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Abstract. This paper compares the efficiency of multibody system (MBS) dynamic simulation codes 

that rely on different implementations of linear algebra operations. The dynamics of an N-loop four-

bar mechanism has been solved with an index-3 augmented Lagrangian formulation combined with 

the trapezoidal rule as numerical integrator. Different implementations for this method, both dense and 

sparse, have been developed, using a number of linear algebra software libraries (including sparse 

linear equation solvers) and optimized sparse matrix computation strategies. Numerical experiments 

have been performed in order to measure their performance, as a function of problem size and matrix 

filling. Results show that optimal implementations can increase the simulation efficiency in a factor of 

2-3, compared with our starting classical implementations, and in some topics they disagree with 

widespread beliefs in MBS dynamics. Finally, advices are provided to select the implementation 

which delivers the best performance for a certain MBS dynamic simulation. 
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INTRODUCTION 
Dynamic simulation of multibody systems (MBS) is of great interest for 

dynamics of machinery, road and rail vehicle design, robotics and biomechanics. 

Computer simulations performed by MBS simulation tools lead to more reliable, 

optimized designs and significant reductions in cost and time of the product 

development cycle. The computational efficiency of these tools is a key issue for 

two reasons. First, there are some applications, like hardware-in-the-loop settings 

or human-in-the-loop devices, which cannot be developed unless MBS simulation 

is performed in real-time. And second, when MBS simulation is used in virtual 

prototyping, faster simulations allow the design engineer to perform what-if-

analyses and optimizations in shorter times, increasing productivity and 

interaction with the model. Therefore, computational efficiency is an active area 

of research in MBS, and it holds a relevant position in MBS-related scientific 

conferences and journals. 

A great variety of methods to improve simulation speed have been proposed 

during the last years [1-3]. Most of these methods base their efficiency 

improvements on the development of new dynamic formulations. However, 

although implementation aspects can also play a key factor in the performance of 

numeric simulations, their effect on real-time multibody system dynamics has not 

been studied in detail. Some recent contributions have investigated the 

possibilities of parallel implementations [4], but comprehensive comparisons 

about serial implementations in MBS dynamics have not been published yet.  

Multibody dynamics codes make an intensive use of linear algebra operations. 

This is especially true in global methods, which use a relative big number of 

coordinates and constraint equations to define the position of the system; these 

methods usually lead to O(N3) algorithms, where N is the number of bodies, and 

spend around 80% of the CPU time in matrix computations. Topological methods 

lead to O(N) algorithms due to the reduced size of the involved matrices, and 

therefore the weight of matrix computations is also reduced. However, if flexible 

bodies are considered, matrix computations take a significant percentage of 

simulation time even for topological methods.  

As a result, the implementation of linear algebra operations is critical to the 

efficiency of MBS dynamic simulations. These operations can be grouped into 

two categories: (a) operations between scalars, vectors and matrices, and (b) 
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solution of linear systems of equations; two additional orthogonal categories can 

be established based on the data storage format: dense storage or sparse storage. 

Many efficient implementations for these routines have been made freely 

available in the last decade. Their performance has been compared in previous 

works, both in an application-independent context [5-7] and under the perspective 

of a particular application like Finite Element Analysis [8] or Computational 

Chemistry [9]. But, as it will be explained in this paper, these studies do not fit the 

particular features of MBS dynamics, and therefore their conclusions cannot be 

extrapolated to this field. 

The goal of this paper is to compare the efficiency of different implementations 

of linear algebra operations, and study their effect in the context of MBS dynamic 

simulation. Results will provide guidelines about which numerical libraries and 

implementation techniques are more convenient in each case. This information 

will be very helpful to researchers developing high-performance or real-time 

multibody simulation codes. 

The remainder of the paper is organized as follows: Section 2 describes the test 

problem and the dynamic formulation used in the numerical experiments to 

compare the efficiency of different implementations; Sections 3 and 4 present 

efficient implementations for dense and sparse linear algebra, respectively; 

Section 5 compares the results obtained in Sections 3 and 4 and extrapolates them 

to other dynamic formulations; finally, Section 6 provides conclusions, advices 

for efficient implementations and areas of future work. 

2 BENCHMARK SETUP 
In order to study the effect of linear algebra implementations in MBS dynamic 

simulations, a test problem will be solved with a particular dynamic formulation 

using different software implementations. A starting implementation will also be 

described, since its efficiency will serve as a reference to measure performance 

improvements. 

