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Abstract 

Dynamic simulation of complex mechatronic systems can be carried out in an efficient and 

modular way making use of weakly coupled co-simulation setups. When using this approach, 

multirate methods are often needed to improve the efficiency, since the physical components of 

the system usually have different frequencies and time scales. However, most multirate methods 

have been designed for strongly coupled setups, and their application in weakly coupled co-

simulation is not straightforward due to the limitations enforced by commercial simulation tools 

used in mechatronics design. This work describes a weakly coupled multirate method intended to 

be a generic multirate interface between block diagram software and multibody dynamics 

simulators, arranged in a co-simulation setup. Its main advantage is that it does not enforce 

equidistant or synchronized communication time-grids, and therefore it can be easily applied to 

set up weakly-coupled co-simulations using off-the-shelf commercial block diagram simulators 

while giving the user a great flexibility for selecting the integration scheme for each subsystem. 

The method is first tested on a simple, purely mechanical system with known analytical 

solution and variable frequency ratio (FR) of the coupled subsystems. Several synchronization 

schemes (fastest-first and slowest-first) and interpolation/extrapolation methods (polynomials of 

different orders and smoothing) have been implemented and tested. Next, the effect of the 

interface on accuracy and efficiency is assessed making use of a real-life co-simulation setting 

that links an MBS model of a kart to a thermal engine modelled in Simulink. Results show that 

the proposed weakly coupled multirate method can achieve considerable reductions in the 

execution times of the simulations without degrading the numerical solution of the problem. 

Keywords: Multibody, co-simulation, multirate, weak coupling, block diagram simulators. 
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1. Introduction 

Modern complex mechatronic systems are made up of multi-domain components of different 

nature. An automobile is a very representative example of these kinds of systems, involving 

mechanical components (chassis, suspensions, steering mechanism, powertrain), active control 

devices (Anti-lock Braking System, Electronic Stability Control, traction control), hydraulic 

devices (brake circuit) and power sources (internal combustion engine or electric motors). Due to 

the increasing demand of quality and performance, the traditional design approach based on a 

sequential design of the components can no longer be applied to such systems: engineers need to 

model and simulate the dynamic response of the whole system, taking into account the 

simultaneous interaction phenomena between components.  

The modelling of complex mechatronic systems can be accomplished via two different 

strategies: strongly coupled and weakly coupled. On one hand, the strongly coupled strategy 

assembles the dynamic equations of each subsystem into a monolithic set of equations, which 

can be numerically integrated in a single environment. On the other hand, the weakly coupled 

strategy does not assemble the equations: their numerical integration is performed in parallel by 

several interconnected environments that exchange information during the integration process, 

working in a co-simulation configuration. Reviews about both strategies are provided in [1] and 

[2]. 

The weakly coupled strategy has important advantages over the strongly coupled one: 

specialized modelling and simulation tools, familiar to experts in the corresponding field, can be 

applied to each component. In addition, component models can be modified with minor impact 

on other components, which results in a better modularity of the whole model. For example, 
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control and hydraulic devices are usually modelled and simulated in general-purpose block 

diagram simulators like Matlab/Simulink from Mathworks [3], MATRIXx/SystemBuild from 

National Instruments [4] or the free open source tool Scilab/Scicos from INRIA [5]. Conversely, 

the behaviour of complex mechanical components is better modelled and simulated in 

specialized tools for multibody system dynamics like MSC.Adams [6], Simpack [7] or Recurdyn 

[8]; these tools also provide interfaces to the aforementioned block diagram simulators, which 

simplify the setting of weakly coupled simulations. Representative examples of these kinds of 

co-simulation setups are given in [9] and [10], where the authors combine a multibody system 

simulation package (ADAMS and Simpack, respectively) with a block-diagram simulator 

(Simulink) to model a full vehicle equipped with electronic control devices. Similar setups for 

the co-simulation of mechatronic systems are described in [11] and [12]. 

An important feature of complex mechatronic systems, derived from their multi-domain 

nature, is the presence of different time scales, which results in notably different dynamic 

response characteristics in terms of frequencies. For example, mechanical components have slow 

frequency responses compared to fast electronic components. The computational efficiency of 

dynamic simulations of complex mechatronic systems is quite important, because these models 

are often used in optimization processes (where each function evaluation involves a complete 

dynamic simulation) or hardware-in-the-loop settings (where the dynamic simulation must be 

run in real-time). In order to make the numerical integration of the dynamic equations of the 

whole system as efficient as possible, each component should be integrated with a stepsize 

adapted to its time scale. This procedure is known as multirate integration. 
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Research on multirate integration methods for ordinary differential equations (ODE) has been 

carried out since the late 1970s [13]. The basic idea is to employ two, or more, time-grids: a 

coarse one for the slow components, and a refined one for the fast components; the coupled 

terms in the slow and fast equation sets are estimated by means of extrapolation or interpolation 

methods. Many contributions to this subject have been proposed, including advanced techniques 

like dynamic partitioning of equations with automatic identification of fast and slow components 

during the integration [14], self-adjusting multirate time stepping strategies [15] and stability 

analysis of the proposed methods [16], [17]. 

The application of existing multirate integration methods to mechatronic models obtained by 

the strongly coupled strategy is straightforward, since they are precisely designed to work on a 

monolithic set of equations with full control on the integration process. However, if the 

mechatronic system is modelled according to the weakly coupled strategy, these multirate 

integration methods cannot be applied directly due to their particular features: 

(a) They introduce modifications in the integration schemes, something that is not possible in 

commercial off-the-shelf modelling and simulation tools used for weakly coupled co-simulation. 

