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Floating Point Calculation of the Cube Function on
FPGAs

Roberto R. Osorio

Abstract—Specialized arithmetic units allow fast and efficient
computation of lesser used mathematical functions. The overall
impact of those units would be negligible in a general purpose
processor, as added circuitry makes chips more complex despite
most software would seldom make use of it. On the opposite side,
custom computing machines are built for a specific task, and they
can always benefit from specialized units if they are available. In
this work, floating point architectures are proposed for computing
the cube on Intel and Xilinx FPGAs. Those implementations
reduce the cost and latency compared to using simple floating
point multiplications and squarers.

I. INTRODUCTION

SPECIALIZED arithmetic units may be faster and smaller
than an equivalent implementation using generic opera-

tions. Within the scope of this paper, the best example is
squaring. Computing the square as a simple multiplication
is inefficient in both time and area compared to custom
implementations, which may exploit the redundancy exhibited
by the operands [1]. Provided that computing the cube is rarer
than squaring, few examples exist in the literature of possible
implementations beyond multiplying by the square. In [2], the
cube is used to approximate the sine function, and in [3],
the general case of powering is addressed. However, there
exist many more cases in which this operation is required,
such as the Hodgkin-Huxley model of potentials in neurons
[4]; Duffing equation of damped and driven oscillators [5];
or Painlevé equations, useful in the study of quantum gravity,
plasma physics, or non-linear optics [6].

As it happens with many other differential equations, com-
putationally intensive numerical integration is required to
solve the problems listed above. Also, evolutionary computing
techniques are often used to fine tune the parameters in
those equations, which also needs substantial computing time.
Examples of the application of evolutionary computing to the
problems proposed above may be found in the literature [7]
[8] [9].

Custom computing machines (CCM) implement circuits
specifically designed to carry out a single task [10]. At present
time, FPGAs are the more versatile platform to implement
CCMs. Numerical integration on a CCM achieves high com-
putational efficiency as a large number of operations are
executed concurrently by parallel pipelines with little control
dependencies. If a given function is used in a CCM, the
question is not why to custom-implement it but, why not.

In this work, the specific case of computing the cube in
floating point is addressed. In Section II, the optimization
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of products and powers on FPGAs is discussed. Section III
introduces the proposed architectures for computing the cube
of floating point numbers in single and double precision
using the most widely adopted FPGAs, and reviews some
previous works. Additionally, an analysis is presented on the
implementation of higher powers. Section IV deals with the
implementation cost in terms of resource usage and latency,
showing the potential benefits of the direct implementation
of the cube compared to the use of normal multiplications,
and other works found in the literature. Section V shows the
maximum and mean errors for each proposal. Finally, the main
conclusions are shown.

II. COMPUTATION ON FPGAS

The considerations that will guide the design process are
explained now. Presicion is a key factor when designing
arithmetic functional units. The trade-offs between precision
and complexity are analyzed in this section. Then, the basics
of reconfigurable logic are introduced, with a focus on the
importance of hardwired multipliers. This paper focuses in
reducing the use of multipliers in order to save resources and
allow for increased parallelism. In Section II-D, the case of
squaring is put as a example of the strategy to follow in the
remainder of the article. Explanations of computations at bit
level will follow this notation: all bits are indexed according
to their weight, so that a[-3] has a weight of 2−3, and a[0 : -2]
encompasses 3 bits with weights 20 downto 2−2. This notation
may require some initial effort to grasp it, but it allows to
identify how operands are aligned to each other, and which
bits can be truncated. Moreover, it works both for parts of the
original mantissa and further calculations.

A. Precision

Full precision is desirable in many applications, mainly
for result reproducibility across different computing devices.
However, full precision is also highly expensive to implement,
and allowing for small differences in the less significant bits
may reduce the complexity of the implementation, producing
smaller and faster circuits. In the context of CCMs, absolute
precision is not always required and, in the particular case of
evolutionary computing, randomness plays an important role
in convergence, and results are not expected to be reproducible.
Therefore, partial results that lay in low-weight positions may
be ignored if the error of doing so is low.

Also, implementing all the rounding modes adds substantial
complexity to arithmetic circuits, as an additional normal-
ization may be necessary after rounding. Therefore, in this
paper we choose to implement only truncation, and keep the
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precision in the operations so that the deviation from the
accurate result is never larger than 1 unit in the last place
(ulp).

Another source of unnecessary complexity is managing
subnormal numbers, as aligning the mantissa would require the
use of full-length barrel shifters. The cube of any subnormal
number, would always produce zero, which simplifies the
implementation. However, it is possible to start with a normal
operand and obtaining a subnormal result. There are two
possible solutions to address this problem. First, it is possible
to detect subnormal results and round them down to zero.
Second, some authors [11] [12] propose to extend the size
of the exponent in 1 bit. This makes the use of subnormal
numbers unnecessary for all floating point operations without
loosing precision. In an FPGA, adding one bit to the standard
format is not a problem, and only the final results would
require a conversion to the IEEE 754 format. In this paper,
we have opted for the first solution as, despite some precision
is lost and some error may accumulate, extending the exponent
would require reimplementing all floating point operations
and, moreover, commercial tools like Xilinx Vivado HLS [13]
also round down subnormal numbers.

B. The technology in FPGAs
The heart of FPGAs is made of reconfigurable logic blocks,

which go under different names depending on the manu-
facturer. Those elements store the results of multi-variable
boolean operations in look-up tables (LUT) instead of comput-
ing them. Reconfigurability is achieved by updating the stored
results without having to change the hardware. This simple
concept, paired with sophisticated and also reconfigurable
connection networks, allows implementing any digital circuit.

However, common components such as multipliers or RAM
memories would consume large numbers of logic blocks if im-
plemented on an FGPA. Therefore, FPGAs include hundreds
or thousands of hardwired multipliers (currently DSP blocks)
and RAM blocks that are both faster and consume less area
on chip than purely reconfigurable implementations.

In floating point intensive applications, DSP usage is a
limiting factor, as once all the DSPs have been used, no more
operations can be implemented concurrently. Also, the more
resources are used, the harder it becomes to implement an
efficient routing.