2.1 Test Problem  
The selected test problem (Fig. 1) is a 2D one degree-of-freedom assembly of 

four-bar linkages with N loops, composed by thin rods of 1 m length with a 

uniformly distributed mass of 1 kg, moving under gravity effects. Initially, the 

system is in the position shown in Figure 1, and the velocity of the x-coordinate of 
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point B0 is +1 m/s. The simulation time is 20 s. This mechanism has been 

previously used as a benchmark problem for multibody system dynamics [3,10]. 

 

 

Figure 1: N-four-bar mechanism. 

 

2.2 Dynamic Formulation 
The N-four-bar mechanism has been modeled using planar natural coordinates 

(global and dependent) [11], leading to 2N+2 variables (the x and y coordinates of 

the B points), and 2N+1 constraints, associated with the constant length condition 

of the rods. The equations of motion of the whole multibody system are given by 

the well-known index-3 augmented Lagrangian formulation in the form: 

 

* *
1 1 , 0, 1, 2, ...

*
q qMq Φ Φ Φ λ Q

λ λ Φ          

T T

i i i i



 

  

  
 

(1) 

 

where M is the mass matrix (constant for the proposed test problem), q are the 

accelerations, qΦ the Jacobian matrix of the constraint equations, α the penalty 

factor, Φ  the constraints vector, λ* the Lagrange multipliers and Q the vector of 

applied and velocity dependent inertia forces. The Lagrange multipliers for each 

time-step are obtained from an iteration process, where the value of *
0λ  is equal to 

the *λ  obtained in the previous time-step. 
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As integration scheme, the implicit single-step trapezoidal rule has been 

adopted. The corresponding difference equations in velocities and accelerations 

are: 

 

1 1

1 12 2

2 2ˆ ˆ;

4 4 4ˆ ˆ;

q q q q q q

q q q q q q q

n n n n n n
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(2) 

 

Dynamic equilibrium can be established at time-step n + 1 by introducing the 

difference Eq. (2) into the equations of motion (1), leading to a nonlinear 

algebraic system of equations with the dependent positions as unknowns: 

 

   
1

2 2 2

1 1 1
ˆ 0

4 4 4n 1 q nf q Mq Φ Φ λ Q Mq
n

T
n n n

t t t


   

  
       

(3) 

 

Such system, whose size is the number of variables in the model, is solved 

through the Newton-Raphson iteration 

 

 
 i+1

f q
q f q

q i
i

 
        

 
(4) 

 

using the approximate tangent matrix (symmetric and positive-definite) 

 

 
 

2

2 4 q q
f q

M C+ Φ Φ K
q

Tt t


   
   

 
 

(5) 

 

where C and K represent the contribution of damping and elastic forces of the 

system (which are zero for the test problem). Once convergence is attained into 

the time-step, the obtained positions n+1q  satisfy the equations of motion (1) and 

the constraint conditions 0Φ  , but the corresponding sets of velocities *q and 

accelerations *q  may not satisfy 0Φ   and 0Φ  . To achieve this, cleaned 

velocities q  and accelerations q  are obtained by means of mass-damping-

stiffness orthogonal projections, reusing the factorization of the tangent matrix: 
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(6) 

 

This method, described in detail in [12], has proved to be a robust and efficient 

global formulation [13,14]. All numerical experiments will be performed using a 

time-step t of 1.25·10-3 seconds and a penalty factor α of 108. 

2.3 Starting Implementation  
In our starting implementation, the simulation algorithm was implemented 

using Fortran 90 and the Compaq Visual Fortran compiler. Two versions were 

developed: (a) a dense matrix storage version, using Fortran 90 matrix 

manipulation capabilities and the linear equation solver included with this 

compiler (IMSL Fortran Library, from Visual Numerics), and (b) a sparse matrix 

storage version, using the MA27 sparse linear equation solver from the Harwell 

Subroutine Library. These two implementations, typical in the multibody 

community, have been tuned and improved by our group during the last years, and 

they have proved to be faster than commercial codes [13,14]. Its efficiency will 

serve as a reference to measure the performance improvements achieved with the 

new implementations proposed in this paper.  

 

Table 1: Percentage of the total CPU time required by each algorithm phase in the starting 
implementation for typical problem sizes: dense version in small problems (10 loops, 22 variables) 
and sparse version in medium-size problems (40 loops, 82 variables). 

