

This is an ACCEPTED VERSION of the following published document:

Brisaboa, N.R., Gómez-Brandón, A., Martínez-Prieto, M.A., Paramá, J.R. (2018). 3DGraCT: A
Grammar-Based Compressed Representation of 3D Trajectories. In: Gagie, T., Moffat, A.,
Navarro, G., Cuadros-Vargas, E. (eds) String Processing and Information Retrieval. SPIRE
2018. Lecture Notes in Computer Science(), vol 11147. Springer, Cham.
https://doi.org/10.1007/978-3-030-00479-8_9

Link to published version: https://doi.org/10.1007/978-3-030-00479-8_9

General rights:

This version of the manuscript has been accepted for publication, after peer review and is
subject to Springer Nature’s AM terms of use, but is not the Version of Record and does
not reflect post-acceptance improvements, or any corrections. The Version of Record is
available online at: https://doi.org/10.1007/978-3-030-00479-8_9

https://doi.org/10.1007/978-3-030-00479-8_9
https://doi.org/10.1007/978-3-030-00479-8_9
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/978-3-030-00479-8_9

3DGraCT: A Grammar-based Compressed
Representation of 3D Trajectories ⋆

Nieves R. Brisaboa1, Adrián Gómez-Brandón1, Miguel A. Mart́ınez-Prieto2,
and José R. Paramá1

1 Universidade da Coruña, CITIC, Spain
{brisaboa, adrian.gbrandon, jose.parama}@udc.es

2 Universidad de Valladolid, Spain, migumar2@infor.uva.es

Abstract. Much research has been published about trajectory manage-
ment on the ground or at the sea, but compression or indexing of flight
trajectories have usually been less explored. However, air traffic manage-
ment is a challenge because airspace is becoming more and more con-
gested, and large flight data collections must be preserved and exploited
for varied purposes. This paper proposes 3DGraCT, a new method for
representing these flight trajectories. It extends the GraCT compact data
structure to cope with a third dimension (altitude), while retaining its
space/time complexities. 3DGraCT improves space requirements of tra-
ditional spatio-temporal data structures by two orders of magnitude,
being competitive for the considered types of queries, even leading the
comparison for a particular one.

1 Introduction

Geopositioned data is ubiquitously and continuously generated to describe dif-
ferent types of trajectories; e.g. routes of professional transportation vehicles or
our daily running paths. Obviously, large and varied trajectory datasets are be-
ing consolidated, and they are exploited for different and innovative purposes.
Disregarding their final application, managing trajectory datasets poses many
challenges that have attracted much research efforts.

A prominent domain that demands efficient trajectory management is Air
Traffic Management (ATM). ATM systems analyze very large flight-related data-
sets to make decisions to improve air traffic performance, reducing costs, or mak-
ing safer and environmentally friendly airspaces. Currently, ATM services are
evolving to support and leverage “next generation” technologies like Automatic
Dependent Surveillance-Broadcast (ADS-B). ADS-B is a surveillance technology
in which aircrafts determine flight parameters (latitude, longitude, altitude, etc)
via navigation systems, and broadcast them to ground stations, that then de-
liver this data to ADS-B providers; e.g. the OpenSky Network [16], that is the
provider of the ADS-B datasets used in our experiments.

⋆
This work was funded in part by EU H2020 MSCA RISE BIRDS: 690941; MINECO-AEI/FEDER-
UE: TIN2016-78011-C4-1-R; MINECO-CDTI/FEDER-UE CIEN IDI-20141259; MINECO-
CDTI/FEDER-UE CIEN IDI-20150616; MINECO-CDTI/FEDER-UE INNTERCONECTA ITC-
20161074; Xunta de Galicia/FEDER-UE ED431C 2017/58 and ED431G/01.

ADS-B has been progressively adopted by many aircraft manufacturers, and
more ground stations have been deployed around the world. It has increased
ADS-B coverage, and also the size of ADS-B datasets, whose storage and query-
ing has become more difficult. Storage issues were first addressed using colum-
nar compression [20, 22]. Although their numbers are moderately successful, the
resulting representations can not be efficiently queried. More recently, a com-
pressed index for ADS-B (called ADS-BI) has been proposed [21]. It performs
block partitioning and stores descriptive metadata about the block to enable
some types of queries. Block contents are then encoded by columns using uni-
versal compression (e.g. gzip or p7zip), reporting competitive numbers. Although
ADS-BI resolves some type of queries by time or 2D-position, it does not support
altitude-based searches, which is highly desirable for ATM systems; for instance,
when a controller looks for aircrafts flying at certain flight level in a given region.