Therefore, reducing the number of DSP blocks may be a
priority, either by improving the algorithms or by implement-
ing small products using reconfigurable logic. The decision of
implementing a multiplier with logic is mainly empirical. A
quick study conducted on Xilinx most recent FPGAs showed
that, up to 9x9 bit products, Xilinx HLS prefers using logic to
DSPs. Moreover, by computing the ratio between the number
of logic and DSP blocks for different FPGAs, it has been found
that DSPs consume a lower share of resources for product sizes
above 14x14 bits. That is, implementing multipliers larger
than 14x14 bits using reconfigurable logic may result in the
consumption of all the available LUTs, whereas many DSPs
would still be available. However, this is highly variable, as
different chip models implement different mixes of logic and
DSP blocks.

C. Multiplication on Intel and Xilinx FPGAs

The size of a product is the sum of the sizes of the operands
(but 1 bit if both operands are signed). The complexity of
the implementation, however, is proportional to the product of
the sizes. In this way, doubling the precision multiplies the
size of the circuit by 4. Therefore, exploiting any redundancy
in the operators or operations may reduce the cost of the
implementation. This is firstly explained for the well know
case of squaring (Section II-D), before dealing with the cube.

Modern FPGAs implement hardwired multipliers of dif-
ferent sizes. Last Intel’s FPGAs (formerly Altera) implement
27 × 27 bit signed/unsigned multipliers, that can be split in
two 18 × 18 ones. In this way, single precision product (24-
bit mantissa) may be implemented using a single multiplier,
while double precision (53-bit mantissa) requires 4 multipliers.
Most recent Xilinx’s FPGAs implement 27 × 18 bit signed
multipliers, so implementing single and double precision (SP
and DP) products requires 2 and 8 multipliers respectively.
More multipliers are needed on Xilinx FPGAs, however,
their size is roughly 70% that of Intel ones and, potentially,
they allow for finer granularity. If complete precision is not
needed, however, DP can be computed using 6 multipliers.
Multipliers on FPGAs are actually part of a DSP circuit that
also implements adders before and after the multiplication.
This is of great interest for splitting operands between several
multipliers and combine the partial results afterwards. Finally,
selected Intel’s devices in the Arria 10 family implement hard-
wired single precision adders and multipliers. Each of those
multipliers consumes one 27×27 bit integer multiplier, and the
additional circuitry for implementing exponent calculation and
results normalization are also hardwired. In this paper, integer
multipliers are used directly, as it saves resources for single
precision cube and it enables us to implement also double
precision.

D. Squaring

Compared to general multiplication, squaring conceals some
redundancy that can be exploited. Let’s observe that (a+ b)×
(c + d) = ac + ad + bc + bd, but (a + b)2 = a2 + 2ab + b2,
which saves computing one partial product. Given a number
M [0 : −n+1] of n bits, and making a = M [0 : −n/2+1] and
b = M [−n/2 : −n + 1], each partial product has 1/4 of the
complexity of the full product, and a reduction in circuit area
of nearly 25% is achieved. For large values of n, breaking up
M in 3 or more chunks allows for additional gains as shown
for Xilinx FPGAs in [14].

Intel FPGAs can compute the square in SP as a normal
product, using a single multiplier; but DP would require 3
instead of 4, a 25% saving. Xilinx FPGAs use also 1 multiplier
for SP, but DP can be achieved with 4. Figure 1 shows
the architecture for single precision, in which the only DSP
computes a · (a+2b) using the pre-adder, while b2 is skipped
due to its low significance. This case is a good example of
the kind of exploits that will allow us to obtained optimized
architectures for the cube.
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M [1:-39]
2

M[0:-23]

b[-17:-23] a+2b[1:-23]

a[0:-16]

DSP

Fig. 1. Architecture for single precision square on Xilinx FPGAs.

TABLE I
TERMS FOR COMPUTING THE CUBE OF A SINGLE PRECISION MANTISSA.

SIZE IS GIVEN IN BITS. THE POSITIONS OF THE LEAST AND MOST
SIGNIFICANT BITS ARE ALSO GIVEN.

a b a2 a3 a2b ab2 b3

size 17 7 34 51 39 30 21
LSB -16 -23 -32 -48 -52 -59 -68
MSB 0 -17 1 2 -14 -30 -48

III. ARCHITECTURES FOR CUBE COMPUTATION

Usually, the cube would be obtained by squaring followed
by an additional multiplication. However, by splitting the
operand M in 2 or 3 parts, the cube can be computed as
shown in Equations 1 and 2:

(a+ b)3 = a3 + b3 + 3 · (ab2 + a2b) (1)
(a+ b+ c)3 = a3 + b3 + c3 + 3 · (ab2 + a2b+

ac2 + a2c+ bc2 + b2c)

+6abc (2)

If complete precision is required, all terms must be com-
puted. However, if a small error is acceptable, and M is split
in a wise way, some terms can be eliminated keeping the error
lower or equal than 1 ulp.

The procedure employed to evaluate the architectures is the
following: all the architectures are non-pipelined. This sim-
plifies comparing results, as pipelining introduces significant
overhead that is highly dependent on the number of stages in
the pipeline. In Section IV, high-level synthesis (HLS) is used
to pipeline the architectures for several target frequencies. The
normal work-flow is followed in HLS and no third-party tools
are used for synthesis.

A. Single precision in Xilinx FPGAs

The proposal for single precision is dividing the mantissa
M in 2 parts a[0 : s] and b[s-1 : -23]. By choosing s in the
[-17:-14] range, terms ab2 and b3 have a weight much lower
than the ulp and some computations can be avoided. For the
sake of concreteness, let’s assume s = -16. Then, the size of
the different terms, and the weight of the LSBs and MSBs,
are shown in Table I.

The following explanations refer to the circuit in Figure
2. The way to compute the significant terms (that is, a3 and
3a2b) is the following: a2 is obtained first, using one 27x18
multiplier (DSP1 ). Then, M and 2b are added together to
obtain a + 3b. This sum is computed at no cost at the pre-
adders before multiplying by a2, obtaining a3 + 3a2b.

