (No default)
(18)

At earlier payment dates, the value of the coinsurance is

CI(τm = 0, H, r) =


max((1− γ)[TD(τm = 0)−H], [TD(τm = 0)−H]− Γ) (Default)

CI(τm+1 = ∆Tm+1, H, r) (No default)
(19)

where 1 ≤ m ≤M − 1.

At origination, the equilibrium condition explained in [7] needs to be satisfied in order to avoid arbitrage.
Formally, this condition states that

V (τ1 = ∆T1, Hinitial, rinitial; Ψ, c) + I(τ1 = ∆T1, Hinitial, rinitial; Ψ, c) = (1− ξ)P (0) (20)

where Ψ is the prepayment penalty and ξ is the arrangement fee. Thus, the determination of the
unknown fixed rate c of the contract solves the nonlinear equation (20) and is obtained by using a secant
variable iterative algorithm, which requires the solution of the problems for V and I from maturity up
to origination date at each iteration. In practice, we observed the convergence of the method for a not
too restrictive choice of the two interest rates for the initialization.

In Section 2.3 we write the problem satisfied by the value of the mortgage, V , while at the beginning
of Section 3 we write the problems satisfied by insurance, I, and coinsurance, CI (after a localization
procedure).

2.3. The free boundary problem under jump-diffusion models

In the presence of jumps for the house value, let us consider the following linear operator:

LV = ∂τm
V − 1

2
σ2
HH

2∂HHV − ρσHσrH
√
r∂HrV −

1
2
σ2
rr∂rrV

−(r − δ − λ̃κ̃)H∂HV − κ(θ − r)∂rV + (r + λ̃)V − λ̃
∫ ∞
−∞

V (τm, H exp(y), r)ν(y)dy.

(21)

So, the free boundary problem associated with the valuation of the mortgage contract can be written
in terms of the linear complementarity problem:

LV ≤ 0, (TD(τm)− V (τm, H, r)) ≥ 0, (LV )(TD(τm)− V (τm, H, r)) = 0. (22)

The option to prepay can be exercised at any time during the lifetime of the mortgage contract (which
exhibits an American or early exercise feature). If V = TD then it is optimal for the borrower to prepay
(prepayment region), otherwise LV = 0 and we are inside the non prepayment region. Note that in this
way we implicitly assume that the holder acts maximizing the mortgage valued to the borrower, so that
the mortgage rate corresponds to the worst case cost of hedging the risk. In practice, banks have their
own pre-payment models, however these models seemed not enough suitable during the recent crisis.
From the point of view of risk management the pre-payment model here considered results the most
useful. However, more recently in [28], the authors develop a new prepayment model which includes
a decision time in the valuation of a fixed rate mortgage: instead of prepaying when V = TD, the
borrower waits until V ≥ TD for the decision time and then prepays. In this case an additional variable
for decision time arises, thus increasing in one time dimension the complexity in the numerical solution.
This approach can be understood as replacing the American call option exercise by a variant of Parisian
call option exercise.
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3. Numerical solution

The PIDE is initially posed on the unbounded domain of positive interest rates and house prices. So,
as in the case without jumps, we approximate it by a bounded domain formulation and we impose
boundary conditions in the new boundaries. Note that the domain of integration in the integral term
also needs to be localized. For this purpose, we introduce the following changes of variables and notation:

x1 =
H

H∞
, x2 =

r

r∞
, x̄ = ln(x1), (23)

where both H∞ and r∞ are sufficiently large suitably chosen real numbers. Let Ω = (0, x∞1 )× (0, x∞2 ),
with x∞1 = x∞2 = 1. Then, let us denote the Lipschitz boundary by Γ = ∂Ω such that Γ =

⋃2
i=1(Γ−i ∪Γ+

i ),
where:

Γ−i = {(x1, x2) ∈ Γ | xi = 0}, Γ+
i = {(x1, x2) ∈ Γ | xi = x∞i }, i = 1, 2.