Therefore, our main objective is to propose a data structure that allows 3D
trajectories to be effectively compressed, and searches to be performed by time
and/or any of the three positional dimensions. It is not a new problem [7], and
some researches have been previously published about 2D (latitude, longitude),
and 3D (including altitude) trajectory management. Data structures like 3DR-
tree [19], HR-tree [13], the MVR-tree [17], or PIST [2] have been successfully
used for many years, but currently show scalability issues when they are used to
manage larger trajectory datasets. The Douglas-Peucker algorithm [8] has been
used to make trajectories more compact; other examples are dead reckoning [18],
TrajStore [6] and Trajic [15].

Our approach, called 3DGraCT, proposes a new compact data structure that
stores and indexes 3D trajectories in compressed space. 3DGraCT enhances
GraCT [14] to manage altitude information, and also to enable query resolu-
tion by this dimension. Our experiments, using different-size ADS-B datasets,
show that 3DGraCT improves space requirements of traditional spatiotemporal
data structures by two orders of magnitude, and competes with them in query
performance, leading the comparison for queries asking for large time intervals.

2 Background

k2-tree. The k2-tree [5] is conceptually an unbalanced k2-ary tree constructed
from a binary matrix by recursively subdividing the matrix into k2 submatrices
of the same size, if k = 2, it is a space/time efficient version of a region quadtree.
First, the original matrix is divided into k2 submatrices of size n2/k2, being n×n
the size of the matrix. Each of these submatrices generates a child of the root
node whose value is 1, if there is at least one 1 in the cells of that submatrix, and 0
otherwise. The subdivision continues recursively for each child with value 1 until
a submatrix full of 0s is found or the cells of the original matrix (i.e., submatrices
of size 1 × 1) ar reached. Figure 1 shows an example of this subdivision (left)
and the resulting conceptual k2-ary tree (right up) for k = 2.

The k2-tree is stored using two bitmaps T and L (see Figure 1). T stores
all the bits of the k2-tree, except those in the last level, following a level-wise

1

1

1

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 10

1 0 0 0 1 01 1

10 00

1 0 0 0

10 00 10 00 10 00

1 0 00 10 00 10 00

T: 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

L: 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

Fig. 1. Example of a binary matrix (left), the k2-tree conceptual representation (top
right), and the compact representation (bottom right), where k = 2.

Fig. 2. Example of Re-Pair compression.

traversal: first the k2 binary values of the children of the root node, then the
values of the second level, and so on. L stores the last level of the tree.

k3-tree. The k2-tree can be generalized to deal with a three-dimensional binary
cube, instead of a two-dimensional binary matrix. It can be trivially done by ex-
tending the space partitioning, while maintaining the representation techniques
used for k2-trees. Thus, each 1 in the binary cube of the k3-tree [1] represents
a tuple ⟨x, y, z⟩, where (x, y) are the coordinates in the 2D space, and z is the
altitude. It is possible to obtain efficiently the value of a cell, a cube, or slices of
the cube, by just performing rank and select operations [10] over T and L.

Re-Pair. Re-Pair [12] compresses a sequence by recursively substituting pairs
of symbols by a new one. Given a sequence of integers I (called terminals) the
compression process is as follows: (1) it obtains the most frequent pair of integers
ab in I; (2) it adds rule W → ab to dictionary R, where W is a new symbol not
present in I (called a non-terminal); (3) every occurrence of ab in I is replaced
by W , and (4) it repeats steps 1-3 until all pairs in I appear only once (see
Figure 2). The resulting sequence after compressing I is called C.

GraCT. GraCT [4] is a compact data structure to represent and query trajec-
tories of moving objects in a free space of two dimensions. It requires that all
objects declare their positions at regular time instants (e.g. each minute), but
interpolation is used when an object does not inform its position in a given in-
stant. GraCT uses a raster model to represent the space; i.e. it is divided into
cells (squares) of a fixed size, and it is assumed that objects fit in one of these

cells. The size of the cells and the time elapsed between consecutive instants are
parameters that can be adapted to particular cases.

To store absolute positions of all objects, every d time instants, GraCT uses
a data structure based on the k2-tree, which is called snapshot. The distance,
d, between snapshots is another parameter of GraCT. Between two consecutive
snapshots, the trajectory of each moving object is represented as a log, which is
an array of relative movements with respect to the previous time instant.

3 3DGraCT

3DGraCT proposes an extension of GraCT to three dimensions, so the space is
divided into cells (small cubes) of fixed length, that form a bigger cube.

Snapshots. Each d time instants, there is a snapshot Sk, where k is the time
instant represented by the snapshot. These snapshots are organized as k3-trees.
A leaf of the k3-tree set to 1 (i.e., a 1 in the bitmap L) means that one or
more aircrafts3 are placed in the corresponding cell, but the snapshot needs to
determine which objects are located in that cell. Following the order of 1s in
L, an array of object identifiers (aircrafts) holds that information. This array is
denoted as perm, since it is a permutation [11]. An additional bitmap, called Q,
is aligned with perm. It marks with 0 that the aligned object identifier in perm
is the last object in the corresponding cell, and 1 means that more objects are
located in that cell.