Stage  Dense  Sparse  
Evaluation of residual and tangent matrix, Eq. (3) and (5) 48% 15% 

Evaluation of right-term in orthogonal projections, Eq. (6) 4% 13% 

Tangent matrix factorizations and back-substitutions, Eq. (4) and (6) 44% 51% 

Other 4% 21% 
 

 

Table 1 shows the results of a CPU usage profiling in our starting 

implementations, for both dense and sparse versions, applied to representative 

problem sizes. As stated in the introduction, matrix computations consume most 

of the CPU time. 
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In order to test alternative implementations, the authors have developed a new 

MBS simulation software, implemented in C++, which can be easily configured to 

use different matrix storage formats and linear algebra algorithms and 

implementations. Numerical experiments have been performed on an AMD 

Athlon64 CPU. After testing different operating systems and compilers, results 

show that their effect on the performance is an order of magnitude lower than the 

effect of linear algebra implementations. Final CPU times have been measured 

using the GNU gcc compiler and the Linux O.S., without loss of generality. 

3 EFFICIENT DENSE MATRIX IMPLEMENTATIONS 
Global formulations applied to reduced rigid models (e.g. an industrial robot), 

or topological formulations applied to medium-sized rigid models (e.g. a complete 

road vehicle), lead to algorithms that operate with small-sized matrices of 

dimensions less than 50x50. In these cases, dense linear algebra is frequently used 

in MBS dynamics, since it is supposed to provide equal or higher performance 

than sparse implementations. Achieving real-time in the simulation of these small 

problems can be a challenge in hardware-in-the loop settings (e.g. advanced 

Electronic Stability Control systems for automobiles), due to the low computing 

power of embedded microprocessors, the small time-steps required for hardware 

synchronization and the added control logic. 

A straightforward way to increase the performance of dense matrix 

computations is by using an efficient implementation of BLAS (Basic Linear 

Algebra Subprograms). BLAS [15] is a standardized interface that defines 

routines to perform low level operations between scalars, dense vectors and dense 

matrices. A Fortran 77 reference implementation is available, and more efficient 

implementations have been developed by hardware vendors and researchers. 

These optimized BLAS versions exploit hardware features of modern computer 

architectures to get the best computational efficiency. In addition to the reference 

Fortran 77 implementation, three optimized BLAS implementations have been 

tested: 

 

 ATLAS (Automatically Tuned Linear Algebra Software), which employs 

empirical techniques to generate an optimal implementation for any 

hardware architecture [7]. 
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 GotoBLAS, based on optimized assembler kernels, hand-written for the 

most popular hardware architectures [16]. 

 ACML, developed by the microprocessor manufacturer AMD for its CPUs 

[17]. Other hardware vendors also provide their own implementations 

(MKL from Intel, SCSL from SGI, etc.). 

 

Dynamic simulations can also make a profit of these optimized BLAS 

implementations in the solution of dense linear equation systems, provided the 

LAPACK library is used [18], since its linear equation solvers are based on low-

level BLAS operations. In addition to the reference LAPACK implementation, 

written in Fortran 77, some optimized BLAS implementations like ATLAS and 

ACML supply their own optimized versions of the LAPACK linear solvers.  

 

Figure 2: Performance of different dense BLAS and LAPACK implementations. 

 

The proposed test problem, with a number of loops ranging from 1 to 20 (i.e. 

number of variables ranging from 4 to 42), was solved using different BLAS and 

LAPACK implementations to perform all matrix computations. Since the tangent 

matrix in the proposed dynamic formulation is symmetric and positive-definite 

(SPD), only the lower triangular part of the matrix is computed, and the LAPACK 

routines DPOTRF and DPOTRS have been used as linear equation solver. 

Performance results are shown in Figure 2, where the legend text is encoded in the 



9 

form “BLAS implementation + LAPACK implementation” (except for the 

starting implementation), and the combinations are ordered by increasing 

efficiency. 

Results in Figure 2 clearly show the advantage of using BLAS and LAPACK, 

which speed-up the simulation in a factor between 2 and 5, depending on the 

problem size, compared with our previous starting implementation. The low 

performance of the ATLAS implementation, compared to the BLAS reference 

implementation, can be explained by its high sensitiveness to the development 

environment (e.g. compiler version) and its current unstable state (it is under 

strong development). The vendor implementation (ACML) and GotoBLAS 

deliver the best results except for very small problems (up to 10 variables). The 

implementation named “Ref.+Ref.” delivers the best performance for very small 

problems, and 70-80% of the performance of the best implementations for 

medium-size problems (3 times more efficient than our starting implementation); 

in addition, it has a very good portability (it is written in plain Fortran 77) and 

usability: the installation process is straightforward, which is not always true for 

other implementations. 