Next, taking into account the new variables we write the equation (12) in divergence form in the
bounded domain. As in [27], we consider the case ρ = 0. Thus, the initial-boundary value problem for
the insurance and coinsurance can be written in the form:

Find J : [0,∆Tm]× Ω→ R such that

∂τm
J + ~v · ∇J −Div(A∇J) + lJ − λ̃

∫ ymax

ymin

J̄(τm, x̄1 + y, x2)ν(y)dy = f in (0,∆Tm)× Ω ,

(24)
∂J

∂x1
= g1 on (0,∆Tm)× Γ+

1 ,

(25)
∂J

∂x2
= g2 on (0,∆Tm)× Γ+

2 ,

(26)

where J = I, CI, J̄(τm, x̄1 +y, x2) = J(τm, exp(x̄1 +y), x2) and the appropriate initial condition for each
month is given by the equations (16) and (17) when we are pricing the insurance and by the equations
(18) and (19) in the case of valuing the coinsurance.

Furthermore, for the complementarity problem associated with the mortgage value during month m, we
can pose the following mixed formulation:

Find V : [0,∆Tm]× Ω→ R and Q : [0,∆Tm]× Ω→ R satisfying the PIDE

∂τm
V + ~v · ∇V −Div(A∇V ) + lV − λ̃

∫ ymax

ymin

V̄ (τm, x̄1 + y, x2)ν(y)dy +Q = f in (0,∆Tm)× Ω ,

(27)

the complementarity conditions

V ≤ TD, Q ≥ 0, Q(TD − V ) = 0 in (0,∆Tm)× Ω, (28)

where Q is the Lagrange multiplier (slack variable) associated to the inequality constraints in (22).
Thus, when Q > 0 we are in the prepayment region. Moreover, we consider the boundary conditions

∂V

∂x1
= g1 on (0,∆Tm)× Γ+

1 , (29)

∂V

∂x2
= g2 on (0,∆Tm)× Γ+

2 , (30)
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where V̄ (τm, x̄1 + y, x2) = V (τm, exp(x̄1 + y), x2) and the initial condition for each month is given by
the equations (14) or (15).

For both problems, the involved data is defined as follows

A =
(

1
2σ

2
Hx

2
1 0

0 1
2σ

2
r
x2
r∞

)
, ~v =

(
(σ2
H − x2r∞ + δ + λ̃κ̃)x1

( 1
2σ

2
r − κ(θ − x2r∞))/r∞

)
(31)

l = x2r∞ + λ̃, f = 0, g1 = 0, g2 = 0. (32)

Remark 3.1. Note that the differential part of the PIDE is defined in the domain [0, x∞1 ] × [0, x∞2 ],
using the discrete grid 0 = x10 , x11 , · · · , x1q

= x∞1 . Since ln(x10) = −∞, we choose ymin = ln(x11) and
ymax = ln(x1q

) as it is proposed in [15].

3.1. Time discretization

For the time discretization we consider the method of characteristics. A first order version of this method
has been introduced in [16] and [4], for example. This version has been used in [29] for vanilla options
and in [14] for American Asian options with jumps.

First, we define the characteristics curve through x = (x1, x2) at time τ̄m, X(x, τ̄m; s), which satisfies:

∂

∂s
X(x, τ̄m; s) = ~v(X(x, τ̄m; s)), X(x, τ̄m; τ̄m) = x. (33)

For N > 1 let us consider the time step ∆τm = ∆Tm/N and the time mesh points τnm = n∆τm,
n = 0, 1

2 , 1,
3
2 , . . . , N . The material derivative approximation by characteristics method is given by:

DF

Dτm
=
Fn+1 − Fn ◦Xn

∆τm
,

where F = CI, I , V and Xn(x) := X(x, τn+1
m ; τnm). In view of the expression of the velocity field the

components of Xn(x) can be analytically computed:

Xn
1 (x) = x1 exp

(
−
(
σ2
H + δ +

σ2
r

2κ
− θ + λ̃κ̃

)
∆τm

)
×

exp
((
−x2r∞
κ

− σ2
r

2κ2
+
θ

κ

)
(exp(−κ∆τm)− 1)

)
Xn

2 (x) =
(
− σ2

r

2κr∞
+

θ

r∞

)
(1− exp(−κ∆τm)) + x2 exp(−κ∆τm)

In the present work we use a more recent version of the method of characteristics combined with
a Crank-Nicolson technique for time discretization. The analysis of the method for a more general
equation has been addressed in [5, 6]. More precisely, we consider a Crank-Nicolson scheme around(
X(x, τn+1

m ; τm), τm
)

for τm = τ
n+ 1

2
m . So, for n = 0, . . . , N − 1, the time discretized equation for

F = I, CI, V and P = 0 can be written as follows:

Find Fn+1 such that:

Fn+1(x)− Fn(Xn(x))
∆τm

− 1
2
Div(A∇Fn+1)(x)− 1

2
Div(A∇Fn)(Xn(x))

+
1
2

(l Fn+1)(x) +
1
2

(l Fn)(Xn(x))− λ̃
∫ ymax

ymin

F̄n(x̄1 + y, x2)ν(y)dy = 0,

(34)
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where F̄n(x̄1+y, x2) = Fn(ex̄1+y, x2). Note that the integral term is evaluated at the previous time step,
thus avoiding the presence of a full matrix in the linear systems associated with the fully discretized
problems [11]. After some computations, we can write a variational formulation for the semi-discretized
problem as follows:

Find Fn+1 ∈ H1(Ω) such that, for all Ψ ∈ H1(Ω):∫
Ω

Fn+1(x)Ψ(x)dx +
∆τm

2

∫
Ω

(A∇Fn+1)(x)∇Ψ(x)dx +
∆τm

2

∫
Ω

lFn+1(x)Ψ(x)dx =∫
Ω

Fn(Xn(x))Ψ(x)dx− ∆τm
2

∫
Ω

(∇Xn)−1(x)(A∇Fn)(Xn(x))∇Ψ(x)dx

−∆τm
2

∫
Ω

lFn(Xn(x))Ψ(x)dx +
∆τm

2

∫
Γ

g̃n(x)Ψ(x)dAx

+
∆τm

2

∫
Γ1+

ḡn+1
1 (x)Ψ(x)dAx +

∆τm
2

∫
Γ2+

ḡn+1
2 (x)Ψ(x)dAx

−∆τm
2

∫
Ω

Div((∇Xn)−T (x))(A∇Fn)(Xn(x))Ψ(x)dx

+∆τmλ̃
∫

Ω

∫ ymax

ymin

F̄n(x̄1 + y, x2)ν(y)dyΨ(x)dx (35)

where∇Xn can be analytically computed, ḡn+1
1 (x) = gn+1

1 (x)a11(x) = 0, ḡn+1
2 (x) = gn+1

2 (x)a22(x) = 0,

g̃n(x) :=



−
[
(∇Xn)−T

]
21

(x)a22(Xn(x)) ∂F∂x2
(Xn(x)) on Γ−1

0 on Γ−2[
(∇Xn)−T

]
22

(x)a22(Xn(x))gn2 (Xn(x)) on Γ+
2[

(∇Xn)−T
]
11

(x)a11(Xn(x))gn1 (Xn(x))

+
[
(∇Xn)−T

]
21

(x)a22(Xn(x)) ∂F∂x2
(Xn(x)) on Γ+

1

(36)

and

Div((∇Xn)−T (x)) =

(
0

r∞
κ

(1− exp(κ∆τm))

)
. (37)

3.2. Spatial discretization and nonlinear terms

For spatial discretization we consider piecewise quadratic Lagrange finite elements. For the numerical
integration of the terms appearing in this finite elements discretization, we use a 9-points quadrature
formula which implies a lumped mass matrix computation when dealing with this term.