For example, the aforementioned block diagram simulators and multibody system simulation 

packages offer their own set of integration schemes that cannot be modified. 

(b) They assume that the coarse and refined time-grids are equidistant and synchronized, 

which means that the large stepsize H is a multiple of the small stepsize h. This condition cannot 

be guaranteed in weakly coupled co-simulations if one or more subsystems are integrated with a 

variable time-step integrator, since the stepsize control algorithms of the different commercial 

simulation environments cannot be synchronized. 
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(c) They mitigate the unstable behaviour caused by the explicit extrapolation of some 

equation terms by introducing implicit schemes, which involve some kind of iterative process. 

Again, off-the-shelf simulation tools like block diagram simulators do not allow this kind of 

iteration with other simulation tools. 

Due to these impediments, commercial off-the-shelf simulation environments used in the 

mechatronics industry do not provide yet tools to enable truly multirate integration when they are 

used in weakly coupled co-simulation setups. Two examples of this situation are pointed: the first 

one is veDYNA [18], a real-time vehicle dynamics simulation environment very popular in the 

automotive industry, which is based on Matlab/Simulink. veDYNA works as an external 

simulation tool embedded in Simulink, and provides a library of mechanical elements to model 

any kind of automobile. Non-mechanical elements, like electronic and control devices, are 

modelled in Simulink as usual, exchanging input and output data with the mechanical model. 

veDYNA uses an internal semi-implicit fixed-step Euler integration scheme to solve the 

equations of motion of the vehicle, and requires that the Simulink integration be performed with 

the ode1 integrator (explicit fixed-step Euler’s method) in order to properly synchronize both 

integrations. This requirement is a strong drawback, since Simulink’s ode1 integration scheme is 

not suited at all in many situations. A better approach to multirate integration is SIMAT, the 

interface provided by the multibody simulation software Simpack to perform co-simulation with 

Simulink. SIMAT works as a Simulink block that exchanges data between the Simpack model 

and the Simulink model during the integration. However, its current implementation only allows 

fixed stepsizes for the external communication of the integrators. Other commercial off-the-shelf 

packages for multibody system simulation have similar limitations.  
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Research is being carried out to introduce multirate methods in weakly coupled co-simulation 

environments, principally in those which combine general-purpose block diagram simulators 

with external specialized simulation tools, a common setup in the industry. Busch et al. [19] 

adapted the aforementioned Simpack’s SIMAT interface to couple SIMPACK with the 

Modelica/Dymola simulation environment in order to evaluate different interpolation or 

extrapolation methods, but they enforced communication points that form an equally spaced time 

grid; in a similar way, Oberschelp and Vöcking [20] investigated the behaviour of some multirate 

techniques in weakly coupled co-simulations using equidistant and synchronized time-grids.  

The main goal of this work is to gain insight into the behaviour and performance of multirate 

methods in weakly coupled co-simulation environments when applied to off-the-shelf 

commercial tools without enforcing equidistant and synchronized communication time-grids. To 

achieve this, an interface including an algorithm to implement a general multirate method (i.e. 

not constrained to synchronized time-grids or to a particular integration scheme) able to couple 

block diagram simulators with external simulation tools, like multibody simulation packages, has 

been developed. The proposed algorithm can be configured to work in different modes and to use 

different interpolation and extrapolation methods. Its use is demonstrated in a very simple 

example, which clearly shows the need for adjusting the interpolation method and the co-

simulation strategy as a function of the nature of the mechanical system. The interface is later 

applied to a more complex example to evaluate the effect of multirate techniques on the 

efficiency and accuracy of industrial-like multi-domain simulations. 

The remainder of the paper is organized as follows: Section 2 describes the multirate co-

simulation interface created in this research and outlines the coupling strategy it uses. The test of 
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this interface through the use of a simple, purely mechanical example with known analytical 

solution is detailed in Section 3. In these two Sections, several techniques for increasing the 

accuracy of the simulation are described and the convenience of their use discussed in the light 

of the found results. In Section 4, the interface is used again, this time in the co-simulation of a 

real-life application, in which the multibody model of a kart is coupled to a Simulink block 

diagram representing a thermal engine. This example has been used to measure the impact of 

multirate techniques on the time required to compute the simulation and the precision of the 

results. Finally, Section 5 extracts some conclusions from the work and discusses future lines of 

research. 

2. Multirate co-simulation interface 

In order to attain the goals of this paper, a new multirate interface has been designed and 

implemented, which allows using a weakly coupled co-simulation scheme that combines a 

general-purpose block diagram package with a multibody simulation software tool. This 

configuration is very common in the design and development of mechatronic systems. Simulink 

[3] has been selected as block diagram simulator, since it is a well-known tool in this field. 

However, the building blocks and modelling procedures employed in Simulink are also available 

in other block diagram simulators like SystemBuild and Scicos, and therefore the co-simulation 

techniques presented in this section are not particular to Simulink and can be implemented in 

other tools in a straightforward way. On the other hand, the multibody simulation software is a 

C++ in-house developed code, specially optimized for the efficient simulation of dynamic 

systems [21], [22]. 
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Figure 1: Use of the multirate co-simulation interface 

 

The generic use of the interface is shown in the block diagram model depicted in Figure 1. 