The term a2 must be divided in 2 parts, 17-bit each. Thus,
the product requires two multipliers to obtain two partial

M[0:-23]

a +3a b[3:-38]
3 2

(b<<1)[-16:-22]

M [3:-38]
3

M[0:-23]

(b<<1)[-16:-22]

a +3a b[-14:-55]
3 2

a[0:-16] a [1:-32]
2

a[0:-16]

a [1:-15]
2

a [-16:-32]
2

[-14:-38][1:-23]

DSP1 DSP2

DSP3

Fig. 2. Architecture for single precision cube on Xilinx FPGAs.

M[0:-23]

(b<<1)[-16:-22]

M [3:-48]
3

a[0:-16] a [1:-32]
2

a[0:-16]

a [1:-25]
2

[1:-23]

(half) DSP1 DSP2

Fig. 3. Architecture for single precision cube on Intel FPGAs.

products: DSP2 [3 : -38] and DSP3 [-14 : -55], that must be
added, discarding the 17 LSBs of DSP3 . The sum of DSP2
and DSP3 is calculated in the post-adder of DSP2 . Finally,
the sum is normalized, which is not shown in Figure 2.

Regarding the error, there is no truncation, and the only
differences with other algorithms would be due to not applying
rounding. All the bits introduced in DSP1 and DSP2 are
needed to obtain the desired precision. For DSP3 , however,
the useful bits are equivalent to a 10x17 bit product. Hence,
using a DSP block instead of a reconfigurable logic is the best
option, despite many bits are computed and discarded.

B. Single precision in Intel FPGAs

When using Intel FPGAs, the circuit is shown in Figure
3. In this case, a2 is obtained using one 18x18 multiplier,
which is half of the capabilities of DSP1 , and the other half
may be used for other purposes. Then, only one additional
27x27 multiplier is needed, at DSP2 . At the pre-adder, a+3b
is computed as a 25-bit number, and then multiplied by a2

truncated to 27 bits. The result must then be normalized.
As in previous section, the only source of error is skipping

rounding. All the bits entering DSP1 and DSP2 are needed
to obtain the desired precision. The only truncation happens
to a2 before DSP2 , but the impact is lower than 2−26.

C. Double precision in Xilinx FPGAs

In double precision, the 53 bits of the mantissa must be
split in three parts, as the hardwired multipliers in Xilinx
DSP blocks can deal with up to 26-bit unsigned operands.
In Table II, the size and bit-ranges for the terms in equation 2
are shown. Other terms, such as ac2 have such a low weight
that there is no need to compute them. As it can be seen,
many of the computed bits will be discarded due to their low
weight, but they must be obtained in many cases.

Let’s take a2b as an example, for which at least 13 bits
must be discarded. First, a2 can be computed, using one DSP
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TABLE II
TERMS FOR COMPUTING THE CUBE OF A DOUBLE PRECISION MANTISSA

ON XILINX FPGAS. SIZE IS GIVEN IN BITS. THE POSITIONS OF THE
LEAST AND MOST SIGNIFICANT BITS ARE ALSO GIVEN.

a,b, c a3 a2b a2b ab2 abc b3

size 17, 17, 19 51 51 53 51 53 51
LSB -16, -33, -52 -48 -65 -84 -82 -101 -99
MSB 0, -17, -34 2 -15 -32 -32 -49 -49

and producing a result in the [1:-32] range. Then, it can be
multiplied by b. If a2 is truncated to [1:-24], the product
by b can be computed with a single multiplier. However,
a maximum error < 2−40 would be introduced, which is
unacceptable. Computing ab · a after truncating ab to [-16:-
41] would produce the same error. If a2 is computed first,
obtaining a3, a2b and a2c will require 7 DSPs, but a large
number of bits will be discarded.

Therefore, a better strategy must be devised. The proposed
architecture is shown in Figure 4, where a2 is computed in
DSP1 . Then, a2 multiplies M +2b+2c, being M the whole
mantissa. The product is split into DSP2 , DSP3 , DSP4
and DSP5 . The pre-adders of those DSPs are used to add
2b + 2c, so that a3 + 3a2b + 3a2c is computed using only 5
DSPs.

Computing b3 is simpler than it seems as, for n bits of b,
there are only 2n possible results. If n ≤ 6, a single LUT
(look-up table) may store/compute 1 bit of the result, and n
LUTs will produce b3 concurrently. A quick analysis reveals
that using the 6 MSBs of b is insufficient to obtain the desired
precision. However, above 6 bits, the number of LUTs required
to store the result grows quadratically. For a desired precision
of 9 bits, 57 LUTs are needed, which may be considered
too high. However, it is possible to reduce that number by
splitting and approximating the calculation. This technique
will be exploited several times in this paper in order to reduce
the size of small multipliers implemented with LUTs.

Thus, b3 is computed as follows: x = b[-17 : -22], y =
b[-17 : -19], z = b[-23 : -25]. A good approximation would be
x3 +3y2z, where the weight of each term has been obviated.
Both x3 and 3y2z can be computed as 6-bit functions and
added together with a cost of only 25 LUTs and a maximum
error of ≈ 2−54.

The remaining terms are 3ab2 and 6abc. As a first option,
ab2 can be computed as b2 truncated to [-33:-58] multiplied
by a. Multiplying by 3 could be achieved using the pre-adders.
This requires only 2 DSPs and the error is lower than 2−57.
However, computing 6abc with low error would either require
2 additional DSPs or a large number of LUTs.

Therefore, the following implementation is preferred: ab is
computed first using DSP6 . Then b + 2c is obtained using
LUTs. Next, 3b+6c is calculated in the pre-adders of DSP7
and DSP8 by adding b+ 2c, and the same amount shifted 1
bit. Finally, the 2 parts of ab are multiplied. The post-adder of
DSP7 is used to add a2c, which is also approximated using
8 LUTs. The error of the result is lower than 2−55.