In order to deal with the nonlinearities in the free boundary problem associated with prepayment
option, we apply to the mixed formulation (27)-(30) the Augmented Lagrangian Active Set (ALAS)
algorithm proposed in [18] and explained in detail in [7] for the case without jumps in the house price.
In summary, the ALAS iterative method computes sequences that converge to the mortgage value V , the
Lagrange multiplier Q and the prepayment and non-prepayment regions, thus allowing also to identify
an approximation to the optimal prepayment boundary.

3.3. Approximation of the integral term

In order to approximate the integral term that appears in the PIDE due to the presence of jumps, we use
a suitable numerical integration procedure. More precisely, we use the classical composite trapezoidal
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rule with m+ 1 points in the following way:∫ ymax

ymin

F̄n(x̄1 + y, x2)ν(y)dy ≈

h

2

F̄n(x̄1 + ymin, x2)ν(ymin) + F̄n(x̄1 + ymax, x2)ν(ymax) + 2
m−1∑
j=1

F̄n(x̄1 + kj , x2)ν(kj)

 ,
where kj = ymin + jh for j = 1, ...,m− 1 and h =

ymax − ymin
m

.

4. Numerical results

In order to solve the fixed rate mortgage valuation problem, we need to specify a set of parameters
related to the stochastic models, contract characteristics and insurance. All of them are based on the
existent literature (see [1] and [27], for example) and are shown in Table 1. Moreover, concerning the
numerical methods employed to solve the problem, we consider the parameters collected in Table 2. In
order to compare the results obtained with Merton and Kou models we need a certain matching between
the density functions of the normal distribution (Merton) and of the double-exponential distribution
(Kou). For this purpose, we consider the parameters involved in the jump-diffusion models which are
proposed in [15]. For a more realistic application, these parameter could be estimated by analogous
techniques to those ones proposed in [8] form suitable market data.

In Tables 3, 4 and 5 we show the values of the mortgage, the insurance and the coinsurance taking
into account jumps for the house value and when the loan term is 15 years. The values were computed
for different initial interest rates (spot interest rates) and arrangement fees. In Table 3 we consider
Merton jump-diffusion model for house price dynamics, in Table 4 we use Kou jump-diffusion process
and in Table 5 we assume a geometric Brownian motion (which does not allow jumps in the prices).
As expected, in the presence of jumps the value of the contract is lower than without jumps whereas
the value of the insurance and the coinsurance are higher. Note that the presence of jumps increases
uncertainty in the house price, thus depreciating the mortgage price.

Figures 2, 3 and 4 illustrate the free boundary at origination with Merton and Kou jump-diffusion
models and without jumps in the house price, respectively. We take into account the fixed parameters
of the model shown in Table 1. In this case, the interest rate volatility is 10%, the house price volatility
is 5%, the maturity of the loan is 25 years and the spot rate is 8%. Under Merton model, the obtained
adjusted fixed rate is 14.5892% whereas with Kou model this rate is 14.3926%. When using a geometric
Brownian motion for house price dynamics the adjusted rate falls to the significantly lower value of
9.3969%. In all figures the prepayment (coincidence) region appears in red and the non prepayment
(non coincidence) region is shown in blue. Note that prepayment region is located in the part of the
domain with lower rates and higher house prices, which results reasonable from the financial point of
view: in this part of the computational domain it is better to fully prepay the loan and refinance at
lower market interest rates if necessary. We note that the prepayment region is nearly rectangular in
the case without jumps while it is nearly elliptic in both jump-diffusion models.