The dynamics of the subsystem integrated by the block diagram package is modelled in the 

upper part of the figure. The states and the outputs of this subsystem are represented by x1 and 

y1, respectively, while t1 stands for the time inside the block diagram software. The multibody 

software, in the lower part of the figure, tackles the numerical integration of the second 

subsystem, which has its own states, outputs and time x2, y2 and t2. The time-steps of the 

subsystems are denoted by h1 and h2; as the mechanical components in mechatronic devices are 

usually slower than the rest of the system (electronic devices and control elements, for example) 

it will be assumed in the following that the block diagram software manages the fastest 

subsystem in the model, while the external multibody software integrates the slowest one. This 

condition is equivalent to state that h1 < h2. The co-simulation interface is responsible for 

obtaining the inputs for each subsystem (u1 and u2) from the outputs supplied by both programs 
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(which can include, but not necessarily, the states of the subsystem and their derivatives) and 

synchronizing the different time schemes of the subsystems. This interface is embedded in the 

block diagram simulator, in a block of type S-function in Simulink, UserCode in SystemBuild or 

C/Fortran block in Scicos. The design and behaviour of this block will be described in the 

following paragraphs.  

2.1. Coupling strategy for multirate integration 

As explained in the Introduction, the simulation environments used in weakly coupled co-

simulations implement their own set of integration schemes that cannot be modified. Therefore, 

our purpose is to implement a coupling scheme that enables a multirate integration of different 

subsystems independently of the integration schemes and time-steps that apply to each of them. 

In the proposed coupling scheme, the block diagram simulator (Simulink, in this case) plays the 

role of master integrator, since it is responsible for starting and stopping the numerical 

simulation. On the other hand, the external simulator acts as slave integrator, working on request.  

Without loss of generality, it will be assumed that the block-diagram simulator uses the well-

known fourth-order Runge-Kutta formula, which is known as ode4 in Simulink: 
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where the bj coefficients are weight factors whose values are 1/6 for j = 1, 4 and 1/3 for j = 2, 3. 

In order to advance a time-step from 1
it  to 1

1
it  , the block diagram simulator needs to evaluate all 
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blocks in the model four times, one for each term Kj. The first evaluation is performed at  1 1,i it x , 

using the states (x1 in this case) computed in the previous time-step. In block diagram 

terminology, this evaluation is known as major time-step, while the next evaluations 

(corresponding to K2, K3 and K4) are known as minor time-steps.  

 

Figure 2: Working diagram for the co-simulation interface block 

 

The co-simulation interface block in Figure 1 manages the evaluation of the dynamic 

response of the second subsystem at the times required by the block diagram simulator. It 

contains a set of functions and data structures responsible for synchronizing the numerical 

integrations in the block diagram software and the external simulator. The structure and 

behaviour of this block are represented in Figure 2. When the co-simulation interface block is 

evaluated at a given time, it calls its eval_slave function in order to get the inputs it needs. The 
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algorithm of this function is represented in pseudo-code in Table 1 and will be described in the 

next paragraphs. 

1) if 1
it  is a major time-step 

store 1
it , 1

iy  
n = 0 
2a): if (slowest-first) then 
while ( 2 1

j n it t  ) 
advance integration step in external simulator 
store results ( 2

j nt  , 2
j ny ); n = n + 1 

end 
2b): if (fastest-first) then 
while ( 2 2 1

j n it h t   ) 
advance integration step in external simulator 
store results ( 2

j nt  , 2
j ny ); n = n + 1 

end 
3) Interpolate or extrapolate u1 at 1

it  

Table 1:  eval_slave function algorithm, in pseudo-code 

 

In step 1, if the evaluation is performed in a major time-step (block diagram simulators 

provide routines to determine this condition), the input time t1 and outputs y1 in the block 

diagram are appended to a dataset that holds the time-history of these values. As it has been 

mentioned above, these outputs may include or not the states of the block diagram and their 

derivatives. Data at minor time-step evaluations are not stored because they do not correspond to 

integration points in the timeline. 

Step 2 determines whether the external simulator should move ahead in the numerical 

integration of its subsystem. Two criteria are available to take this decision (steps 2a and 2b), 

depending on the selected synchronization scheme: slowest-first and fastest-first [13]. In the 

slowest-first scheme, represented in step 2a, the numerical integration of the slowest subsystem 
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is always ahead of the fastest one. Therefore, when the co-simulation interface block is evaluated 

at t1 > t2, it calls the external simulator to move ahead in its numerical integration a certain 

number of time-steps (represented by counter variable n) until t1 < t2. After each time-step of the 

external simulator, the time and the outputs of the slow subsystem, t2 and y2, are appended to a 

dataset that holds the time-history of these values. In this process, the integration scheme of the 

external simulator will need the values of its inputs u2 at particular instants; these values are 

interpolated or extrapolated from the time-history of outputs of the fast subsystem y1 at major 

time-steps (stored in step 1) by the eval_master function. The fastest-first scheme represented in 

step 2b is very similar, but the numerical integration of the slowest subsystem is always one 

time-step behind the fastest one. 

Finally, in step 3 the values of the inputs to the fast subsystem, u1, at time t1, requested by the 

block diagram simulator are interpolated (or extrapolated, in case of the time t1 is ahead of the 

last time at which the outputs of the second subsystem are available) from the time-history of the 

outputs of the slow subsystem y2, stored in step 2. 

The interpolation or extrapolation of states in the eval_slave and eval_master functions is 

performed using order P polynomials. The user can select the value of P from 0 to 4. The 

polynomials are built with P+1 time-steps tP, ..., t0, selected as follows: tP is the time-step closest 

to the evaluation time t that satisfies tP  >  t (if there is any time-step ahead of t), and tP-1, ..., t0 

are the previous time-steps stored in the time-history.  