Figure 3 shows an example of snapshot.4 The two matrices models the first
two slices of an 8×8×8 cube representing the 3D space. Each slice contains the
horizontal positions of all aircrafts flying at a given altitude. Each matrix shows
object identifiers at certain positions, and the corresponding k3-tree encodes this
information by assuming that no objects are contained in the remaining slices.
Each non-empty position in matrix corresponds to a bit set to 1 in L. The object
identifiers corresponding to the first 1 in L (which is at position 3 of L) are stored
starting at position 1 of perm. Q is then accessed to count the number of objects
that are located in this cell: a sequential search is performed from Q[1] until the
first 0 (located at Q[2]). Thus, there are two objects in the inspected cell. The
corresponding object identifiers are retrieved from perm[1]=3 and perm[2]=6.
Now, in position 3 of perm starts the object identifiers corresponding to the
second 1 in L, and so on.

These structures allow 3DGraCT to address two types of queries:

– Find the objects in a box of the 3D space. The k3-tree is traversed from the
root to the leaves to obtain positions n1, n2, . . . nm, in L, that corresponds to
positions marked with 1 in the queried box. For each ni, we count the number
of 1s in the array of leaves L until the position ni; it obtains the number of

3 From now on, we will refer to them simply as objects or moving objects.
4 Note that only shaded structures are used to encode the snapshot, the other ones
are used for illustration purposes.

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

10 10

10000000

0 0 0 1 1 0 0 0

0 0 0 0

00 1 1 0000

0 0 1 0 00 0 1 1 0 0 000 0 0

T: 010100001000000000110000

63

45

2

1

8

L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0

Q

perm

1 2 3 4 5 6 7

3 6 8 4 5 1 2

1 0 0 1 0 0 0

1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

 1

 2

 3

 4

 5

 6

 7

Fig. 3. The position of objects in the 3D space (top left), the conceptual k3-tree (top
right), and the snapshot (bottom).

non-empty leaves up to the nth
i leaf, x = rank1(L, ni). Then, the position of

the (x− 1)th 0 in Q is obtained, which indicates the last bit of the previous
leaf (with objects), and by adding 1, we get the first position in perm with
the objects of the leaf corresponding to ni, p = select0(Q, x − 1) + 1. From
p, object identifiers aligned with 1s in Q are retrieved, until a 0 is reached
(it marks the last object identifier located in a leaf).

– Find the position in the 3D space of a given object. The desired object identi-
fier is first searched in perm. Our permutation is enhanced with shortcuts to
avoid sequential searches. Assuming the object identifier is located at posi-
tion k, the following step looks for its corresponding position in L. We calcu-
late the number of leaves before the object at perm[k]: y = rank0(Q, k − 1).
Then we find in L the position of the (y + 1)th 1, that is, select1(L, y + 1).
This value is used to traverse the k3-tree upwards in order to obtain the cell
position in the 3D space, and thus the horizontal position and altitude of
the object.

Log of relative movements. The use of a snapshot for encoding each time
instant would consume too much space, instead, between snapshots, 3DGraCT
stores for each aircraft the relative movements with respect to the last known
position. A relative movement consists of 3 values, ⟨x, y, z⟩, which are the number
of cells of difference between the new position and the last known position, in
each dimension. Probably, ⟨x, y, z⟩ will be numbers with a small magnitude, as
the differences between consecutive time instants cannot be very big. Instead of
using 32 bits for each value, we fit the three values into a 32-bit integer using 12
bits for the x and y values and 8 bits for the z component. In Figure 4(a), we

can see a relative movement of 1 cell up on the y-coordinate, 3 cells to the right
on the x-coordinate and 2 cells down on the z-coordinate. Below, observe that
those values are encoding using Zig-Zag encoding (−1 → 1, 1 → 2,−2 → 3, . . .),
and then they are packed in a 32-bit integer.

Obviously, this works well as long as the assumption that there are small
differences between two consecutive positions is maintained. However, there may
be periods of time without information about the positions of the aircraft (for
example, the aircraft is in an area without reception stations). In those cases,
the 32-bit integer comprising ⟨x, y, z⟩ would not be enough. Observe that, to
save space, our method does not explicitly store the time instant of a recorded
position, it can be derived from its position inside the log. Therefore, 3DGraCT
requires a method to manage that disappearances/appearances.

Between two consecutive snapshots Sk and Sk+d, each object is represented
by a log, Lk,k+d(idj), where idj is the identifier of the object. It is a sequence of
codewords of the following types: (1) an integer encoding a relative movement;
(2) Disappearance (D) codeword, which means that we have no information
about the position object idj from one time instant of Lk,k+d(idj) until its end;
(3) Absolute appearance (AA), which means that we have no information about
the position of idj from the beginning of Lk,k+d(idj) until a time instant cov-
ered by Lk,k+d(idj), where that information appears; (4) Relative disappearance,
which means that the information about the position of idj disappears in a time
instant of Lk,k+d(idj), but reappears in a time instant of the same portion of
the log.