Finally, all the terms are added up as shown in Figure
5. Up to 3 n−bit terms can be added using just n LUTs.
Thus, the terms are assembled in 6 groups and added in 2

a [1:-15]1

2

M[-26:-50]

M[-27:-51]

prod10[-23:-65]

[-25:-50]

DSP3

a [-16:-32]0

2

M[-26:-50]

M[-27:-51]

prod00[-40:-82]

[-25:-50]

DSP5

a [1:-15]1

2

M[-1:-25]

M[-17:-26]

prod11[2:-40]

[0:-25]

DSP2

a [-16:-32]0

2

M[-1:-25]

M[-17:-26]

prod01[-15:-57]

[0:-25]

DSP4

a[0:-16] a [1:-32]
2

a[0:-16]

a [1:-15]1

2

a [-16:-32]0

2

DSP1

b [-49:-57]
3

b[-17:-25]
LUT

a[0:-16] ab[-16:-49]

b[-17:-33]

ab [-16:-32]1

ab [-33:-49]0

DSP6

ab [-33:-49]0

2bc[-16:-40]

prodb0[-46:-88]

2bc[-15:-39] [-14:-39]

DSP8

ab [-16:-32]1

2bc[-16:-40]

[-29:-71]

[-14:-39]2bc[-15:-39]

prodb1[-29:-71]

DSP7

a [1:-3]1

2

a c[-48:-55]
2

c[-51:-52] LUT

Fig. 4. Architecture for double precision cube on Xilinx FPGAs.

levels, grouped by similar lengths. Alternatively, the 6 groups
could be compressed and then added as proposed in [15] [16].
This technique is sometimes referred to as bit-heap, as in [2].
However, this possibility has been tried and it does not reduce
the hardware cost significantly. There are, however, other
drawbacks. The compressor was described in Verilog making
use of recent Xilinx LUTs at low level, so the implementation
cannot be ported to other FPGAs. Moreover, the high-level
synthesis tool manages the compressor as a black box, and it is
unable to pipeline it. Therefore, more than one implementation
must be provided and hand selected depending on the targeted
clock frequency. Hence, letting Vivado to implement the sums
is both simple and reasonably efficient.

The accuracy of the calculation is bounded by terms
a2c[-48 : -55] and b3[-49 : -57]. This leaves 3 guard bits to
let carry propagate without introducing any error. All the DSP
blocks make use of all their input bits, with the exception of
DSP8 , for which a 9×9 bit product would introduce an error
lower than 2−55. Therefore, an alternative implementation
could spare DSP8 and use LUTs instead. In this work, it
is preferred using a DSP, which also provides a pre-adder to
compute 6bc.

D. Double precision in Intel FPGAs

The larger multipliers in Intel’s DSP blocks allow to split the
mantissa in only 2 parts and avoid computing a large number
or terms. In Table III, the size and bit range of the terms in
Equation 1 are shown.

From those data, a2 can be computed with full precision
using DSP1 in Figure 6. Then, as most of the bits of a3 are
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prod01[-15:-57]

prod10[-23:-75]

prod11[2:-40] prodb0[-46:-57]

a2[1:-32] prod00[-40:-57]
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Fig. 5. Architecture for sum on Xilinx FPGAs.
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2
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2

0
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2
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LUT

LUT

DSP2

DSP3

DSP4
DSP1

<<1

M [-52:-57]
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Fig. 6. Architecture for double precision cube on Intel FPGAs.

needed, it must be computed with full precision as well, using
DSP2 and DSP4 . At is can be seen in the figure, those DSP
blocks are also used to add other terms as it will explained in
the following paragraphs.

Next, 3a2b is obtained multiplying a2 by 3b. If a2 is
truncated to 27 bits, only 1 DSP is needed. However the error
would be n ≤ 2−50, which should be improved. Thus, there
are two choices. For the first one, a2b is computed using 1 DSP
and a half. The full DSP computes a2[1 : -23] × b, while the
half one computes a2[-24 : -39]× b[-27 : -44]. The truncation
error is < 2−66, and it happens in the half-size product. The
second option uses LUTs instead of half a DSP to multiply
heavily truncated operands: a2[-26 : -28]×b[-27 : -32]. As only
16 LUTs units are required, this option is preferred, as it saves
valuable DSP blocks. Also, the LUTs will actually compute
3a2b with little additional cost. Thus, the LUT attached to the
post-adder in DSP2 will produce the least significant bits in
3a2b, while DSP3 will deliver the most significant ones.

The term ab2 can be computed using LUTs as well. First,
b[-27 : -29] is used to calculate b2. Next, ab2[-52 : -63] is

TABLE III
TERMS FOR COMPUTING THE CUBE OF A DOUBLE PRECISION MANTISSA

ON INTEL FPGAS. SIZE IS GIVEN IN BITS. THE POSITIONS OF THE LEAST
AND MOST SIGNIFICANT BITS ARE ALSO GIVEN.

a b a2 a3 b2 a2b ab2 b3

size 27 26 54 81 52 80 79 78
lsb -26 -52 -52 -78 -104 -104 -130 -156
msb 0 -27 1 2 -53 -25 -52 -79

obtained multiplying by a[0 : -5], using LUTs as well. This
term can be added up to the result using the post-adder at
DSP3 .

An additional adder is used to sum the result from DSP2
plus 3 times the result from DSP3 . The latter is achieved
by adding the output from DSP3 twice, one of them left-
shifted one position. Adding those 3 terms has the same cost
as adding just 2. The final result is obtained in the post-adder
of DSP4 , which only requires being normalized. Actually,
the post-adder cannot handle the bits in the [-52:-57] range,
which are just bypassed from the lower entry of the adder.

The only truncated operands are 3a2b0[-50 : -57] and
ab2[-52 : -63], so precision is guaranteed. All the DSPs
make use of all their incoming bits, so none of them can be
substituted by a smaller multiplier.