The functions and data structures of the co-simulation interface have been implemented as a 

C/C++ library, independent of the external simulator and the number of exchanged variables. 

The external simulator only needs to provide two functions: a function to move ahead a time-step 
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in the numerical integration and to return the resulting time and outputs and a user routine to 

connect the eval_master function. Most dynamics simulation tools can satisfy these 

requirements. 

2.2. Smoothing techniques 

For models with very different time scales in their subsystems, interpolation and extrapolation 

techniques may fail to give correct results in weakly coupled multirate co-simulation. Oberschelp 

and Vöcking [20] described a smoothing technique to overcome this problem; a similar strategy 

has been tested in this work. Smoothing is expected to improve the global precision of the 

simulation, avoiding the need of raising the number of integration time-steps per cycle, or using 

higher order integrators, which would noticeably increase the elapsed time in computations. 

When using smoothing, the interpolation or extrapolation strategies described above are 

replaced by an averaging of the values of the fast subsystem during the last time-step of the slow 

one. This averaging is performed on the basis of a fastest-first method, with the integration of the 

fast subsystem being performed in advance with respect to the slow one. When the slow 

subsystem needs to evaluate its states at time 2
nt , it requests the necessary inputs 2

nu  through a 

call to the eval_master function. The value of these inputs is determined by averaging the 

buffered values of the outputs of the fast subsystem y1 in the time-history from time 1
2
nt   to 2

nt . 

The averaged value is returned by the eval_master function, and considered constant during the 

integration of the whole time-step of the slow subsystem. 
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It should be noted that the use of extrapolation techniques is still required during the calls to 

the eval_slave function, for the computation of the states of the slow subsystem at the times 

required by the fast one. 

3. Test problem 

A test problem involving two subsystems with fast and slow dynamic responses will be solved 

by coupling a block diagram model in Simulink (to integrate the fast subsystem, 1) with an 

external multibody model (to integrate the slow subsystem, 2) through the multirate interface 

already introduced. The parameters of the test problem will be adjusted to generate a range of co-

simulation situations, which will be used to test different coupling strategies in terms of 

precision.  

 

Figure 3: Test problem 

 

The double-mass triple-spring system shown in Figure 3 has been selected as test problem. It 

is made up of two subsystems represented by masses m1 and m2, which are coupled by the 

spring k2. This simple, two degree-of-freedom system presents the advantage of having a known 

analytical solution for its dynamic response, which can be used as a reference in order to 

measure the accuracy of the coupled multirate numerical integration carried out by any co-
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simulation scheme. A similar mechanism has been used by Busch and Schweizer [23] to develop 

an analytical stability analysis of several co-simulation methods.  

The dynamics of the test problem is governed by Equation (2): 

1 2 21 1 1

2 2 32 2 2

0 0
0 0

k k km x x
k k km x x
        

        
        

     (2) 

where x1 and x2 measure the horizontal displacement of the masses from their equilibrium 

position. If initial velocities are set to zero, the analytical solution of these equations is given by 

     
     

1 11 1 13 2

2 21 1 23 2

·cos ·cos
·cos ·cos

x t C t C t
x t C t C t

 

 

 

 
     (3) 

From here on, frequencies 1 and 2 will be identified respectively with the primary 

frequencies of masses m1 (fast subsystem) and m2 (slow subsystem), assuming 1>2. Equation 

(3) depends on six parameters. For the purposes of this study, two of them are set to fixed values: 

1

11

1 Hz
1 mC

 


       (4) 

so the motion of the system can be characterized with the following ratios: 

1 2

12 11 23

1 11 13

2 23 21

/
/

/
/

FR
AR C C
AR C C
AR C C
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





       (5) 

The physical parameters of the system (stiffness and mass) and the initial values of the 

positions can be determined as a function of the parameters defined in Equation (5), so that the 

system moves with the desired frequency and amplitude ratios [24]. 
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 The frequency ratio FR measures how fast the fast subsystem m1 is, compared with 

the slow subsystem m2. 

 The amplitude ratio AR12 compares the primary amplitudes of both subsystems (C11 

for m1 and C23 for m2). 

 The amplitude ratios AR1 and AR2 measure how much the dynamic response of each 

subsystem is affected by the other subsystem.  

Numerical experiments performed in Section 3.2 will use different sets of values for the ratios 

defined above, in order to reproduce diverse co-simulation situations. As example, Figure 4 

shows the dynamic response of x1 for FR = 30, AR12 = 0.1, AR1 = 0.1 and AR2 = -1000.  

 

Figure 4: Dynamic response of x1 

 

The block diagram model used for the co-simulation of this test problem is shown in Figure 3. 

In this Simulink model, the acceleration of the fast subsystem goes through a double integration 

to obtain its position. This process is performed by Simulink integrator blocks. The dynamics of 

the slow subsystem (m2) is evaluated in the external multibody simulation package and the 

communication is managed by the co-simulation interface as described in Section 2.1.  
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Figure 5: Simulink model of the test problem 

 

3.1. Algebraic loops 

Block diagram simulators allow creating algebraic loops in the model by connecting the 

output of a block to its input via direct feedthrough blocks (i.e. without intermediate 

differentiation or integration blocks). Algebraic loops are a convenient way to model certain 

problems, but they have two drawbacks. First, they require an iterative solution at each time-step 

in the numerical integration carried out by the block diagram simulator; as a result, they 

drastically increase simulation times, which can become unacceptable for weakly coupled co-

simulation of mechatronic systems. Secondly, they cause stability problems. Numerical stability 

of models with algebraic loops may be achieved by iterative coupling techniques (see Busch and 

Schweizer [23] and Kübler and Schiehlen [25]), but they cannot be applied to co-simulation 

setups using off-the-shelf commercial block diagram simulators like Matlab/Simulink. Several 

techniques can be used to avoid algebraic loops: memory blocks, which delay the value of a 

variable one time-step during the integration, are a common example. The outputs of a memory 
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memory block are its inputs in the previous integration time-step, as expressed in the following 

mathematical relation: 

1n ny u          (6) 

where yn are the outputs of the block at time-step n and un-1 its inputs in the previous step. It is 

very convenient to test the proposed multirate method with this modelling technique, since it is 

often present in block diagram simulations. 

 

Figure 6: Simulink model with memory blocks to break algebraic loops 

 

In the model shown in Figure 5 spring forces acting on m2 are evaluated inside the external 

simulator. When these forces are transferred to the block diagram simulator, an algebraic loop 

appears, as shown in Figure 6, the input force F to the co-simulation interface is connected to its 

output x2 through the direct feedthrough block springs. The algebraic loop is broken by placing 

memory blocks in the force and time signals before entering the co-simulation interface block. 

This model will also be used to test the proposed multirate method. 
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3.2. Numerical experiments and error measurement 

Preliminary investigations confirmed that the behaviour of the multirate simulation of the test 

problem is mostly affected by the frequency ratio FR, while the other ratios defined in Equation 

(5) do not have a significant impact. Therefore, the test problem described in this Section has 

been adjusted with AR1 = 0.1, AR2 = -1000 and AR12 = 0.1; see Figure 4 for an example of the 

dynamic response of x1. A sweep of frequency ratios FR is performed in order to evaluate how 

this parameter affects the co-simulation process.  

In the block diagram simulator (Simulink), the ode4 integrator is used, while the multibody 

simulator uses the trapezoidal rule. Stepsizes h1 and h2 have been adjusted to perform 100 time-

steps per cycle in each simulator. These time-steps are small enough to keep integration errors 

very low in both subsystems, and therefore the error in the numerical solution will be mainly 

caused by the multirate co-simulation scheme. Each numerical experiment consists of a 

simulation of 100 cycles of the fastest frequency 1, which corresponds to 100/FR cycles of the 

slowest frequency 2. As the value of 1 is fixed by Equation (4), all the simulations have the 

same duration in time. 

The dynamic response obtained from the weakly coupled co-simulation is compared with the 

analytical solution of the motion given in Equation (3). The error in the numerical simulation is 

measured in two ways: position error and energy error. Position error is given by Equation (7) 

2

1

1 exactn
i i

i rms

x xFRx
N n x

 
   

 
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where xi is position at time ti obtained in the numerical simulation, exact
ix is the position at the 

same time obtained from the analytical solution in Equation (3), and n is the number of points of 

time in the time-history of the solution (n = 10,000). To obtain a relative error, the absolute error 

in position is divided by the quadratic mean of the analytical solution during the simulation (xrms) 

instead of by its value at each point, exact
ix , to avoid singularities when the analytical solution 

takes values close to zero. N = 100 is the number of simulated cycles of the fast subsystem, and 

the factor FR/N is introduced to correct the accumulation of errors when a high number of cycles 

of the slow subsystem is present. In this way, errors obtained from Equation (7) are comparable 

through numerical experiments with different FR ratios. If the test problem is fully modelled and 

solved in Simulink (without co-simulation) with the ode4 integrator and above-mentioned 

stepsize, the position error given by Equation (7) is in the order of 10-8, which corresponds to an 

almost exact solution. Position errors below 10% still correspond to a good numerical solution, 

which cannot be distinguished from the analytical solution at first glance.  

However, Equation (7) gives high position errors when the numerical solution presents a 

small delay compared to the analytical solution, even when the phase difference is very small 

and the numerical solution can be still considered good. Therefore, this position error can 

mislead about the precision in certain situations. To overcome this limitation, an additional 

measurement of the energy error can be used, as the system is fully conservative. Thus, the 

energy error is defined as 

2
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1 0

1 n
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being E0 the initial value of the energy of the system (that should be constant during the 

simulation), and Ei the energy at time ti obtained in the numerical simulation. The oscillations 

that have been observed in the energy history of the system (see Figure 7) justify the use of a 

norm-2 error instead of a simple comparison between the initial and final energy levels of the 

system.  

 

Figure 7: Time-history of the energy error in the numeric simulation (FR = 30), with cubic interpolation 

 

It has been observed that some numerical simulations lead to low energy errors despite the 

position time-history is obviously incorrect: the numerical integration conserves the system 

energy but gives a wrong solution after a few cycles. Therefore, both errors (position and energy) 

should be considered to determine the precision of the obtained numerical solutions. 

3.3. Effect of damping 

Damping forces are typical of controlled multibody system models in mechatronic 

applications. Therefore, dissipation should be considered in the model in order to better represent 

real-life co-simulation scenarios. 

The effect of damping has been considered adding dissipative elements (c1 and c3, in parallel 

with springs k1 and k3, respectively) to the test mechanical system represented in Figure 3. The 

analytical solution of the resulting mechanism is also known, and the same definition of position 
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error given in Equation (7) has been used in to measure the accuracy of the set of simulations. 