In order to maintain the synchronization of the sequences of values in
Lk,k+d(idj), the appearances and disappearances require the storage of their
corresponding time instant. In addition, they also require the storage of the
absolute position of the appearance/disappearance. The relative disappearances
imply the storage of the number of time instants they lasted and the relative
movement with respect to the last known position.

In Figure 4(b), it is shown an example. The relative movements are depicted
with the three relative displacements ⟨z, x, y⟩5. The array D stores the duration
of a relative disappearance and the exact time instant of absolute appearances
and disappearances. For example, in L0,4(1), there is a relative disappearance
that lasts two instants, and in L0,4(7), the object appears at time instant 3. In
addition, array P stores the relative movements of relative disappearances and
the absolute position of absolute appearances or disappearances. For example,
in L0,4(1), the ⟨1, 4, 1⟩ tuple in P0,4(1) means that the object reappeared 1
cell upwards in the z-coordinate, 4 cells to the right in the x-coordinate, and 1
cell upwards in the y-coordinate. In L0,4(7), the object appears in the absolute
position (0, 5, 2) (see P0,4(7)). In the figure, the values are aligned to their
corresponding time instants, but this is only for illustration purposes, thanks
to the array D, for one object, all the logs are stored as a sequence. D and P are
compressed with DACs [3], a compressor for sequences of integers that provides

5 ⟨z, x, y⟩ notation indicated that these three values are packed in a 32-bit integer.

L0,4(1):

t1 t2 t3 t4

RM

L0,4(2):

L0,4(3):

L0,4(4):

L0,4(5):

L0,4(6):

2

1

3

2

D0,4(1):

D0,4(2):

D0,4(4):

D0,4(5):

P0,4(1):

D0,4(3): 3 (0,7,6)P0,4(3):

1D0,4(6): 1

0

0

0

0

0

10

0

0

1

-2

3

-2 1 3

8 bits 12 bits 12 bits

50,339,846
32bits

3 2 6

8 bits 12 bits 12 bits

 011

Z X Y

 001

 001 001

 010 010 D

 010 RNM 010

RNM 001

 111 D

RNM 111RNM 010

L0,4(7): AA 122

L0,4(8): 020

 141

 111

D

(2,6,2)P0,4(4):
0

3D0,4(7):
0

(0,5,2)P0,4(7):
0

2D0,4(8):
0

(1,6,7)P0,4(8):
0

(a) (b)
Fig. 4. The encoding of relative movements (left) and logs of objects (right).

direct access to any position without the need of decompressing the previous
numbers.

Compressing the log. Logs represent an important saving in space with
respect to snapshots, but it is possible to obtain additional compression taking
advantage the following fact: aircrafts spend most of the time following the
same course at a constant speed. This situation will be represented in the logs
as sequences of repetitive numbers, that is, the same relative displacements
with respect to the previous time instant. These series of similar numbers are
compressed very efficiently using a grammar compressor, such as Re-Pair.

To improve the query processing, the Re-Pair rules in 3DGraCT are enriched
with additional information. Each rule in R has the following information:
s → a, b,#t, x, y, z,MBB, where: (1) s, a and b are the components of a normal
rule of Re-Pair, (2) #t is the number of instants covered by the rule, (3) ⟨z, x, y⟩
are the relative coordinates of the final position of the object after the application
of the rule (that is, the displacement considering (0,0,0) the initial position
before the application of the rule) and, (4) MBB is the Minimum Bounding
Box enclosing the movements of the rule. MBB is represented by six coordinates
(z1, x1, y1, z2, x2, y2), which are the points at the ends of a diagonal of the box.

For example, in Figure 4, in L0,4(4), the two ⟨1, 1, 1⟩ consecutive relative
movements produce a rule, W → ⟨1, 1, 1⟩, ⟨1, 1, 1⟩, 2, ⟨2, 2, 2⟩, (0, 0, 0, 2, 2, 2), and
then L0,4(4) = W,D. Thanks to the additional information, the non-terminal
symbols of the logs do not need to be decompressed in many cases. For example,
if we wish to know the position of object 4 at t2, we obtain its absolute position in
the snapshot S0 (Figure 3), which is (0,4,0), and then the first symbol of L0,4(4)
(W) is applied. Since W covers 2 time instants, its application to the position
at t0 produces the position of the object at the queried time instant. For this,
the relative displacement (2, 2, 2) is added to the original position, obtaining the
position (2, 6, 2).