E. Review of other works

There are only a few papers in the literature that address
the computation of the cube. The most interesting ones, by
Piñeiro et al. [3] [17] use minimax quadratic approximation
[18] for implementing several powers, including the square
root and reciprocals of single precision floating point num-
bers. Basically, those functions are locally approximated by
a quadratic polynomial. Such approximation only works in
a narrow subinterval so, in order to compute the function in
the whole [1.0, 2.0) interval, the latter is divided and several
segments (from 18 to 1024 depending on the power) and,
for each segment, a different set of polynomial coefficients
is used. Hence, given a value X , the 7 to 10 most significant
bits are used to address tables that will produce 3 coefficients.
Then, the 16 to 13 least significant bits of X will be used
to compute the polynomial using those coefficients. The main
advantages of this method are its simplicity and the possibility
of using the same hardware for computing different functions
by selecting different tables. The main disadvantage is to be
limited to single precision, as extending the idea to double
precision would require enormous tables. Therefore, no paper
has been published applying the same technique for double
precision. Actually, and in order to compute the double pre-
cision reciprocal, a minimax approximation is used in [19] as
the starting point for the Goldschmidt algorithm, but not on
its own.

In the case of the single precision cube, 3 tables totaling
24.5 Kb are needed (42 × 29). In [17] they are implemented
using LUTs , but actually it makes more sense to consolidate
the 3 tables and implement then using 2 BRAM (18 Kb each),
or 1 BRAM plus 117 LUTs. Next a 9× 9 squarer is needed,
plus a 12×7 and a 14×15 multipliers. The squarer is optimized
as also is, to some extent, the 12×7 multiplier. In [17], all the
computations, are carried out using LUTs, whereas it would
make more sense to implement both 12 × 7 and 14 × 15
products using DSPs, as Xilinx Vivado does.

Another work that includes the calculation of the cube can
be found in [2] as part of the computation of the sine function
using Taylor series. In that paper, the angle is reduced so
that the argument of the cube is lower than 2−6 for single
precision and 2−10 for double precision, although the later is
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not implemented. Provided that the argument is significantly
lower than 1, the cube can be computed using a combination
of calculations and table look-up. Overall, the solution is
convenient only for small precisions, as a significant amount
of logic is required even when z3 is calculated only with 6 to
14 bits of precision.

F. Fourth power computation, and beyond

Provided that squaring requires so little resources, double
squaring is the most efficient solution to compute the fourth
power in most cases. In this way, and for single precision, only
2 DSP blocks are needed for Xilinx’s and Intel’s FPGAs. In
any case, the method proposed in [3] should be applicable and
probably more convenient.

For double precision, 8 and 6 DSP blocks would be required
for Xilinx and Intel, respectively. A close examination shows
that it is not possible to reduce the number of DSP blocks for
Xilinx FPGAs. This is due to the fact that the mantissa must
be divided in 3 pieces, producing 4 significant partial products.
Therefore, adding them up, and computing the square again,
is the most efficient way to compute the fourth power.

For double precision in Intel FPGAs, however, the number
of DSP blocks may be reduced to 4, saving 2 DSPs. The
architecture in presented in Figure 7. The square of the
mantissa M is a2+2ab+b2. The dominant terms are computed
at DSP1 and DSP2 . By adding the less significant half of
a2 and the most significant part of ab, the most significant
bits of a2×(a2+2ab) can be obtained at DSP3 and DSP4 .
All the remaining terms are either too small (such as b4) or
can be obtained using LUTs. As an example, 6 bits from a22
and 4 bits from ab0 are multiplied in the top-left LUT and,
by carefully arranging the partial products, only 26 6-input
LUTs are needed. The bottom-right LUT squares the 7-bit
input using 18 6-input LUTs. The latter case makes use of
the pre-adder at DSP4 which, actually, is not available as
an output of the DSP block. Therefore, that operation must
be computed again using LUTs for its most significant bits.
Finally, the 6 partial products are added up and normalized to
obtain the new mantissa.

1) Beyond the fourth power: For higher powers, a com-
bination of squaring and cubing should be the best option.
Table IV shows a comparison of the minimum number of DSPs
needed to compute several powers for Xilinx and Intel FPGAs
using single and double precision. For each product or power
3 figures are given. The first one makes use, when possible,
of optimized square, cube and fourth power implementation
as described in this paper. The second figure makes use of
optimized squaring as described in Section II-D. The third
one uses normal products, exclusively. For each power, the
best option has been chosen for each case. Thus, the sixth
power is obtained using the cube followed by squaring, and
the ninth one by cubing twice. The double precision fourth,
eight and twelfth powers use the implementation from Figure
7 in Intel FPGAs.

Whereas it is difficult that the higher powers are ever
used in real applications, Table IV shows an interesting fact:
computing those integer powers require less DSP blocks than
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Fig. 7. Architecture for double precision fourth power on Intel FPGAs.

the straightforward solution mn = exp(n · ln(m)), as exp
and ln require 26 and 61 DSP blocks, respectively, according
to Xilinx HLS. However, better implementations are likely to
exist.

Despite the work in [3] does not mention any power
above the cube, we should assume that the same technique
should be applicable to at least some higher powers, although
restricted to single precision. Therefore, using the polynomial
approximation proposed in [3] could be the best option for
single precision 4th, 5th, or even higher powers. However, this
is difficult to state without applying the minimax technique
also for those powers and test their accuracy.

2) Assessment: Overall, the benefit of implementing the
cube and fourth power vary depending on the precision and
the size of DSPs. Intel´s DSP size clearly targets floating point
applications, so products can be implemented using fewer
blocks. In the particular case of single precision, the proposed
architectures do not bring any advantage, apart from the fact
that normalizing the cube is implemented just once, instead of
twice if two products are used. For double precision, savings
are significant compared to using only optimized squaring,
reducing more than 30% of the DSPs in most cases.

For Xilinx FPGAs, the smaller and rectangular multipliers
make the design process more challenging. However, there
are more opportunities for optimizing the operations. Hence,
nearly 50% of DSP block may be saved for single precision,
and more than 25% for double precision.

The technique of optimizing calculations by skipping unnec-
essary partial products and removing redundant operations can
be exploited for other functions, such as trigonometric ones,
natural logarithms and exponentiation. The obvious choice is
the optimization of power operations if Taylor series are used,
but some functions allow for other implementations similar to
the one proposed here. An example splitting the argument in
exponentiation may be found in [9].
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TABLE IV
NUMBER OF DPS BLOCKS FOR THE IMPLEMENTATION OF DIFFERENT

POWERS. THE FIRST FIGURE IN THE TRIPLETS IS ACHIEVED USING THIS
WORK; THE SECOND ONE MAKING USE OF OPTIMIZED SQUARES, WHEN

POSSIBLE; AND THE THIRD ONE PLAIN MULTIPLICATIONS.

Xilinx Intel
SP DP SP DP

product 3/3/3 8/8/8 1/1/1 4/4/4
square 1/1/3 4/4/8 1/1/1 3/3/4
cube 2/4/6 8/12/16 1.5/2/2 4/7/8
fourth 2/2/6 8/8/16 2/2/2 4/6/8
fifth 5/5/9 16/16/24 3/3/3 8/10/12
sixth 4/5/9 12/16/24 2.5/3/3 7/10/12
seventh 7/8/12 20/24/32 3.5/4/4 11/14/16
eighth 3/3/9 12/12/24 3/3/3 7/9/12
ninth 4/5/12 16/20/24 4/4/4 8/13/16
tenth 6/6/12 20/20/24 4/4/4 13/13/16
eleventh 9/9/15 28/28/40 5/5/5 15/17/20
twelfth 6/6/12 16/20/32 3.5/4/4 8/13/16
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Fig. 8. Latency in cycles for single and double precision implementations of
the cube function on Xilinx Virtex Ultrascale. Mult uses two normal products,
sqr an optimized squarer plus one product, HLS an integer cube synthesized
by Vivado, and cube the proposed architecture. Results for [3] SP using DSPs
are also shown.

IV. IMPLEMENTATION COST AND PERFORMANCE

In Section III, the design process focused on reducing
the number of DSP blocks. In this section, the total cost
of implementation will be discussed, including a comparison
with more basic alternatives, with other works found in the
literature, and the impact of the cube in a larger application.

A. Cube function assessment

The performance and cost of the proposed architectures is
compared to 4 different implementations. First, the cube is
computed as 2 sequential floating point multiplications. Then,
as an optimized squaring followed by an additional floating
point multiplication. Next, Xilinx HLS code has been written
that computes the exponent, but lets HLS to implement the
cube of the integer mantissa. Finally, the single precision
implementation from [3], using one DSP block and pure logic.

Two hardware description languages haven been used. For
the non-pipelined architectures in Section IV-A1, VHDL al-
lowed a low level specification of the circuits without sequen-
tial elements. For the pipelined architectures in Section IV-A2,
Xilinx Vivado HLS has been used. This consists of C++ code
that can be both high or low level. At high level, it has been
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Fig. 10. Number of FFs for single and double precision implementations of
the cube function on Xilinx Virtex Ultrascale using 4 different strategies and
[3] (only SP).

used to automatically implement floating point products and
additions. At low level, C++ code that mimics VHDL has been
written, specifying integer arithmetic operations, alignments
and truncations. The HLS compiler is able to interpret those
operations and translate them into hardware with only a small
overhead compared to VHDL. The main advantage is that HLS
is able of retiming the circuits provided a target frequency.

In both cases, the code specifies how the mantissa and
exponent are obtained. The former, according to the proce-
dures described in Section III. The latter is obtained in 2
steps. First, the original value is multiplied by 3, and the bias
of the exponent is compensated. Then, the exponent can be
incremented in 1 or 2 units if the computed mantissa needs to
be normalized 1 or 2 positions.

1) Non-pipelined architectures: In Table V the number of
DSPs and LUTs/ALMs is presented for all the non-pipelined
architectures. As it has been shown before, computing the cube
reduces the number of DSP blocks with respect to implement
straight multiplications, but also compared to squaring the
operand followed by one multiplication. For single precision,
the number of LUTs/ALMs is also reduced. However, the
double precision architectures make use of look-up tables,
increasing the usage of reconfigurable logic. This is also true,
to a lower extent, for the optimized square. This question will
be discussed in more detail later in this section. The selected
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TABLE V
IMPLEMENTATION COST OF NON-PIPELINED CUBE ARCHITECTURES

COMPARED TO USING ONE SQUARER AND MULTIPLIER, AND USING TWO
MULTIPLIERS.

Single precision Double precision
Xilinx Intel Xilinx Intel

DSP LUT DSP ALM DSP LUT DSP ALM
cube 2 56 1.5 57 8 316 4 226
sqr 4 95 2 65 10 247 7 211
mult 6 144 2 70 12 219 8 209
HLS 4 307 18 380
[3] DSP 2 52 1 86
[3] logic 0 403 0 230

devices have been Xilinx Virtex Ultrascale VU440 and Intel
Arria 10 SX 160.

The results labeled as HLS show the importance of de-
signing architectures that skip useless computations. In the
proposed implementation, the mantissa is squared first and
then truncated to 24/53 bits before being multiplied again. As
HLS itself is unable to discover which bits in the intermediate
computations can propagate to the final cube value, it devotes
a large number of DSP blocks to compute unnecessary bits.
This is more notable for double precision.

Also in Table V, the implementation results for the quadratic
approximation method proposed in [3] are presented. Those
results are only available for single precision, as explained in
Section III-E. As it can be seen, the cost in DSPs and logic
is very similar to our work but, on top of that, 2 BRAM
or 2 M20K memory blocks are also required to store the
coefficients for the approximation. These figure have been
obtained using one optimized squarer that only requires 46
LUTs. Additionally, 2 full DSPs are needed in Xilinx FPGAs,
or 2 half ones in Intel FPGAs. When all the products are
implemented using logic, the consumption of LUTs or ALMs
increases notably, as shown in the last row in Table V.
Implementation details for the work in [2] are not listed here
because, as stated in table 1 of the same paper, only between
6 and 14 bits of precision are obtained, and the results in table
3 are not sufficiently detailed to tell the cost of implementing
the cube from the cost of implementing other parts of the
architecture.

2) Pipelined architectures: Additionally, Xilinx Vivado
HLS has been used to obtain pipelined implementations at
different clock speeds by specifying the desired cycle duration
in ns. Equivalent results could be obtained for Intel’s devices
using Quartus Prime with the required expertise.

In Figures 8, 9, and 10, four different implementations are
shown for each precision and target frequency. These are:
implementing the cube using two normal products (mult),
one optimized squarer followed by one normal multiplication
(sqr), the HLS implementation of the cube (hls), and the
architectures proposed in this paper (cube). Also, and only
for single precision, the implementation using DSPs of [3] is
shown.

Latency is plotted in Figure 8. Increasing clock speed in the
horizontal axis implies reducing the length of pipeline stages
and, therefore, increasing the number of those and the latency.
This is true with some exceptions, as Vivado manages to clock

the designs at 500 MHz without increasing the latency with
respect to 400 MHz, and the same happens between 250 and
300 MHz. As it can be seen, cube implementations requires
always fewer cycles to complete for each target frequency
and, moreover, the double precision implementation even
outperforms the single precision version of mult. Compared to
using an optimized squarer, cube also exhibits lower latency,
especially for double precision and high frequencies. This
is important because sqr already improves mult significantly.
Regarding hls, it achieves the second lower latency for double
precision, and is comparable to cube for single precision. The
method in [3] manages to keep latency low in most cases,
which can be explained because never 2 DSPs are chained.

The number of LUTs used by each architecture is shown
in Figure 9. This is the only graph in which cube does not
outperform the other options. It can be noticed again that
double precision cube requires a large number of LUTs, as it
implements several small products using reconfigurable logic.
On the contrary, mult and sqr rely almost exclusively on DSP
blocks. Also, hls requires by far the largest number of LUTs.
Regarding [3], it averages 30% more LUTs than our proposal.
This is a small difference, but it must be considered that it also
requires 2 BRAM. It has been tested that when Vivado tries to
use LUTs to implement the coefficient tables or the products in
[3], the number of consumed LUTs grows to several hundreds,
even for low frequencies.

For single precision, cube is the architecture with lower cost,
followed by sqr and then mult and hls as the most expensive
ones. With the exception of hls, none of them implement
products using LUTs, and the numbers are nearly constant
across the horizontal axis, growing slightly at high speeds.
For single precision cube, the number of LUTs in the 200
MHz version is lower than for the non-pipelined version.
Apparently, some synergies in the pipelined version allow to
save 8 LUTs. The difference is not high, but it has not been
possible to identify the reasons for that unexpected behavior.
The same happens at 100 MHz for double precision cube.

Next, the number of flip-flops is displayed in Figure 10. The
usage increases with the number of stages in the pipeline, so
there is a clear similarity with Figure 8. However, there are
some differences when Vivado finds a way to use the internal
flip-flops in DSP block in some cases. This is evident for the
double precision hls at 250 MHz, which requires less FFs
than at 200 MHz. In any case, hls is one the most expensive
implementations in terms of FFS. Also, for the single precision
cube unit at 300 MHz, latency increases, but the number of
flip-flops does not. The architecture proposed in [3] requires
fewer flip-flops, partly due to the lower latency, and partly
because the internal registers in the BRAMs are not accounted.
High FF counts are always a drawback of highly clocked
designs, which could raise some concerns about increasing
frequency. Hence, the balance between the consumption of
different types of resources on FPGAs is addressed in the
following paragraph.

Overall, the architecture in [3] consumes a similar amount
of LUTs and flip-flops, with reduced latency, and the same
amount of DSP blocks. However, it requires significant amount
of internal SRAM to store the coefficient tables, and it is
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limited to single precision. It must also be considered that the
main aim of the work in [3] is not to compute the cube, but
mostly the square root and its reciprocal and, in those cases,
it is among the state of the art.

One of the main aims of our work is reducing the number of
DSP blocks required to implement the cube. With the results
from Figures 8, 9, and 10, is now possible to justify that
decision. An analysis has been carried out comparing the
implementation cost with the resources available in all the
Virtex Ultrascale line of devices. For single precision, our
architecture takes between 0.10 and 0.50% of the available
DSPs in the device whereas, even for the most pipelined
version of the architecture, only 0.01-0.02% of LUTs and 0.01-
0.03% of FFs are used. For double precision, between 0.28-
1.33% of DSPs, but 0.02-0.14% of LUTs and FFs. In both
cases, DSP resources are consumed in greater amounts than
LUTs and FFs. The fact is also true for normal products and
optimized squarers, only that even more DSPs are requiered to
implement the same operations. Therefore, this results seem
to justify the choice of focusing on reducing the number of
DSPs in the architectures. At the same time, it shows that the
consumption of FFs is affordable even for high frequencies,
as they are not the limiting factor.

B. Case example: Painlevé’s second equation

In the previous section, it has been demonstrated that
custom units to compute the cube function allow to reduce
both latency and the consumption of valuable DSP blocks.
However, this means little if those advantages are diluted in
the context of a larger application. Therefore, a simple example
is presented here, Painlevé’s II equation [6] [8] reduced to real
numbers. This is a second order differential equation, and the
part relevant for our example is shown in Eq. 3.

y3 + ay + b (3)

The equation has been implemented in Xilinx Vivado HLS
in four different ways using double precision arithmetic. The
most significant results are shown in Figure 11. It can be seen
that using the custom cube unit reduces the latency (Figure
11(a)) of the whole circuit for most operating frequencies, but
the higher one. Also, the number of DSP blocks (Figure 11(b))
is significantly lower. Averaging in the range of considered
frequencies, the custom cube saves 10% of computing cycles
when compared to using 2 multiplications, and 8% compared
to using the optimized squarer. Average savings in DSP blocks
are 37% and 22% respectively. It can also be seen that
the number of DSPs lowers starting at 400 MHz. At low
frequencies, Vivado HLS prefers to implement floating point
adders using the integrated integer adders in DSP blocks.
At higher frequencies, however, it favors using LUTS. To a
lesser extent, this also happens with floating point multipliers.
Whereas it would be interesting to keep the same number of
DSPs for all the implementations, there is no way to force
Vivado HLS to use DSPs in all the frequency range. But
savings in DSPs do not come without a cost. In Figures 11(c)
and 11(d) it can be seen that the number of flip-flops and LUTs

grows accordingly as frequency increases, and the sudden
increase of the number of LUTs at 400 MHz is certainly
notable.

The same results have been obtained for the non-forced
Duffing’s oscillator [5] [7], so the are not shown here. In
both Painleveé’s and Duffing’s equations, the cubic term is
present, but not the quadratic one. Therefore, there is no gain
in computing the square first and share computations with the
cube. Despite focusing on Painlevé’s could look like cherry
picking, this type of cubic equations, which are known as
depressed cubics [20], are quite common.

Finally, when these or similar equations are computed in the
context of numerical integration, a stream of data is introduced
and computed without dependencies. The longer the stream,
the less relevant latency becomes. For example, in a stream of
100 data points, two architectures with latency of 20 and 25
cycles will actually end in 120 and 125 cycles respectively.
Therefore, it seems reasonable that the impact of reduced
latency could be diluted in some cases. However, the savings
in DSP consumption are always preserved.

C. Case example: Hodgkin-Huxley’s potential equation

As a second example, the integration of the electric poten-
tial (Equation 4) in the Hodgkin-Huxley’s model [4] [9] is
presented. It includes the calculation of m3 and n4.

dv

dt
= iCm · [I − gNam

3h(v − ENa) (4)

− gKn4(v − EK)− gL(v − EL)]

Both can be computed as normal products, or combined
with an optimized square. Furthermore, m3 can be calculated
directly in 2 ways as already shown. All this possibilities
have been tested, and results have been obtained using Xilinx
Vivado HLS and graphed in Figure 12. In this example, the
critical path does not include the computation of the cube.
Hence, latency is basically the same for all the architectures
and it only changes with the operational frequency. The
number of DSPS, however is still dependent on the use of
optimized square and cube functions. As it can be seen in
Figure 12(b), the smaller savings are with respect to using
the optimized squarer (∼6%); followed by the HLS cube
(∼9%); and simple multipliers (∼20%). Despite there is not
improvement in latency, this new example makes clear that
resource savings are still significant even when for more com-
plex equations. As already noticed for Painlevé’s II equation,
Vivado HLS decides to use less DSPs for adders and more
LUTs (Figure 12(d)) starting at 400 MHz, but this does not
change the trend in the number of DSPs consumed by each
architecture.

V. ADDITIONAL TESTING OF ACCURACY

An analysis of the terms used for computing the cube has
been carried out when describing each of the 4 architectures.
Whereas that analysis shows that truncation errors should
never sum up to more than 1 ulp, this is further tested in this
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Fig. 11. Implementation results at different clock frequencies for double
precision Painlevé’s second equation computing the cube in four different
ways: Optimized cube; optimized square plus normal multiplication; only
normal multiplications; and HLS synthesis.
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Fig. 12. Implementation results at different clock frequencies for double
precision Hodgkin-Huxley’s potential equation computing the cube in four
different ways: Optimized cube; optimized square plus normal multiplication;
only normal multiplications; and HLS synthesis.



11

TABLE VI
MEAN SQUARED ERROR WITH RESPECT TO exact CUBE COMPUTATION OF

THE MANTISSA, MEASURED IN ulps. RESULTS ARE GIVEN FOR THIS WORK
(cube) AND MICROPROCESSOR proc. THE exact RESULTS USED AS A

REFERENCE HAVE BEEN OBTAINED BOTH TRUNCATING (Tr) AND
ROUNDING (Rd).

Single precision Double precision
Xilinx Intel Xilinx Intel

Tr Rd Tr Rd Tr Rd Tr Rd
cube 0.01 0.50 0.07 0.57 0.22 0.66 0.24 0.74
proc 0.50 0.26 0.51 0.25 0.51 0.26 0.51 0.26

section by means of simulation. Thus, the proposed architec-
tures have been simulated in C and VHDL. The simulations in
C are significantly faster than those using VHDL and allowed
a greater coverage of inputs. The results (cube from now on)
have been compared at binary level with those produced by
an Intel Core i5 microprocessor (proc from now on) and,
moreover, the cube of the mantissa has also been computed
using extended 72 bit precision (exact).

For single precision, all possible mantissa values have been
tested for Xilinx and Intel, and the maximum difference
between cube and exact is 1 ulp. The mean squared error
(MSE) with respect to exact is shown in Table VI. Actually,
2 different errors are given, depending on whether the value
of exact is truncated to 24 bits (Tr), or rounded (Rd). A
quick analysis shows that proc overestimates the result because
rounding is applied twice to compute the cube, but cube
underestimates the results by never rounding up. Overall, the
error is small and implementation is simplified by avoiding
rounding and re-normalization.

For double precision, testing 252 mantissas would require
thousands of computer hours. Instead, 236 values are tested for
Xilinx and Intel. For Xilinx, the mantissa is divided in 3 parts,
a, b and c. For each of them, 212 values are tried, covering
all the combinations of the 6 msb and the 6 lsb. A random
value is then assigned to the bits in between (different for each
a, b and c). In this way, a wide sample of values are tested,
covering all the combinations of large and small values of the
3 terms. For Intel, the mantissa is divided in 2 terms, a and b,
so the same strategy is followed, only that 218 values are tried
for each one, covering all the combinations of the 9 msb and
the 9 lsb. The results are also shown in Table VI and, again,
the error is lower than 1 ulp in all cases, with proc tending to
overestimate and cube tending to underestimate the result. The
source code for assessing the error, plus the VHDL and HLS
code to implement the cube function can be found at [21].

VI. CONCLUSION

Specialized arithmetic units allow for faster and more effi-
cient calculations in custom computing machines. For comput-
ing the cube, architectures for single and double precision for
the two main FPGA manufacturers have been proposed. Com-
pared to using floating point multiplications, even if squaring
is optimized, implementation cost is reduced, particularly the
number of DSPs, which is critical. Latency is also reduced, as
fewer operations are implemented to obtain the same result.
The proposed architectures can also be pipelined and reach

high clock speeds. All those benefits are achieved at the cost
of a minimal loss in precision. Error is never greater than
1 ulp, and average error is comparable with that achieved
by a standard microprocessor. Compared with a previous
architecture that uses quadratic approximation to implement
several powers only for single precision, this proposal has
very similar cost and performance, but it avoids using RAM
to store the coefficient tables. Finally, combining optimized
cube and squaring architectures allows to reduce the cost of
implementing higher powers, if needed.
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