The value of c3 has been adjusted to a fraction  of the critical damping that the second mass 

would have in a one degree-of-freedom independent system. In the performed simulations, the 

value of the damping ratio  ranges between 0 and 0.5. The value of c1 is adjusted proportionally: 

3 2 2 1 1 12 ; 2 /c m c m FR           (9) 

The division of c1 by FR in Equation (9) is justified by the fact that the first subsystem 

performs 100 cycles in each simulation, whereas the slow one performs only 100/FR. 

Introducing this factor will make the relative damping of both subsystems comparable at any 

instant during the motion. 

3.4. Results and discussion 

Both fastest-first and slowest-first approaches have been tested. They will be referred to, in 

the following, as FF and SF. In addition, the interpolation orders used in eval_master and 

eval_slave functions can be different and one of the following: zero (constant value, designed as 

O0), linear (O1), quadratic (O2), cubic (O3) and fourth order (O4). The position error for x1 and 

the energy error, defined in Equations (7) and (8), have been measured for each interpolation 

method for a span of FR ranging from 1.5 to 100. Results for the test problem without damping 

can be seen in Figure 8. 
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Figure 8: Position error in x1 (left) and energy error (right) for different interpolation polynomial orders as a function 
of FR, for slowest-first (a) and fastest-first (b) schemes 

 

The first conclusion that can be drawn from the performed simulations is that it is not possible 

to find an optimal general purpose co-simulation method, even for such a simple test problem as 

the one described at the beginning of this Section. 

For FR < 25, slowest-first (SF) integration combined with cubic interpolation (O3) shows the 

best performance, attaining good position and energy error levels. The use of higher order 

interpolation polynomials suffers from instabilities, which results in the losing of the reference 

solution, and therefore has not helped the reduction of the errors. This result is consistent with 

the conclusions of [17]. Fastest-first (FF) techniques, on the other hand, attain very low error 
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levels in the integration of the position of x2, as it was expected, because the integration of the 

slow subsystem is performed on the basis of already evaluated values of x1; however, this 

improvement is made at the cost of worsening the energy levels and the shape of the time-history 

of x1.  

For 25 < FR < 50, SF integration without interpolation (O0) seems to be the most suitable 

strategy. The use of FF strategies in this range of frequency ratios leads to a numerical instability 

that translates into the amplification of the oscillations in x1, and can be visualized in Figure 8 as 

a peak in the error graphics around FR = 40. 

For FR > 50, the position errors with SF strategies are always over 10% and they follow an 

upwards trend; among them, the use of no interpolation (O0) gives the best results in position 

and energy. On the other hand, FF techniques seem to stabilize the position error in this region 

under 10% with reasonable levels of energy errors, at least with O2 and higher interpolation 

degrees. However, the analysis of the position history shows that this is a consequence of the 

attenuation of the fast oscillations of the first subsystem, m1. In fact, when FR grows to values of 

80 and higher, the inverse effect takes place and the oscillations are amplified, leading to great 

errors in position and energy. In both cases -amplification and attenuation- the results cannot be 

considered valid, even when low error levels in both position and energy are attained. 

Two consequences can be inferred from the exposed:  

 The errors defined in Equations (7) and (8), and used as indicators of the correctness 

of the solution, are not enough for determining the suitability of a co-simulation 

method for solving every particular problem.  
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 The use of FF strategies can lead to the rising of numerical instabilities, resulting in 

amplified oscillations in the solution of the problem or, on the contrary, in the filtering 

of small oscillations, with the loss of the contribution of the fast frequency 1 to the 

solution. 

For values of FR > 90, even SF with O0 configuration is affected by a sudden growth of the 

errors and every interpolation degree fails completely to follow the analytic reference solution.  

The use of smoothing techniques can help the reduction of the error for relatively high values 

of FR, increasing the ability of the simulation to track the reference solution. In order to attain 

acceptable results, the polynomial fitting interpolation methods for the evaluation of the states of 

the slow subsystem can be substituted with least squares approximations. This can help to filter 

the stiff variations in velocities that arise when the difference between the time-steps grows. 

A comparison of the co-simulation results for FR = 90 without damping can be seen in Figure 

9. The co-simulated output for variable x1 is compared to the analytical solution of the motion 

(thin continuous line). In the upper image no interpolation (O0) has been used; in the central 

graphic, O3 interpolation has been used in eval_master and eval_slave functions, together with 

FF strategy. The lower image shows the better accuracy obtained using the smoothing technique 

with O3 interpolation in eval_slave function. However, it must be noted that smoothing is subject 

to the same filtering or amplifying problems that fastest-first implementations suffer from. As a 

consequence, smoothing has only shown an acceptable performance for certain combinations of 

FR and the interpolation (or approximation) algorithm used for the slow subsystem. 
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Figure 9: Response to 20 simulation cycles of the fast subsystem for FR = 90; a) Slowest-first with O0. b) Fastest-
first with O3. c) Smoothing with O3 

 

Regarding the equivalent model with an algebraic loop and memory blocks, depicted in Figure 

6, the obtained results have been practically equivalent to those of the original model of Figure 5.  

In most simulations, it has been observed that the accumulated error grows as the simulation 

time increases. This fact is expected to be mitigated in real-life complex multiphysics systems for 

two reasons. First, real systems use to have dissipative elements like dampers that soften the 

effect of vibrations. In the second place, most co-simulated systems include control elements 

oriented to reference tracking, which make the whole system less sensitive to error accumulation. 
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Figure 10: Position error in x1 for O0 (left) and O3 (right) for different values of the damping  ratio () as a function 
of FR, for slowest-first (a) and fastest-first (b) schemes 

 

In order to investigate the behaviour of the multirate co-simulation algorithm in the presence 

of dissipative elements, the numerical experiments have been repeated using the test problem 

with damping described in Section 3.3. Results of this series of simulations are summarized, for 

representative orders of the interpolation polynomials, in Figure 10.  

Two conclusions can be extracted from the numerical experiments with damping elements: 

the first one is that, as expected, the introduction of damping in the system helps to reduce the 

position errors in the simulations. The reduction in position errors consistently decreases as 

larger values of the damping are used in the simulations: as a rough measure, a damping ratio  
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of 50% reduces the position errors around an order of magnitude. In the second place, for the 

range of damping coefficients and interpolation polynomials used, the addition of damping does 

not change qualitatively the performance of the co-simulation interface as a function of FR. This 

means that the errors in the tracking of the reference solution (amplification or attenuation of 

oscillations) described in the previous paragraphs appear at the same frequency ratios regardless 

of the addition of damping, although mitigated in case of high values of the damping ratio .  

4. Application to a multiphysics problem 

The use of the multirate co-simulation interface described in Section 2 is intended to reduce 

the computational effort associated with the numerical integration of the equations of motion of a 

multiphysics system, keeping at the same time the errors derived from interpolation and 

extrapolation under reasonable limits. It is desirable, thus, to quantify both the increase of 

efficiency and the introduced numerical errors, in the context of the simulation of a non-

academic, real-life test problem. To this end, the multirate interface and co-simulation simulation 

methods described above have been applied to the solution of the dynamics of a vehicle, in this 

case a kart. This multiphysics model is divided into two subsystems: a multibody model of the 

mechanical components of the vehicle, including the steering column, tyres and suspensions, and 

a thermodynamic model of a four-cylinder spark ignition engine. 

The model of the mechanical components of the kart can be seen in Figure 11; the figure 

represents only half of the model, the actual one includes the suspension of the four wheels and 

the whole chassis. The number of variables of the multibody system is 163, and the motion is 

integrated making use of the well-known index-3 augmented Lagrangian formulation with 

projection of velocities and accelerations. This formalism uses the trapezoidal rule as numerical 
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integrator, and has been described by Cuadrado et al. in [26]. The multibody code is 

implemented in Fortran and its configuration is detailed in [27].  

 

Figure 11: Multibody model of the vehicle used in simulations 

 

The engine is modelled in Simulink, following the description given in [28], using 

conventional diagram blocks and adding an automatic gearbox to link it to the transmission. The 

block diagram model that corresponds to this system is shown in Figure 12. The upper part of the 

graphic represents the Simulink model of the engine and gearbox, which also includes the co-

simulation interface, described in Section 2. Memory blocks are used to avoid the closing of an 

algebraic loop. The code for the simulation of the mechanical components of the kart is compiled 

as a library and invoked from the co-simulation interface. The model undergoes a maneuver in 

which the angle of the throttle varies following the law depicted in Figure 13. The pitch angle of 

the vehicle () is taken as control variable, to check if the setting behaves in an adequate way. 

This variable is closely related to the acceleration of the vehicle. 
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Figure 12: Joint model of the engine and the kart 

 

 

Figure 13: Throttle angle during simulations 

 

The Simulink part of the model is integrated with ode4, and the nature of the system it models 

requires using a time-step of h1 = 10-4 s. The multibody subsystem can be integrated with 

trapezoidal rule with time-steps as big as h2 = 10-2 s without significant errors. A direct co-

simulation scheme with the same time-step in both subsystems would be forced to use the 
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smallest one to keep numerical accuracy in the fast component, leading to a considerable 

increase in the total computation time. In the performed simulations, the time-step in the 

Simulink subsystem has been kept constant, and the time-step of the multibody subsystem has 

been varied from h2 = 10-4 s to h2 = 10-2 s in order to measure the effect of using multirate 

integration on the accuracy and efficiency of the simulation. The case in which both subsystems 

are integrated with the same time-step h1 = h2 = 10-4 s and constant interpolation O0 is taken as 

the reference solution; the pitch angle in this case is shown in Figure 14. The shape of the pitch 

angle curve in this graphic agrees with the angle law for the throttle depicted in Figure 13. The 

sudden drops in the angle between seconds 4 and 5 and at second 8 correspond to the moments 

when the gear of the vehicle is changed by the automatic gearbox.  

 

Figure 14: Pitch angle  in reference case 

 

The total computing time of the 10 s simulation under the reference conditions h1 = h2 = 10-4 s 

exceeds 150 s. The use of multirate co-simulation is expected to reduce the total computing time; 

however, it is also reasonable to expect divergences to occur in the results with respect to the 
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reference solution. In order to measure the impact of multirate simulation in the elapsed time in 

computations and the deviations from the reference value, simulations at different values of FR 

have been carried out. It must be noted that the meaning of FR, for complex multiphysics 

problems like the one here discussed, does not correspond to the ratio between the natural 

frequencies of the subsystems (which may not be easy to identify), but it must be substituted by 

the relation between the time-steps used to integrate them. For this first set of simulations, 

constant interpolation (O0) and slowest-first strategy have been used. Besides the computation 

time, the maximum deviation in pitch angle with respect to the reference case during the 

motion has been measured.   

 

Figure 15: Difference in pitch angle () with respect to the reference case, with FR=100, SF and O0 in both 
subsystems 

 

 FR = 1 (ref.) FR = 5 FR = 10 FR = 50 FR = 100 
Elapsed time (s) 158.4 44.8 30.4 19.0 17.1 
 (º) 0 0.0031 0.0055 0.0252 0.0398 

Table 2: Elapsed time in calculations and maximum difference in pitch angle () with respect to the reference 
case, for different values of FR, with SF and O0 in both subsystems 
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The results summarized in Table 2 show a dramatic reduction in computing time as the value 

of FR increases. Regarding to the differences in the pitch angle , these are never higher than 

0.04º in absolute value, for a variable that oscillates between -2.5º and 0.5º. This means that 

direct co-simulation, with the use of O0 polynomials, is able to simulate the system without 

significant deviations in the results, with values of FR up to 100. The plots of the pitch angle for 

the different values of FR overlap Figure 14, so they are indistinguishable in practice. A 

graphical representation of the deviation of the control variable with respect to that of the 

reference case has been chosen instead, and it can be seen in Figure 15 for FR = 100. The sudden 

variations of the measured deviation make the results in this graphic look like a solid region, but 

a line is actually represented. 

Figure 15 shows another relevant feature of the behaviour of the co-simulated system: the 

divergences in pitch angle increase when sudden variations of the variable happen, but the error 

gets close to zero when the angle varies slowly. This stable behaviour of the whole system agrees 

with the conclusions stated in Section 3.4. 

 SF FF FF FF FF 
Simulink interpolation O0 O0 O0 O0 O0 
MBS interpolation O0 O0 O1 O2 O3 
 (º) 0.0398 0.0385 0.0078 0.0086 0.0303 

Table 3: Maximum difference in pitch angle () with respect to the reference case for FR = 100. Only 
representative interpolation strategies are represented 

 

As it was shown in the previous Section, it is not possible to determine beforehand whether 

the use of higher order interpolation polynomials or other co-simulation techniques will enhance 

the obtained results. More simulations have been performed to gain insight into this subject; the 

most relevant ones are summarized in Table 3 for FR = 100. The elapsed time is not shown, as 
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there are not significant differences between the methods. Other configurations have been tested 

(alternative combinations of orders in interpolation polynomials and smoothing techniques) but 

their use has not improved the precision of the simulation. As it can be drawn from the table, 

there is no gain in rising the degree of the polynomials beyond one, as the linear case yields the 

best results for this problem. 

The time-history of the pitch angle in the case that performs best in Table 3 is represented in 

Figure 16. The comparison of this graphic to the one in Figure 15 highlights the benefits of using 

the fastest-first configuration and linear polynomials for the interpolation of the data from the 

MBS software in this particular case. 

 

Figure 16: Difference in pitch angle () with respect to the reference case, with FR=100, FF, O0 interpolation in 
Simulink and O1 interpolation in MBS 

 

5. Conclusions and future work 

In this research, the effect of multirate techniques in the efficiency and accuracy of weakly 

coupled co-simulated settings has been assessed. To this end, a general multirate co-simulation 
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interface for coupling block diagram simulators and external tools has been built, and a 

synchronization algorithm has been designed, in order to coordinate the exchange of information 

between both software packages. The developed interface avoids techniques which are not 

available in block diagram simulators (iteration or modification in the integration schemes) and 

does not enforce equidistant or synchronized communication time-grids. Therefore, it can be 

easily applied to set up weakly-coupled co-simulations using off-the-shelf commercial block 

diagram simulators while giving the user a great flexibility for selecting the integration scheme 

for each subsystem. 

The way in which the interface operates is based on interpolation and extrapolation of inputs 

and outputs between simulators using polynomial approximations, and two synchronization 

schemes are available: slowest-first and fastest-first. This interface allows the user to select 

different co-simulation settings, such as the order of the interpolation polynomials, and 

incorporates additional techniques to improve the behaviour of the simulation under certain 

conditions. 

The algorithm has been implemented in C/C++ and tested in the co-simulation of the 

dynamics of a simple, purely mechanical system by coupling the well-known simulation tool 

Simulink with an in-house developed multibody dynamics simulator. The accuracy of the 

method was tested against the frequency ratio FR, which is equivalent to the ratio between the 

time-step sizes used in the two coupled simulators. The first test battery of the designed interface 

has revealed that the adjustment of the co-simulation settings is strongly dependent of the 

physical characteristics of the simulated subsystems. As a consequence, the co-simulation 

parameters must be adapted as a function of the particular features of the problem, and a general 
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configuration, valid for any situation, cannot be found. In some cases, the use of smoothing is 

required in order to find a stable solution to the problem. 

Next, the interface has been applied to the co-simulation of the multibody model of a real 

kart, simulated in a Fortran MBS code, powered by a thermal engine modelled in Simulink. 

Results show that the use of multirate techniques has been able to reduce the computation time 

required by the simulation in one order of magnitude, within reasonable margin of error. In this 

case, the use of first order interpolation polynomials (O1) has contributed to alleviate the 

deviations of the motion with respect to the reference solution. The example is very 

representative of the co-simulation of complex mechatronic systems, where the dynamic 

simulation of the mechanical components in a multibody software consumes around 60% - 90% 

of the CPU-time, while the remaining time is consumed by the block diagram simulator. In these 

circumstances, increasing the stepsize in the multibody dynamics simulator by a factor of 50 can 

reduce the time needed to complete the simulations in a factor ranging from 2.4 to 8.5. 

Currently, two lines of future research can be pointed out. First, a general numerical indicator 

is desirable, in order to measure in a practical and easy way the deviation of a solution with 

respect to a reference. And second, a way of determining the optimal co-simulation strategy 

before running the simulation would be very helpful, as it would remove the need of performing 

several trials to adjust the interface to the particular conditions of the simulated system. 
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