Concerning the numerical convergence of the Crank-Nicolson characteristics discretization method, first
note that the numerical analysis for the initial boundary value problem under rather general conditions
on a PDE operator has been developed in [5, 6], where second order convergence in space and time is
theoretically proved. The order of the method for a complementarity problem and/or PIDE being an
open problem. However, in the present work we need to combine the method with additional numerical
techniques: ALAS algorithm for the complementarity condition and composite trapezoidal rule for the
nonlocal term, so that the second order convergence is lost as illustrated by the forthcoming tables.
However, we prefer to maintain Crank-Nicolson characteristics which a bit better accurate than a possible
alternative fully implicit method.

In order to illustrate the convergence properties, we evolve in time from the mortgage maturity (T = 15)
until the first day of the last moth (i.e. t0 = 14 + 11/12(≈ 14.92)) so that we just test the behaviour
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of the method for the PIDE complementarity problem. More precisely, in the forthcoming tables we
consider the values at the point (t0, H, r) = (t0, 83333, 0.13) which is located outside the prepayment
region. In Table 6 we show the data of the quadrangular finite element meshes.

Following the ideas in [14], we compute the following indicator of order convergence

R =
V (h/2)− V (h)
V (h/4)− V (h/2)

,

the parameter h just indicating that we start with a level of refinement in time and space and divide
by two both the time and finite element mesh steps to get the results for h/2. Thus, R = 2 corresponds
to linear convergence while R = 4 corresponds to quadratic convergence. Table 7 shows the obtained
results for Crank-Nicolson while Table 8 exhibits the ones for the fully implicit method, thus illustrating
that only first order is achieved in both cases with a bit better results in the first case.

5. Conclusions

In this paper we consider the valuation of a fixed rate mortgage with prepayment and default options
and where the house value is supposed to be driven by a jump-diffusion process. The assumption of
jump-diffusion models instead of pure diffusion ones (GBM process) seems more reasonable under certain
situations in real estate markets and has not been previously addressed in the literature for fixed rate
mortgage pricing model with two underlying stochastic factors. More precisely, we assume that the jumps
follow Merton and Kou models, although it can be extended to other Levy processes. In both cases, a
set of PIDE problems arises and we pose the models to price the mortgage value and other components,
such as the insurance and the coinsurance. Next, we propose appropriate numerical methods based on
Lagrange-Galerkin formulations to solve the problems combined with the ALAS algorithm to deal with
the non-linearities associated with the free boundary problem that appears in the contract pricing due to
the prepayment option. Moreover, the integral term that arises due to the presence of jumps is explicitly
treated. Furthermore, we adjust the fixed rate of the mortgage by using an iterative process.

For both jump-diffusion models in the house price, we show some numerical examples to illustrate the
behaviour of the methods and the quantitative and qualitative properties of the solutions, as well as the
difference with respect to the pure diffusion model. In particular, if we assume jump-diffusion dynamics
for the house value then the contract price decreases and the insurance and coinsurance prices increase,
as expected. Actually, the same qualitative behaviour is observed in [8]. Finally, we include figures which
represent the optimal prepayment boundary separating the region where it is optimal to prepay the loan
from the one where it is not.
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Figure 1: U.S. Time Series of new home price returns for single family mortgage 1986-2008

House price and interest rate models data
Steady state spot rate, θ 10 %

Speed of reversion, κ 25 %
House service flow, δ 7.5%

Correlation coefficient, ρ 0
Parameter of Poisson process, λ̃ 0.1
Mean of jump size (Merton), µj -0.1

Standard deviations of jump size (Merton), γj 0.45
Probability of upward jump (Kou), p 0.3445

Parameter (Kou), α1 3.0465
Parameter (Kou), α2 3.0775

Contract specifications
Initial value of the house, Hinitial 100000e

Ratio of the loan to value 95%
Initial estimate for contract rate, c0 10%

Prepayment penalty, Ψ 5%
Insurance

Guaranteed fraction of total loss, γ 80%
Cap, Γ 20%Hinitial

Table 1: Fixed parameters in the mortgage valuation model
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Computational domain
H∞ 200000e
r∞ 40 %