4 Querying

Obtain the position of an object. To obtain the position of an object at
a given time instant tq, first, the algorithm retrieves the position of the object
in the closest snapshot to tq. If the snapshot does not represent tq, then the
algorithm follows the movements through the log until it reaches tq, as it was
explained in the previous section, using the relative coordinates included in the
rules when possible. When the nearest snapshot is located before tq, the process
follows a forward traversal of the log, otherwise, the process performs a backward
traversal.

Obtain the trajectory of an object. Given an interval of time [ts, te] and an
object, this query obtains all the positions of the object between ts and te. First,
the query obtains the position of the object at ts using the algorithm explained
for the previous query, and then it applies the movements of the log until it
reaches the position at te. Since the additional information of the rules does not
contain the detailed positions of the trajectory, the algorithm has to decompress
every non-terminal value of the log containing a ti ∈ [ts, te].

Time slice query. Let r = [x1, y1, z1]× [x2, y2, z2] be a rectangular cuboid (or
box) and tq a time instant, this query returns all objects within r at tq. Let
(sx, sy, sz) be the maximum speed vector of any object in our dataset, that is,
the maximum speed in each of the three axes of the space achieved by any object
in the dataset. We denote Er(tk, tq), the expanded region of r from tk to tq, as
the area that contains any object active at tk capable of being located within r
at tq. Hence, Er(tk, tq) is r extended in the three dimensions; in the x-axis to
the coordinates [x1 − sx · (tq − tk), x2 + sx · (tq − tk)], and repeat the same for
the y-axis and z-axis. Assuming that the closest snapshot is Sk and that tk ≤ tq,
the algorithm obtains the candidate objects C inside Er(tk, tq) at tk. If tk = tq,
the algorithm returns C. Otherwise, it tracks the movements in Lk,k+d for each
object in C until it reaches tq. During this process, after obtaining the position
of an object cj at ti, we can discard cj if it is outside Er(ti, tq). The position at
tq can be given by a terminal or a non-terminal value. In the first case, we apply
the movement and check if the object is within r. In the second case, the object
is part of the solution when the MBB of the additional information of the rule
defining the non-terminal value is completely contained in r, and the object can
be pruned if its MBB does not intersect r. However, when the MBB intersects r
(but it is not completely contained), the algorithm has to decompress the non-
terminal symbol using the Re-Pair rule to obtain the exact position of the object
at tq. If the closest snapshot to tq is after it, then the algorithm performs the
same process backwards.

Time interval query. Given a box r and an interval of time [ts, te], this query
obtains all objects within r at any ti ∈ [ts, te]. This query could be solved in a
similar way to the previous one. However, to avoid large expanded regions, that
lead to track too many candidate objects, the query interval [ts, te] is divided
into as many queries as portions of log overlaps. Then, each one of these portions

[t′s, t
′
e] can be solved in a similar way to time-slice. First, the algorithm obtains

the candidates from the closest snapshot, using the expanded region with respect
to t′e; then it applies the movements of the log. During the processing of the log
of a candidate object cj , the algorithm has to take into account that when the
traversal reaches a symbol sm that after its application obtains the position
(xi, yi, zi) at a time instant ti ∈ [ts, te]: (1) cj is part of the solution if (xi, yi, zi)
is within r; (2) if (xi, yi, zi) is not within Er(ti, t

′
e), then cj can be discarded of

the processing of the current portion; (3) if (xi, yi, zi) is outside r but within
Er(ti, t

′
e), then cj continues as a candidate that needs to be tracked. If sm is

a non-terminal symbol that produces a position at ti > t′e and covers the time
interval [tu, ti], where tu ≤ t′e: (1) if the MBB of sm is fully within r, then cj is
part of the solution (2) if the MBB of sm does not intersect r, then cj is discarded
in the processing of the current portion. (3) if the MBB of sm intersects r, the
algorithm has to decompress sm to check if sm involves any tl ∈ [tu, t

′
e] whose

position is within r.

5 Experimental Evaluation

Our experiments analyze space/time tradeoffs of 3DGraCT using real-world
ADS-B data. We also evaluate the use of interpolation to fill in large periods
of missing data during the trajectory. For comparison purposes, we propose a
baseline including the MVR-tree [17], but we do not include ADS-BI [21] because
it does not provide altitude-based queries, and its inner index stores some string
dimensions which are not covered by 3DGraCT.

Both 3DGraCT and the MVR-tree are coded in C++. 3DGraCT uses some
structures from SDSL [9] and MVR-tree is obtained from the spatialindex library
(libspatialindex.github.io). All experiments were run on an Intel® CoreTM

i7-3820 CPU@3.60GHz (4 cores), 10MB of cache and 64GB of RAM, over
Ubuntu 12.04.5 LTS (kernel 3.2.0-115, 64 bits), using gcc 4.6.4 with -O9 flag.