Since some MBS dynamic formulations lead to a non-symmetric tangent 

matrix [19], the same numerical experiment has been executed using general 

algorithms (not SPD-specific) to compute all matrix operations; CPU times are 

about 15% higher, but the efficiency ranking of Figure 2 is maintained. 

4 EFFICIENT SPARSE MATRIX IMPLEMENTATIONS 
In MBS dynamics, sparse matrix techniques are used in global formulations 

applied to medium- or big-sized rigid models; as an example, a global model of an 

automobile leads to matrices of dimension about 200x200 [14]. If flexible bodies 

are considered, the matrix size increases, making sparse techniques profitable 

even if topological formulations are used: a topological model of the same 

automobile, with some of its bodies characterized as flexible elements (described 

by component mode synthesis), leads to matrices of dimension about 100x100. In 

any case, MBS models developed with real-time formulations hardly ever lead to 

matrix sizes bigger than 1000x1000, significantly smaller than the typical sizes in 

other applications like Finite Element Analysis (FEA) or Computer Fluid 

Dynamics (CFD).  
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Regarding the sparsity, the proposed test problem and MBS dynamic 

formulation lead to a tangent matrix of size 2N+2 and 12N+4 structural non-zeros. 

For matrices of size 50x50, 100x100 and 500x500, the corresponding number of 

non-zeros is 12%, 6% and 1%. These are representative values for MBS 

simulations, and they are quite higher than typical values in other applications that 

require sparse matrix technology (FEA, CFD). 

Hence, MBS dynamics has two characteristics which make its sparse matrix 

computations different from other applications:  

a) Matrix computations are very repetitive, and the sparse patterns remain 

constant during the simulation. Therefore, symbolical preprocessing can be 

applied to almost all matrix expressions at the beginning of the simulation, 

in order to accelerate the numerical evaluations during the simulation. 

Section 4.1 presents some tips to exploit this feature. 

b) The involved sparse matrices are relatively small and dense, compared with 

the typical values in sparse matrix technology. Section 4.2 evaluates how 

sparse linear equation solvers perform in these circumstances. 

4.1 Optimized sparse matrix computations 
Several numerical libraries are available nowadays to support sparse matrix 

computations: MTL, MV++, Blitz++, SparseKIT, etc. For our new 

implementations, we have chosen uBLAS, a C++ template class library that 

provides BLAS functionality for sparse matrices [20]. Its design and 

implementation unify mathematical notation via operator overloading and 

efficient code generation via expression templates. Even though, the performance 

of some matrix operations can be further improved if some special algorithms are 

used. Results of CPU usage profiling (similar to Table 1) guided us to optimize 

three operations: 

The first optimized operation is the rank-k update of symmetric matrix, 

q qΦ ΦT , computed in Eq. (5). Since the sparse structure of the Jacobian matrix 

qΦ is constant, a symbolic analysis is performed in order to pre-calculate the 

sparse pattern of the result matrix and to create a data structure that holds the 

operations needed to evaluate it during the simulation. In our starting sparse 

implementation, a similar approach was taken, but the Jacobian matrix was stored 

as dense, to simplify the operations at the cost of a higher memory usage. 
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Figure 3: Sparse storage formats used in out implementations. 

 

The second optimized operation is the matrix addition computed in Eq. (5). 

Our starting sparse implementation used the Harwell MA27 routine as linear 

equation solver, which requires the sparse matrix to be stored in coordinate format 

(Figure 3), and allows duplicated entries in the matrix structure. Therefore, the 

matrix addition is not actually computed, since the different terms are appended as 

duplicated entries in the tangent matrix. Our new implementation uses the 

compressed column storage format (Figure 3), since it is required by the sparse 

linear equation solvers tested in Section 4.2. With this storage format, matrix 

additions require complex data traversing that slows down the performance. The 

following approach was taken in order to optimize the operation: 

 

1 21 2B A At t   (7) 

 

In the preprocessing stage, the sparse pattern of B is calculated as the union of A1 

and A2 sparse patterns, and the resulting pattern is added to A1 and A2. In this 

way, A1, A2 and B share the same sparse pattern (same indx and pntr arrays in the 

compressed column storage format shown in Figure 3), and therefore, the matrix 

addition can be computed as a vector addition of the val arrays: 

 

1 21 2B A Aval val valt t   (8) 

 

This technique increases the number of non-zeros (NNZ) of the addend matrices. 