Finite elements mesh data
Number of elements 576

Number of nodes 2401
Time discretization

Time steps per month 30
ALAS algorithm

Parameter β 10000

Table 2: Numerical resolution parameters

Loan spot rate ξ Contract rate Contract value Insurance Coinsurance
(years) r(0) c V I CI

15 8% 0% 14.4301% 91730 3270 2402
0.5% 14.3121% 91282 3243 2402
1% 14.1966% 90840 3210 2402

1.5% 14.0815% 90396 3179 2402
10% 0% 15.4554% 92050 2950 2190

0.5% 15.3245% 91588 2937 2190
1% 15.1965% 91132 2918 2190

1.5% 15.0698% 90674 2901 2188
12% 0% 16.5677% 92360 2640 1992

0.5% 16.4168% 91892 2633 1998
1% 16.2706% 91428 2622 1998

1.5% 16.1271% 90960 2615 1998

Table 3: Contract rate, mortgage contract, insurance and coinsurance values for σr = 5%, σH = 5%
different contract specifications under Merton jump-diffusion model for the house value

Loan spot rate ξ Contract rate Contract value Insurance Coinsurance
(years) r(0) c V I CI

15 8% 0% 14.2355% 92090 2910 2092
0.5% 14.1191% 91647 2878 2090
1% 14.0045% 91202 2848 2090

1.5% 13.8920% 90759 2816 2090
10% 0% 15.2618% 92404 2596 1909

0.5% 15.1339% 91949 2576 1910
1% 15.0078% 91492 2558 1910

1.5% 14.8838% 91036 2539 1908
12% 0% 16.3824% 92714 2286 1744

0.5% 16.2317% 92244 2281 1744
1% 16.0861% 91778 2272 1748

1.5% 15.9438% 91314 2261 1746

Table 4: Contract rate, mortgage contract, insurance and coinsurance values for σr = 5%, σH = 5%
and different contract specifications under Kou jump-diffusion model for the house value
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Loan spot rate ξ Contract rate Contract value Insurance Coinsurance
(years) r(0) c V I CI

15 8% 0% 9.0839% 94549 449 112
0.5% 8.9911% 94116 410 103
1% 8.8992% 93663 386 96

1.5% 8.8119% 93230 345 86
10% 0% 10.0782% 94656 343 84

0.5% 9.9696% 94208 317 79
1% 9.8634% 93764 288 72

1.5% 9.7579% 93316 260 66
12% 0% 11.1662% 94691 309 76

0.5% 11.0389% 94274 249 62
1% 10.9203% 93870 181 45

1.5% 10.8006% 93422 154 38

Table 5: Contract rate, mortgage contract, insurance and coinsurance values for σr = 5%, σH = 5%
different contract specifications with geometric Brownian motion for the house value (without jumps)

Figure 2: Free boundary at origination when Merton jump-diffusion model for the house value is con-
sidered

N. Elem N. Nodes
Mesh 8 64 289

Mesh 12 144 625
Mesh 24 576 2401
Mesh 48 2304 9409
Mesh 96 9216 37249

Table 6: FEM meshes data
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Figure 3: Free boundary at origination when Kou jump-diffusion model for the house value is considered

Figure 4: Free boundary at origination when a geometric Brownian motion for the house value is con-
sidered (model without jumps)

Time steps FE Mesh Value R
15 8 1330.361966 -
30 12 1330.355001 -
60 24 1330.353948 6.619062
120 48 1330.353596 2.982661
240 96 1330.353423 2.039254

Table 7: Illustration of order of convergence at the point (t0, H, r) = (t0, 83333, 0.13) for the Crank-
Nicolson characteristics method
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Time steps FE Mesh Value R
15 8 1330.371808 -
30 12 1330.359937 -
60 24 1330.356419 3.386653
120 48 1330.354837 2.218456
240 96 1330.354045 1.997664

Table 8: Illustration of order of convergence at the point (t0, H, r) = (t0, 83333, 0.13) for the fully implicit
characteristics method
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