Dataset details. We use four real ADS-B datasets including descriptive data
of flights between different airports of Europe (see details in Appendix A). Each
dataset covers a different period of time, namely one day, one week, two weeks,
and one month. Positions are discretized into a cube where the cell size is 5
kilometers in x-axis, 5 kilometers in y-axis, and 100 meters in z-axis. Since
aircraft positions can contain incorrect information and they can be emitted
at different time rates, we discard incorrect positions and normalize timestamps
to obtain regular instants every 15 seconds.

Gate-to-gate trajectories are difficult to reconstruct from ADS-B data be-
cause some broadcasted positions are lost, mainly due to lack of coverage. Al-
though we use disappearance and reappearance codewords to represent these
situations, we consider relevant to understand how they affect to 3DGraCT
tradeoffs. We use the original datasets to generate a new ones, where aircraft
positions are interpolated when no information is available during, at least, 15
minutes. As consequence, we have eight datasets: four real-world datasets (1D,
1W, 2W, 1M) and four interpolated datasets (1D-I, 1W-I, 2W-I, 1M-I). Table

Dataset 1D 1D-I 1W 1W-I 2W 2W-I 1M 1M-I
Time 1 day 1 day 1 week 1 week 2 weeks 2 weeks 1 month 1 month
Objects 1082 1082 1764 1764 2003 2003 2263 2263
Interpolated No Yes No Yes No Yes No Yes
Binary 7.31M 7.68M 55.32M 58.27M 115.57M 122.03M 261.01M 275.35M
p7zip 1.71M 1.86M 12.58M 13.09M 26.03M 27.18M 57.45M 60.14M
(ratio) 23.41% 24.19% 22.73% 22.47% 22.53% 22.27% 22.01% 21.84%

Table 1. Dataset details.

1 shows the details of each dataset. Note that the fourth and fifth rows give,
respectively, dataset sizes of binary and p7zip-compressed representations.

Compression ratio. We define compression ratio as the ratio between the
binary size and the compressed size. The last row of Table 1 gives compression
ratios reported by p7zip for all datasets, while Figure 5(a) illustrates 3DGraCT
numbers for one day and one month datasets, using different periods of snapshot
(120, 240, 360 and 720 time instants). p7zip report stable ratios around 22-
24%, but 3DGraCT effectiveness is clearly influenced by the distance between
snapshots, because snapshot encoding requires more space than log compression.
Thus, the more-distanced the snapshots are, the better the results are. In our
experiments, 3DGraCT reports its best ratios using a separation of 720 time
instants between snapshots, outperforming p7zip in all datasets. For instance,
3DGraCT reports 22.29% for 1D and p7zip 23.41%. This gap increases for larger
datasets: 3DGraCT only needs 14.73% of the original 1M size, while p7zip
demands 22.01%. Thus, 3DGraCT is more effective than a powerful compressor
like p7zip, while retaining search capabilities.

This comparison also applies for interpolated datasets. Note that, in this case,
3DGraCT reports slightly better results, meaning that missing information adds
an small overhead (≈ 2%) to our structure.

Query times. Query times are averaged over the following settings: (1) Object
t : 20,000 queries that obtain the position of an object at a given time instant,
(2) Trajectory : 10,000 queries obtaining trajectories that cover 2,000 time
instants, (3) Time Slice S : 1,000 time slice queries involving a small region
(20×20×20), (4) Time Slice L: 1,000 time slice queries specifying large regions
(160 × 160 × 160), (5) Time Interval S : 1,000 time interval queries involving
small regions and intervals of 50 time instants, (6) Time Interval L: 1,000 time
interval queries specifying large regions and intervals of 400 time instants. Query
times for 3D-GraCT over real-world (3D-GraCT) and interpolated (3D-GraCT-
I) datasets are distinguished in the following figures.

Figure 5(b) shows that query times of Object t increase with distance between
snapshots because larger log portions must be processed. On the contrary,
Figure 5(c) shows that Trajectory queries are slowler for less distanced snapshots
because more snapshots must be checked.

In region queries, Time Slice and Time Interval, the number of candidates
depends on the period between snapshots. Time Slice is slower as the distance
between snapshot gets larger (see Figures 5(d) and 5(e)), because the extended
region grows and the number of candidates that are tracked is also larger. Figures