In the proposed MBS dynamic formulation, the NNZ of the mass matrix M is 

increased in a 10% approximately, which slows down the matrix-vector 
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multiplications needed in the right terms of Eq. (3) and (6). However, the 

simulation timings show that this slowdown is negligible compared with the gains 

derived from the fast matrix addition.  

Finally, the third optimized operation concerns sparse matrix access. The write 

operation  ,A iji j a , straightforward in dense storage, needs additional position 

lookup when the compressed column storage is used. In the proposed formulation, 

the update of the Jacobian matrix qΦ in each iteration takes 10-15% of the CPU 

time. The involved operations are rather simple, and most of this time is spent in 

matrix access. In order to optimize this procedure, a preprocessing stage evaluates 

the Jacobian matrix and registers the order in which entries  ,qΦ i j  are written in 

the val array of the compressed column format, creating a vector that holds 

indices to these positions, in the same order of evaluation. Latter, in the simulation 

stage, access to the Jacobian matrix is performed using this index vector, without 

the need to map (i,j) indices to memory addresses for each write operation. 

 

Table 2: Efficiency of the optimized sparse matrix operations. 

Sparse operation 
CPU time (microseconds) 

Ratio 
Not optimized Optimized 

1) Rank-k update of symmetric matrix 2528.2 9.4 269 
2) Matrix addition 140.9 1.9 74 
3) Jacobian matrix evaluation 11.6 3.8 3 

 

 

Table 2 summarizes the performance gains delivered by the proposed 

optimizations, compared with the performance delivered by the uBLAS default 

algorithms (which are similar to other generic sparse matrix libraries). The 

numerical experiment used the matrix terms derived from an N-four-bar 

mechanism with N=40 loops, which leads to a tangent matrix of size 82x82. 

Results show the importance of optimizing rank-k updates and matrix additions, 

since the performance delivered by off-the-shelf sparse matrix libraries is not 

satisfactory for these repetitive operations.  
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4.2 Evaluation of sparse linear equation solvers  
Data in Table 1 shows that, in our starting sparse implementation, about 50% 

of the total CPU time is spent in tangent matrix factorizations and back-

substitutions, Eq. (4) and (6). Thus, the main performance improvements in MBS 

dynamic simulation can be achieved by using a more efficient sparse linear solver. 

During the last decade, sparse solvers have significantly improved the state of the 

art of the solution of general sparse linear equation systems, and more than 30 

sparse solver libraries are freely available in the World Wide Web [21]. 

The efficiency of sparse solvers varies greatly depending on the matrix size, 

structure, number of non-zeros, etc. In addition, solving a sparse linear equation 

system usually involves three stages: preprocessing (ordering, symbolic 

factorization), numerical factorization and back substitution; some solvers are 

very fast in the first stage, while others perform better in the second or third stage. 

The performance of sparse solvers has been compared in previous works [5,6], but 

the conditions of these studies (in particular, matrix sizes and percentage of non-

zeros) do not fit the above-mentioned particular features of MBS dynamics, and 

therefore their conclusions cannot be extrapolated to this field. As a result, it is 

almost impossible to determine, without numerical experiments, which sparse 

solver will deliver the best performance in an MBS dynamic simulation.  

 Given the large number of existing sparse solvers, a selection process is 

required in order to narrow the scope. Solvers for shared memory or distributed 

memory parallel machines have been discarded, since the small matrix sizes in 

MBS real-time dynamics (almost fit in the CPU cache memory) makes them 

unprofitable. The same argument applies to iterative solvers and out-of-core 

solvers, designed for very big linear equation systems. From the remaining 

solvers, those that performed best in previous comparative studies have been 

selected: 

 

 Cholmod, a left-looking supernodal symmetric positive definite solver [22]. 

 KLU, a solver specially designed for circuit simulation matrices [23]. 

 SuperLU (serial version), an unsymmetric general purpose solver [24]. 

 Umfpack, an unsymmetric multifrontal solver [25]. 

 WSMP, a symmetric indefinite solver [26]. 
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Despite the coefficient matrix is symmetric positive-definite in the proposed 

dynamic formulation, we have included in the numerical experiments some 

general, non-symmetric solvers (KLU, SuperLU, Umfpack), since other dynamic 

formulations lead to a non-symmetric coefficient matrix [19]. In these cases, the 

whole coefficient matrix (upper and lower parts) is computed, while with 

symmetric solvers only half matrix is used in the formulation equations. Each 

solver supports its own set of reordering strategies; all of them have been tested to 

select the best one in each simulation. In addition, all the optimizations described 

in the previous Section were applied to our new sparse implementation. 

 

Figure 4: Performance of different sparse linear equation solvers as a function of problem size. 

 

The proposed test problem, with a number of loops ranging from 10 to 500 (i.e. 

number of variables ranging from 22 to 1002), was solved using different sparse 

solvers. Performance results are shown in Figure 4 for a number of variables up to 

160, since the trends are preserved for higher number of variables. The legend text 

shows the name of the sparse solvers, ordered by increasing efficiency. 

Surprisingly, KLU is the fastest solver, despite being a general solver that does 

not exploit the symmetric positive definite condition of the coefficient matrix; in 

addition, it has been designed for circuit simulation problems, which lead to very 

sparse matrices, the opposite case of MBS dynamics. However, these results have 

been obtained by using the KLU refactor routine for numerical factorizations, 



15 

which reuses the pivoting strategy generated in the preprocessing stage. In 

multibody problems where the elements of the tangent matrix of Eq. (5) may 

significantly change their relative values during the simulation (e.g. due to violent 

impacts), the initial pivoting strategy may become invalid and the refactor routine 

would probably accumulate high numerical errors. To avoid this, the KLU solver 

can recalculate the pivoting strategy in each numerical factorization, but this 

method increases the CPU times in a 50%. On the other hand, Cholmod, a 

symmetric positive definite solver, performs at 85% of KLU, despite recalculating 

the pivoting strategy in each numerical factorization. Our best new sparse 

implementations (using KLU or Cholmod) perform faster that our starting 

implementation, in a factor from 2 (small problems) to 3 (big problems of 1000 

variables). 

4.3 Effect of dense BLAS implementation 
Some sparse solvers, like Cholmod, rely on dense BLAS to increase their 

performance. In addition, some sparse matrix operations (e.g. the optimized 

matrix addition described in Section 4.1) are actually computed as dense vector 

operations using BLAS routines. Results shown in Figure 4 have been generated 

using the reference BLAS implementation. The same numerical experiment has 

been executed using the faster, optimized GotoBLAS and ACML 

implementations, and CPU times have decreased only in a 2% - 3%. Hence, the 

reference BLAS implementation is recommended for MBS dynamics in sparse 

implementations, since it provides the best compromise between performance and 

usability. 

5 SPARSE VS. DENSE IMPLEMENTATIONS 
As stated previously, dense linear algebra is frequently used in MBS dynamics 

for small problems (dimension of the coefficient matrix lower than 50), since it is 

supposed to provide higher performance than sparse implementations [27]. Our 

starting sparse implementation, which already employs some of the optimizations 

described in Section 4.1, disagrees with this assumption, and this fact is reinforced 

with the performance of our new optimized implementations: sparse versions 

perform always faster than dense versions even for small problems, in a factor 

which ranges from 1.5 (problems of 10 variables) to 5 (problems of 50 variables). 
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Figure 5: Performance of different sparse linear equation solvers as a function of tangent matrix 
filling, for a problem size of 100 variables. 

 

However, this conclusion has been obtained for the proposed test problem and 

dynamic formulation, and it could be argued that it cannot be generalized to other 

situations that lead to a coefficient matrix with a higher percentage of non-zeros, 

as in the case of highly constrained mechanism or topological formulations. The 

objection could be made to the efficiency ranking shown in Figure 4. In order to 

get insight about this subject, the numerical experiments used to generate Figure 4 

were repeated, but in this case artificial non-zeros were introduced in the mass 

matrix M, in order to generate a tangent matrix with a variable percentage of non-

zeros. Figure 5 shows the CPU times for a mechanism of 48 loops (100 variables), 

as a function of matrix filling. Results show that two sparse implementations, 

based on the Cholmod and WSMP sparse solvers, are always faster than the best 

dense implementation, even with 100% of non-zeros in the tangent matrix. This 

surprising fact can be explained by two factors: (a) Cholmod and WSMP rely on 

dense BLAS routines to perform the factorization, and therefore they start to 

operate as dense solvers as the matrix filling increases; (b) the percentage of non-

zeros is always lower in the Jacobian matrix than in the tangent matrix, hence 

optimized sparse implementations achieve significant time savings in Jacobian 

operations, in comparison with dense implementations. 
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Figure 6: Best implementation, as a function of problem size and percentage of non-zeros in the 
tangent matrix. 

 

 

Figure 7: Best implementation, as a function of problem size and percentage of non-zeros in the 
tangent matrix (refactor routine of KLU is not used). 

 

Results for other problem sizes are synthesized in Figure 6: the different 

regions represent the points (problem size, matrix filling) where each 

implementation delivers the best performance. For most MBS problems and 

dynamic formulations, a sparse implementation based on the KLU solver will be 

the frontrunner. However, topological formulations with a symmetric tangent 

matrix will benefit from a sparse implementation based on the WSMP solver, 

specially when they are applied to rigid models, which result in a higher matrix 

filling. 
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Figure 6 has been obtained by using the KLU refactor routine for numerical 

factorizations. As explained in Section 4.2, this may cause trouble in problems 

where the entries of the tangent matrix change their relative values significantly 

during the simulation. If the refactor routine is not used, Figure 7 is obtained. In 

this case KLU is replaced by Cholmod, WSMP increase its influence area, and the 

dense implementation based on LAPACK emerges for very small problems (less 

than 10 variables), but with a very small advantage. Conversely, two exceptions 

can be mentioned: (a) for dynamic formulations with symmetric indefinite tangent 

matrices, WSMP would be the frontrunner for almost all the situations, since 

Cholmod does not support them; (b) for dynamic formulations with unsymmetric 

tangent matrices, KLU would be the again frontrunner for almost all the situations 

(even if the refactor routine is avoided), since WSMP does not support them. 

6 CONCLUSIONS 
Regarding the implementation aspects of MBS dynamic simulations, the 

following conclusions can be established: 

 Efficient linear algebra implementations can speed up the efficiency in a 

factor of 2-3, compared with traditional implementations. In other words, 

problems of double or triple size can be solved with the same resources. 

 The proposed optimizations based on symbolic preprocessing of the sparse 

matrix computations can deliver huge speedups, since off-the-shelf sparse 

matrix libraries do not take advantage of the constant sparse pattern of 

operations during the dynamic simulation. 

 Optimized sparse implementations are recommended since they perform 

better than optimized dense implementations, even for small-sized 

problems or relatively dense matrices. This disagrees with the widespread 

belief in MBS dynamics.  

 Concerning sparse linear equation solvers, it has been found that KLU, an 

unfamiliar solver designed for circuit simulation, performs very well with 

many of the linear equation systems resulting from MBS dynamics. In 

addition, it was found that the reference BLAS implementation provides the 

best compromise between performance and usability for sparse 

implementations. 
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The results from numerical experiments are summarized in Table 3, which 

provides a simple decision rule to select the best linear equation solver for MBS 

dynamics, based on matrix type, size and percentage of non-zeros. Efficient 

implementations of global MBS dynamic formulations can be easily achieved, 

provided the above recommendations are followed. All the recommended 

software libraries are freely available, and the proposed optimization techniques 

are not bounded to any programming language. 

 

Table 3: Decision rules for selecting the best sparse solver for MBS dynamics, based on matrix 
type, size and percentage of non-zeros. 

Type of tangent matrix 
(No. of variables) x (% of non-zeros - 10) 

< 900 > 900 

Symmetric positive definite KLU (smooth problems) 
Cholmod (rough problems) WSMP 

Symmetric KLU WSMP 
Unsymmetric KLU KLU 

 

 

As a consequence of the abovementioned conclusions, the limit for problem 

size where global formulations perform better than topological formulations, 

established in the order of 40 variables [14], should be revised. This limit was 

obtained using dense implementations, and it might get higher if the proposed 

optimized sparse implementations were used, since their effects on the efficiency 

are higher in global formulations than in topological formulations. In addition, 

further work must be carried out in order to determine if the proposed 

recommendations are still valid for other formulations, since all the numerical 

experiments have been performed using a particular global formulation. 
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