12%

14%

16%

18%

20%

22%

24%

26%

28%

30%

120 240 360 720

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Period of snapshot

1D
1D-I
1M

1M-I

(a) Compression ratio

0.000

0.002

0.004

0.006

0.008

0.010

0.012

120 240 360 720

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset 1 Day

3DGraCT
3DGraCT-I

120 240 360 720

Period of snapshot

Dataset 1 Month

(b) Object t

0.000

0.005

0.010

0.015

0.020

0.025

120 240 360 720

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset 1 Day

3DGraCT
3DGraCT-I

120 240 360 720

Period of snapshot

Dataset 1 Month

(c) Trajectory

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

120 240 360 720

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset 1 Day

MVR-tree
3DGraCT

3DGraCT-I

120 240 360 720

Period of snapshot

Dataset 1 Month

(d) Time Slice Small

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

120 240 360 720

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset 1 Day

MVR-tree
3DGraCT

3DGraCT-I

120 240 360 720

Period of snapshot

Dataset 1 Month

(e) Time Slice Large

0.0

1.0

2.0

3.0

4.0

5.0

120 240 360 720

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset 1 Day

MVR-tree
3DGraCT

3DGraCT-I

120 240 360 720

Period of snapshot

Dataset 1 Month

(f) Time Interval Small

0.0

5.0

10.0

15.0

20.0

120 240 360 720

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset 1 Day

MVR-tree
3DGraCT

3DGraCT-I

120 240 360 720

Period of snapshot

Dataset 1 Month

(g) Time Interval Large

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Length of interval

3DGraCT-Interval-S
3DGraCT-Interval-L

MVR-Interval-S
MVR-Interval-L

(h) Growing time interval

Fig. 5. Compression ratio and query times (ms).

5(f) and 5(g) show that Time Interval queries behave similar to Time Slice ones,
except in the right part of Figure 5(g). In this case, the expanded region covers
the whole space for each period of snapshot, so the number of candidates between
different settings remains constant. Thus, traversing the log demands the same
computation, but less snapshots are checked for larger periods.

Finally, it is worth noting that the effect of interpolation is not very relevant
to 3DGraCT performance. It is only a slight improvement for region queries and
large datasets. Thus, we conclude that the interpolation of missing positions
avoids the cost of managing appearances and reappearances, improves Re-Pair
effectiveness, and allows logs to be processed faster. For this reason, querying
real-world datasets are 3%-10% slower.

Comparison with MVR-tree. 3DGraCT and MVR-tree are compared over
the real-world datasets of our setup: 1D, 1W, 2W and 1M. It is worth noting
that MVR-Tree space requirements are 250-300 times larger than 3DGraCT one,
but we tune MVR-Tree to run on main-memory.

Our analysis show that MVR-tree is only efficient for Time Slice, Time
Interval, and knn queries. Although MVR-tree can obtain the position of an
object at a given time instant, or can follow the trajectory of the object in a
given interval, these are expensive queries.

MVR-tree can be enhanced with an auxiliary 3DR-tree [17], but the resulting
structure would consume even more space. Thus, we only analyze queries where
MVR-tree is efficient.

Figures 5(d) and 5(e) show that MVR-tree outperforms 3DGraCT in Time
Slice queries. However, our structure is better in Time Interval queries for large
intervals (Figure 5(g)). We study the turning point where the 3DGraCT starts to
improve the MVR-tree, by increasing the time interval length. Figure 5(h) shows
this comparison for the 1M dataset, and a period of snapshot of 720. 3DGraCT
outperforms MVR-tree for time intervals over 550 and 200 time instants in small
and large regions, respectively.

6 Conclusions

This paper introduces 3DGraCT, a new data structure capable of compressing
and querying 3D trajectories with no prior decompression. 3DGraCT extends
an existing 2D compact data structure (GraCT) to support a third dimension,
enabling object positions to be enhanced with descriptive altitude data. Our
improvements to GraCT are more than just improving object descriptions
because 3DGraCT also enables for resolving altitude-based queries.

3DGraCT has been evaluated using real-world trajectories reconstructed
from ADS-B descriptions. 3DGraCT reports better compression ratios than uni-
versal compressors like p7zip (3DGraCT uses up to 50% less space), while re-
taining search capabilities. Compared to traditional spatio-temporal solutions,
3DGraCT needs 2 orders of magnitude less space than MVR-tree, being com-
petitive in query performance. Finally, we also study the effect of missing sub-
trajectories, concluding that interpolation is effective in different cases.

References

1. de Bernardo, G., Álvarez-Garćıa, S., Brisaboa, N.R., Navarro, G., Pedreira, O.:
Compact querieable representations of raster data. In: Proceedings of the 20th
International Symposium on String Processing and Information Retrieval (SPIRE).
pp. 96–108 (2013)

2. Botea, V., Mallett, D., Nascimento, M.A., Sander, J.: Pist: An efficient and prac-
tical indexing technique for historical spatio-temporal point data. GeoInformatica
12(2), 143–168 (2008)

3. Brisaboa, N., Ladra, S., Navarro, G.: DACs: Bringing direct access to variable-
length codes. Information Processing and Management 49(1), 392–404 (2013)

4. Brisaboa, N.R., Gómez-Brandón, A., Navarro, G., Paramá, J.: Gract: A grammar
based compressed representation of trajectories. In: Proc. of the 23rd Int. Symp.
on String Processing and Information Retrieval (SPIRE 2016) - LNCS 9954. pp.
218–230. Beppu (2016)

5. Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Information Systems 39(1), 152–174 (2014)

6. Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: An adaptive storage system
for very large trajectory data sets. In: Proceedings of the IEEE 26th International
Conference on Data Engineering (ICDE 2010). pp. 109–120 (2010)

7. Deng, K., Xie, K., Zheng, K., Zhou, X.: Trajectory Indexing and Retrieval, pp.
35–60. Springer New York (2011)

8. Douglas, D.H., Peuker, T.K.: Algorithms for the reduction of the number of points
required to represent a line or its caricature. The Canadian Cartographer 10(2),
112–122 (1973)

9. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play
with succinct data structures. In: SEA. pp. 326–337 (2014)

10. Jacobson, G.: Space-efficient static trees and graphs. In: IEEE Symposium on
Foundations of Computer Science (FOCS). pp. 549–554 (1989)

11. Knuth: Efficient representation of perm groups. Combinatorica 11, 33–43 (1991)
12. Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proceedings of

the IEEE 88(11), 1722–1732 (2000)
13. Nascimento, M.A., Silva, J.R.O.: Towards historical R-trees. In: Proceedings of the

1998 ACM symposium on Applied Computing, SAC’98. pp. 235–240. ACM (1998)
14. Navarro, G.: Compact Data Structures – A practical approach. Cambridge Uni-

versity Press (2016)
15. Nibali, A., He, Z.: Trajic: An effective compression system for trajectory data.

IEEE Transactions on Knowledge and Data Engineering 27(11), 3138–3151 (2015)
16. Schäfer, M., Strohmeier, M., Lenders, V., Martinovic, I., Wilhelm, M.: Bring-

ing up opensky: A large-scale ads-b sensor network for research. In: Proceed-
ings of the 13th International Symposium on Information Processing in Sen-
sor Networks. pp. 83–94. IPSN ’14, IEEE Press, Piscataway, NJ, USA (2014),
http://dl.acm.org/citation.cfm?id=2602339.2602350

17. Tao, Y., Papadias, D.: MV3R-tree: A spatio-temporal access method for timestamp
and interval queries. In: Proceedings of the 27th International Conference on Very
Large Data Bases, VLDB, 2001,. pp. 431–440 (2001)

18. Trajcevski, G., Cao, H., Scheuermann, P., Wolfson, O., Vaccaro, D.: On-line data
reduction and the quality of history in moving objects databases. In: Proceedings
of the Fifth ACM International Workshop on Data Engineering for Wireless and
Mobile Access. pp. 19–26 (2006)

19. Vazirgiannis, M., Theodoridis, Y., Sellis, T.K.: Spatio-temporal composition and
indexing for large multimedia applications. ACMMultimedia Systems Journal 6(4),
284–298 (1998)

20. Wandelt, S., Sun, X.: Efficient compression of 4d-trajectory data in air traffic
management. IEEE Transactions on Intelligent Transportation Systems 16(2), 844–
853 (April 2015)

21. Wandelt, S., Sun, X., Fricke, H.: Ads-bi: Compressed indexing of ads-b data. IEEE
Transactions on Intelligent Transportation Systems pp. 1–12 (2018)

22. Wandelt, S., Sun, X., Gollnick, V.: So6c: Compressed trajectories in air traffic
management. Air Traffic Control Quarterly 22(2), 157–178 (2014)

A Appendix

The datasets used in our experimenation have been obtained from the OpenSky
Network6. We have chosen ADS-B messages broadcasted by aircrafts of 30
different airlines and describe flights between 30 European airports:

– Airlines (ICAO code): AEA, AEE, AFR, AUA, AZA, BAW, BEE, BEL, BER,

DLH, EIN, EWG, EZS, EZY, FDX, FIN, GWI, IBE, IBK, IBS, KLM, LOT,

NAX, NLY, RYR, SAS, SHT, SWR, TAP, and VLG.
– Airports (ICAO code): EBBR, EDDF, EDDK, EDDL, EDDM, EDDT, EFHK, EGCC,

EGKK, EGLL, EGPH, EGSS, EHAM, EIDW, EKCH, ENGM, EPWA, ESSA, LEBL,

LEMD, LEPA, LFPG, LFPO, LGAV, LIMC, LIRF, LOWW, LPPT, LSGG, and LSZH.

ADS-B messages were captured from 2017-01-02 to 2017-01-31, and sampled
as follows:

– 1day : 2017-01-02.
– 1week: 2017-01-02 -- 2017-01-08.
– 2weeks: 2017-01-02 -- 2017-01-15.
– 1month: 2017-01-02 -- 2017-01-31.

6 https://opensky-network.org/

	PortadaRUC_declaracionDerechos.pdf
	This is an ACCEPTED VERSION of the following published document:
	General rights:

