
On the Effect of Linear Algebra Implementations in

Real-Time Multibody System Dynamics

Manuel González, Francisco González, Daniel Dopico, Alberto Luaces

This is a post-peer-review, pre-copyedit version of an article published in Computational Mechanics.

This version of the article has been accepted for publication, after peer review and is subject to Springer

Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improve-

ments, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/

s00466-007-0218-2.

https://doi.org/10.1007/s00466-007-0218-2
https://doi.org/10.1007/s00466-007-0218-2

 1

Submitted to Computational Mechanics on July 11, 2007

On the effect of linear algebra implementations in
real-time multibody system dynamics
Manuel González*, Francisco González*, Daniel Dopico*, Alberto Luaces*

Escuela Politécnica Superior
Universidad de A Coruña, Mendizábal s/n, 15403 Ferrol, Spain
e-mail: lolo@cdf.udc.es, fgonzalez@udc.es, ddopico@udc.es, aluaces@udc.es
web page: http://lim.ii.udc.es

Abstract. This paper compares the efficiency of multibody system (MBS) dynamic simulation codes

that rely on different implementations of linear algebra operations. The dynamics of an N-loop four-

bar mechanism has been solved with an index-3 augmented Lagrangian formulation combined with

the trapezoidal rule as numerical integrator. Different implementations for this method, both dense and

sparse, have been developed, using a number of linear algebra software libraries (including sparse

linear equation solvers) and optimized sparse matrix computation strategies. Numerical experiments

have been performed in order to measure their performance, as a function of problem size and matrix

filling. Results show that optimal implementations can increase the simulation efficiency in a factor of

2-3, compared with our starting classical implementations, and in some topics they disagree with

widespread beliefs in MBS dynamics. Finally, advices are provided to select the implementation

which delivers the best performance for a certain MBS dynamic simulation.

Keywords: multibody dynamics, real-time, performance, lineal algebra, implementation.

2

INTRODUCTION
Dynamic simulation of multibody systems (MBS) is of great interest for

dynamics of machinery, road and rail vehicle design, robotics and biomechanics.

Computer simulations performed by MBS simulation tools lead to more reliable,

optimized designs and significant reductions in cost and time of the product

development cycle. The computational efficiency of these tools is a key issue for

two reasons. First, there are some applications, like hardware-in-the-loop settings

or human-in-the-loop devices, which cannot be developed unless MBS simulation

is performed in real-time. And second, when MBS simulation is used in virtual

prototyping, faster simulations allow the design engineer to perform what-if-

analyses and optimizations in shorter times, increasing productivity and

interaction with the model. Therefore, computational efficiency is an active area

of research in MBS, and it holds a relevant position in MBS-related scientific

conferences and journals.

A great variety of methods to improve simulation speed have been proposed

during the last years [1-3]. Most of these methods base their efficiency

improvements on the development of new dynamic formulations. However,

although implementation aspects can also play a key factor in the performance of

numeric simulations, their effect on real-time multibody system dynamics has not

been studied in detail. Some recent contributions have investigated the

possibilities of parallel implementations [4], but comprehensive comparisons

about serial implementations in MBS dynamics have not been published yet.

Multibody dynamics codes make an intensive use of linear algebra operations.

This is especially true in global methods, which use a relative big number of

coordinates and constraint equations to define the position of the system; these

methods usually lead to O(N3) algorithms, where N is the number of bodies, and

spend around 80% of the CPU time in matrix computations. Topological methods

lead to O(N) algorithms due to the reduced size of the involved matrices, and

therefore the weight of matrix computations is also reduced. However, if flexible

bodies are considered, matrix computations take a significant percentage of

simulation time even for topological methods.

As a result, the implementation of linear algebra operations is critical to the

efficiency of MBS dynamic simulations. These operations can be grouped into

two categories: (a) operations between scalars, vectors and matrices, and (b)

3

solution of linear systems of equations; two additional orthogonal categories can

be established based on the data storage format: dense storage or sparse storage.

Many efficient implementations for these routines have been made freely

available in the last decade. Their performance has been compared in previous

works, both in an application-independent context [5-7] and under the perspective

of a particular application like Finite Element Analysis [8] or Computational

Chemistry [9]. But, as it will be explained in this paper, these studies do not fit the

particular features of MBS dynamics, and therefore their conclusions cannot be

extrapolated to this field.

The goal of this paper is to compare the efficiency of different implementations

of linear algebra operations, and study their effect in the context of MBS dynamic

simulation. Results will provide guidelines about which numerical libraries and

implementation techniques are more convenient in each case. This information

will be very helpful to researchers developing high-performance or real-time

multibody simulation codes.

The remainder of the paper is organized as follows: Section 2 describes the test

problem and the dynamic formulation used in the numerical experiments to

compare the efficiency of different implementations; Sections 3 and 4 present

efficient implementations for dense and sparse linear algebra, respectively;

Section 5 compares the results obtained in Sections 3 and 4 and extrapolates them

to other dynamic formulations; finally, Section 6 provides conclusions, advices

for efficient implementations and areas of future work.

2 BENCHMARK SETUP
In order to study the effect of linear algebra implementations in MBS dynamic

simulations, a test problem will be solved with a particular dynamic formulation

using different software implementations. A starting implementation will also be

described, since its efficiency will serve as a reference to measure performance

improvements.

2.1 Test Problem
The selected test problem (Fig. 1) is a 2D one degree-of-freedom assembly of

four-bar linkages with N loops, composed by thin rods of 1 m length with a

uniformly distributed mass of 1 kg, moving under gravity effects. Initially, the

system is in the position shown in Figure 1, and the velocity of the x-coordinate of

4

point B0 is +1 m/s. The simulation time is 20 s. This mechanism has been

previously used as a benchmark problem for multibody system dynamics [3,10].

Figure 1: N-four-bar mechanism.

2.2 Dynamic Formulation
The N-four-bar mechanism has been modeled using planar natural coordinates

(global and dependent) [11], leading to 2N+2 variables (the x and y coordinates of

the B points), and 2N+1 constraints, associated with the constant length condition

of the rods. The equations of motion of the whole multibody system are given by

the well-known index-3 augmented Lagrangian formulation in the form:

* *
1 1 , 0, 1, 2, ...

*
q qMq Φ Φ Φ λ Q

λ λ Φ

T T

i i i i



 

  

  

(1)

where M is the mass matrix (constant for the proposed test problem), q are the

accelerations, qΦ the Jacobian matrix of the constraint equations, α the penalty

factor, Φ the constraints vector, λ* the Lagrange multipliers and Q the vector of

applied and velocity dependent inertia forces. The Lagrange multipliers for each

time-step are obtained from an iteration process, where the value of *
0λ is equal to

the *λ obtained in the previous time-step.

5

As integration scheme, the implicit single-step trapezoidal rule has been

adopted. The corresponding difference equations in velocities and accelerations

are:

1 1

1 12 2

2 2ˆ ˆ;

4 4 4ˆ ˆ;

q q q q q q

q q q q q q q

n n n n n n

n n n n n n n

t t

t t t

 

 

 
     
  

 
      
   

(2)

Dynamic equilibrium can be established at time-step n + 1 by introducing the

difference Eq. (2) into the equations of motion (1), leading to a nonlinear

algebraic system of equations with the dependent positions as unknowns:

   
1

2 2 2

1 1 1
ˆ 0

4 4 4n 1 q nf q Mq Φ Φ λ Q Mq
n

T
n n n

t t t


   

  
     

(3)

Such system, whose size is the number of variables in the model, is solved

through the Newton-Raphson iteration

 
 i+1

f q
q f q

q i
i

 
        

(4)

using the approximate tangent matrix (symmetric and positive-definite)

 
 

2

2 4 q q
f q

M C+ Φ Φ K
q

Tt t


   
   

 

(5)

where C and K represent the contribution of damping and elastic forces of the

system (which are zero for the test problem). Once convergence is attained into

the time-step, the obtained positions n+1q satisfy the equations of motion (1) and

the constraint conditions 0Φ  , but the corresponding sets of velocities *q and

accelerations *q may not satisfy 0Φ  and 0Φ  . To achieve this, cleaned

velocities q and accelerations q are obtained by means of mass-damping-

stiffness orthogonal projections, reusing the factorization of the tangent matrix:

6

 

 
 

2 2

2 2

2 4 4

2 4 4

*
q q

*
q q

f q
q M C+ K q Φ Φ

q

f q
q M C+ K q Φ Φ q Φ

q

T

T
t

t t t

t t t





     
        

     
         

(6)

This method, described in detail in [12], has proved to be a robust and efficient

global formulation [13,14]. All numerical experiments will be performed using a

time-step t of 1.25·10-3 seconds and a penalty factor α of 108.

2.3 Starting Implementation
In our starting implementation, the simulation algorithm was implemented

using Fortran 90 and the Compaq Visual Fortran compiler. Two versions were

developed: (a) a dense matrix storage version, using Fortran 90 matrix

manipulation capabilities and the linear equation solver included with this

compiler (IMSL Fortran Library, from Visual Numerics), and (b) a sparse matrix

storage version, using the MA27 sparse linear equation solver from the Harwell

Subroutine Library. These two implementations, typical in the multibody

community, have been tuned and improved by our group during the last years, and

they have proved to be faster than commercial codes [13,14]. Its efficiency will

serve as a reference to measure the performance improvements achieved with the

new implementations proposed in this paper.

Table 1: Percentage of the total CPU time required by each algorithm phase in the starting
implementation for typical problem sizes: dense version in small problems (10 loops, 22 variables)
and sparse version in medium-size problems (40 loops, 82 variables).

Stage Dense Sparse
Evaluation of residual and tangent matrix, Eq. (3) and (5) 48% 15%

Evaluation of right-term in orthogonal projections, Eq. (6) 4% 13%

Tangent matrix factorizations and back-substitutions, Eq. (4) and (6) 44% 51%

Other 4% 21%

Table 1 shows the results of a CPU usage profiling in our starting

implementations, for both dense and sparse versions, applied to representative

problem sizes. As stated in the introduction, matrix computations consume most

of the CPU time.

7

In order to test alternative implementations, the authors have developed a new

MBS simulation software, implemented in C++, which can be easily configured to

use different matrix storage formats and linear algebra algorithms and

implementations. Numerical experiments have been performed on an AMD

Athlon64 CPU. After testing different operating systems and compilers, results

show that their effect on the performance is an order of magnitude lower than the

effect of linear algebra implementations. Final CPU times have been measured

using the GNU gcc compiler and the Linux O.S., without loss of generality.

3 EFFICIENT DENSE MATRIX IMPLEMENTATIONS
Global formulations applied to reduced rigid models (e.g. an industrial robot),

or topological formulations applied to medium-sized rigid models (e.g. a complete

road vehicle), lead to algorithms that operate with small-sized matrices of

dimensions less than 50x50. In these cases, dense linear algebra is frequently used

in MBS dynamics, since it is supposed to provide equal or higher performance

than sparse implementations. Achieving real-time in the simulation of these small

problems can be a challenge in hardware-in-the loop settings (e.g. advanced

Electronic Stability Control systems for automobiles), due to the low computing

power of embedded microprocessors, the small time-steps required for hardware

synchronization and the added control logic.

A straightforward way to increase the performance of dense matrix

computations is by using an efficient implementation of BLAS (Basic Linear

Algebra Subprograms). BLAS [15] is a standardized interface that defines

routines to perform low level operations between scalars, dense vectors and dense

matrices. A Fortran 77 reference implementation is available, and more efficient

implementations have been developed by hardware vendors and researchers.

These optimized BLAS versions exploit hardware features of modern computer

architectures to get the best computational efficiency. In addition to the reference

Fortran 77 implementation, three optimized BLAS implementations have been

tested:

 ATLAS (Automatically Tuned Linear Algebra Software), which employs

empirical techniques to generate an optimal implementation for any

hardware architecture [7].

8

 GotoBLAS, based on optimized assembler kernels, hand-written for the

most popular hardware architectures [16].

 ACML, developed by the microprocessor manufacturer AMD for its CPUs

[17]. Other hardware vendors also provide their own implementations

(MKL from Intel, SCSL from SGI, etc.).

Dynamic simulations can also make a profit of these optimized BLAS

implementations in the solution of dense linear equation systems, provided the

LAPACK library is used [18], since its linear equation solvers are based on low-

level BLAS operations. In addition to the reference LAPACK implementation,

written in Fortran 77, some optimized BLAS implementations like ATLAS and

ACML supply their own optimized versions of the LAPACK linear solvers.

Figure 2: Performance of different dense BLAS and LAPACK implementations.

The proposed test problem, with a number of loops ranging from 1 to 20 (i.e.

number of variables ranging from 4 to 42), was solved using different BLAS and

LAPACK implementations to perform all matrix computations. Since the tangent

matrix in the proposed dynamic formulation is symmetric and positive-definite

(SPD), only the lower triangular part of the matrix is computed, and the LAPACK

routines DPOTRF and DPOTRS have been used as linear equation solver.

Performance results are shown in Figure 2, where the legend text is encoded in the

9

form “BLAS implementation + LAPACK implementation” (except for the

starting implementation), and the combinations are ordered by increasing

efficiency.

Results in Figure 2 clearly show the advantage of using BLAS and LAPACK,

which speed-up the simulation in a factor between 2 and 5, depending on the

problem size, compared with our previous starting implementation. The low

performance of the ATLAS implementation, compared to the BLAS reference

implementation, can be explained by its high sensitiveness to the development

environment (e.g. compiler version) and its current unstable state (it is under

strong development). The vendor implementation (ACML) and GotoBLAS

deliver the best results except for very small problems (up to 10 variables). The

implementation named “Ref.+Ref.” delivers the best performance for very small

problems, and 70-80% of the performance of the best implementations for

medium-size problems (3 times more efficient than our starting implementation);

in addition, it has a very good portability (it is written in plain Fortran 77) and

usability: the installation process is straightforward, which is not always true for

other implementations.

Since some MBS dynamic formulations lead to a non-symmetric tangent

matrix [19], the same numerical experiment has been executed using general

algorithms (not SPD-specific) to compute all matrix operations; CPU times are

about 15% higher, but the efficiency ranking of Figure 2 is maintained.

4 EFFICIENT SPARSE MATRIX IMPLEMENTATIONS
In MBS dynamics, sparse matrix techniques are used in global formulations

applied to medium- or big-sized rigid models; as an example, a global model of an

automobile leads to matrices of dimension about 200x200 [14]. If flexible bodies

are considered, the matrix size increases, making sparse techniques profitable

even if topological formulations are used: a topological model of the same

automobile, with some of its bodies characterized as flexible elements (described

by component mode synthesis), leads to matrices of dimension about 100x100. In

any case, MBS models developed with real-time formulations hardly ever lead to

matrix sizes bigger than 1000x1000, significantly smaller than the typical sizes in

other applications like Finite Element Analysis (FEA) or Computer Fluid

Dynamics (CFD).

10

Regarding the sparsity, the proposed test problem and MBS dynamic

formulation lead to a tangent matrix of size 2N+2 and 12N+4 structural non-zeros.

For matrices of size 50x50, 100x100 and 500x500, the corresponding number of

non-zeros is 12%, 6% and 1%. These are representative values for MBS

simulations, and they are quite higher than typical values in other applications that

require sparse matrix technology (FEA, CFD).

Hence, MBS dynamics has two characteristics which make its sparse matrix

computations different from other applications:

a) Matrix computations are very repetitive, and the sparse patterns remain

constant during the simulation. Therefore, symbolical preprocessing can be

applied to almost all matrix expressions at the beginning of the simulation,

in order to accelerate the numerical evaluations during the simulation.

Section 4.1 presents some tips to exploit this feature.

b) The involved sparse matrices are relatively small and dense, compared with

the typical values in sparse matrix technology. Section 4.2 evaluates how

sparse linear equation solvers perform in these circumstances.

4.1 Optimized sparse matrix computations
Several numerical libraries are available nowadays to support sparse matrix

computations: MTL, MV++, Blitz++, SparseKIT, etc. For our new

implementations, we have chosen uBLAS, a C++ template class library that

provides BLAS functionality for sparse matrices [20]. Its design and

implementation unify mathematical notation via operator overloading and

efficient code generation via expression templates. Even though, the performance

of some matrix operations can be further improved if some special algorithms are

used. Results of CPU usage profiling (similar to Table 1) guided us to optimize

three operations:

The first optimized operation is the rank-k update of symmetric matrix,

q qΦ ΦT , computed in Eq. (5). Since the sparse structure of the Jacobian matrix

qΦ is constant, a symbolic analysis is performed in order to pre-calculate the

sparse pattern of the result matrix and to create a data structure that holds the

operations needed to evaluate it during the simulation. In our starting sparse

implementation, a similar approach was taken, but the Jacobian matrix was stored

as dense, to simplify the operations at the cost of a higher memory usage.

11

Figure 3: Sparse storage formats used in out implementations.

The second optimized operation is the matrix addition computed in Eq. (5).

Our starting sparse implementation used the Harwell MA27 routine as linear

equation solver, which requires the sparse matrix to be stored in coordinate format

(Figure 3), and allows duplicated entries in the matrix structure. Therefore, the

matrix addition is not actually computed, since the different terms are appended as

duplicated entries in the tangent matrix. Our new implementation uses the

compressed column storage format (Figure 3), since it is required by the sparse

linear equation solvers tested in Section 4.2. With this storage format, matrix

additions require complex data traversing that slows down the performance. The

following approach was taken in order to optimize the operation:

1 21 2B A At t  (7)

In the preprocessing stage, the sparse pattern of B is calculated as the union of A1

and A2 sparse patterns, and the resulting pattern is added to A1 and A2. In this

way, A1, A2 and B share the same sparse pattern (same indx and pntr arrays in the

compressed column storage format shown in Figure 3), and therefore, the matrix

addition can be computed as a vector addition of the val arrays:

1 21 2B A Aval val valt t  (8)

This technique increases the number of non-zeros (NNZ) of the addend matrices.

In the proposed MBS dynamic formulation, the NNZ of the mass matrix M is

increased in a 10% approximately, which slows down the matrix-vector

12

multiplications needed in the right terms of Eq. (3) and (6). However, the

simulation timings show that this slowdown is negligible compared with the gains

derived from the fast matrix addition.

Finally, the third optimized operation concerns sparse matrix access. The write

operation  ,A iji j a , straightforward in dense storage, needs additional position

lookup when the compressed column storage is used. In the proposed formulation,

the update of the Jacobian matrix qΦ in each iteration takes 10-15% of the CPU

time. The involved operations are rather simple, and most of this time is spent in

matrix access. In order to optimize this procedure, a preprocessing stage evaluates

the Jacobian matrix and registers the order in which entries  ,qΦ i j are written in

the val array of the compressed column format, creating a vector that holds

indices to these positions, in the same order of evaluation. Latter, in the simulation

stage, access to the Jacobian matrix is performed using this index vector, without

the need to map (i,j) indices to memory addresses for each write operation.

Table 2: Efficiency of the optimized sparse matrix operations.

Sparse operation
CPU time (microseconds)

Ratio
Not optimized Optimized

1) Rank-k update of symmetric matrix 2528.2 9.4 269
2) Matrix addition 140.9 1.9 74
3) Jacobian matrix evaluation 11.6 3.8 3

Table 2 summarizes the performance gains delivered by the proposed

optimizations, compared with the performance delivered by the uBLAS default

algorithms (which are similar to other generic sparse matrix libraries). The

numerical experiment used the matrix terms derived from an N-four-bar

mechanism with N=40 loops, which leads to a tangent matrix of size 82x82.

Results show the importance of optimizing rank-k updates and matrix additions,

since the performance delivered by off-the-shelf sparse matrix libraries is not

satisfactory for these repetitive operations.

13

4.2 Evaluation of sparse linear equation solvers
Data in Table 1 shows that, in our starting sparse implementation, about 50%

of the total CPU time is spent in tangent matrix factorizations and back-

substitutions, Eq. (4) and (6). Thus, the main performance improvements in MBS

dynamic simulation can be achieved by using a more efficient sparse linear solver.

During the last decade, sparse solvers have significantly improved the state of the

art of the solution of general sparse linear equation systems, and more than 30

sparse solver libraries are freely available in the World Wide Web [21].

The efficiency of sparse solvers varies greatly depending on the matrix size,

structure, number of non-zeros, etc. In addition, solving a sparse linear equation

system usually involves three stages: preprocessing (ordering, symbolic

factorization), numerical factorization and back substitution; some solvers are

very fast in the first stage, while others perform better in the second or third stage.

The performance of sparse solvers has been compared in previous works [5,6], but

the conditions of these studies (in particular, matrix sizes and percentage of non-

zeros) do not fit the above-mentioned particular features of MBS dynamics, and

therefore their conclusions cannot be extrapolated to this field. As a result, it is

almost impossible to determine, without numerical experiments, which sparse

solver will deliver the best performance in an MBS dynamic simulation.

 Given the large number of existing sparse solvers, a selection process is

required in order to narrow the scope. Solvers for shared memory or distributed

memory parallel machines have been discarded, since the small matrix sizes in

MBS real-time dynamics (almost fit in the CPU cache memory) makes them

unprofitable. The same argument applies to iterative solvers and out-of-core

solvers, designed for very big linear equation systems. From the remaining

solvers, those that performed best in previous comparative studies have been

selected:

 Cholmod, a left-looking supernodal symmetric positive definite solver [22].

 KLU, a solver specially designed for circuit simulation matrices [23].

 SuperLU (serial version), an unsymmetric general purpose solver [24].

 Umfpack, an unsymmetric multifrontal solver [25].

 WSMP, a symmetric indefinite solver [26].

14

Despite the coefficient matrix is symmetric positive-definite in the proposed

dynamic formulation, we have included in the numerical experiments some

general, non-symmetric solvers (KLU, SuperLU, Umfpack), since other dynamic

formulations lead to a non-symmetric coefficient matrix [19]. In these cases, the

whole coefficient matrix (upper and lower parts) is computed, while with

symmetric solvers only half matrix is used in the formulation equations. Each

solver supports its own set of reordering strategies; all of them have been tested to

select the best one in each simulation. In addition, all the optimizations described

in the previous Section were applied to our new sparse implementation.

Figure 4: Performance of different sparse linear equation solvers as a function of problem size.

The proposed test problem, with a number of loops ranging from 10 to 500 (i.e.

number of variables ranging from 22 to 1002), was solved using different sparse

solvers. Performance results are shown in Figure 4 for a number of variables up to

160, since the trends are preserved for higher number of variables. The legend text

shows the name of the sparse solvers, ordered by increasing efficiency.

Surprisingly, KLU is the fastest solver, despite being a general solver that does

not exploit the symmetric positive definite condition of the coefficient matrix; in

addition, it has been designed for circuit simulation problems, which lead to very

sparse matrices, the opposite case of MBS dynamics. However, these results have

been obtained by using the KLU refactor routine for numerical factorizations,

15

which reuses the pivoting strategy generated in the preprocessing stage. In

multibody problems where the elements of the tangent matrix of Eq. (5) may

significantly change their relative values during the simulation (e.g. due to violent

impacts), the initial pivoting strategy may become invalid and the refactor routine

would probably accumulate high numerical errors. To avoid this, the KLU solver

can recalculate the pivoting strategy in each numerical factorization, but this

method increases the CPU times in a 50%. On the other hand, Cholmod, a

symmetric positive definite solver, performs at 85% of KLU, despite recalculating

the pivoting strategy in each numerical factorization. Our best new sparse

implementations (using KLU or Cholmod) perform faster that our starting

implementation, in a factor from 2 (small problems) to 3 (big problems of 1000

variables).

4.3 Effect of dense BLAS implementation
Some sparse solvers, like Cholmod, rely on dense BLAS to increase their

performance. In addition, some sparse matrix operations (e.g. the optimized

matrix addition described in Section 4.1) are actually computed as dense vector

operations using BLAS routines. Results shown in Figure 4 have been generated

using the reference BLAS implementation. The same numerical experiment has

been executed using the faster, optimized GotoBLAS and ACML

implementations, and CPU times have decreased only in a 2% - 3%. Hence, the

reference BLAS implementation is recommended for MBS dynamics in sparse

implementations, since it provides the best compromise between performance and

usability.

5 SPARSE VS. DENSE IMPLEMENTATIONS
As stated previously, dense linear algebra is frequently used in MBS dynamics

for small problems (dimension of the coefficient matrix lower than 50), since it is

supposed to provide higher performance than sparse implementations [27]. Our

starting sparse implementation, which already employs some of the optimizations

described in Section 4.1, disagrees with this assumption, and this fact is reinforced

with the performance of our new optimized implementations: sparse versions

perform always faster than dense versions even for small problems, in a factor

which ranges from 1.5 (problems of 10 variables) to 5 (problems of 50 variables).

16

Figure 5: Performance of different sparse linear equation solvers as a function of tangent matrix
filling, for a problem size of 100 variables.

However, this conclusion has been obtained for the proposed test problem and

dynamic formulation, and it could be argued that it cannot be generalized to other

situations that lead to a coefficient matrix with a higher percentage of non-zeros,

as in the case of highly constrained mechanism or topological formulations. The

objection could be made to the efficiency ranking shown in Figure 4. In order to

get insight about this subject, the numerical experiments used to generate Figure 4

were repeated, but in this case artificial non-zeros were introduced in the mass

matrix M, in order to generate a tangent matrix with a variable percentage of non-

zeros. Figure 5 shows the CPU times for a mechanism of 48 loops (100 variables),

as a function of matrix filling. Results show that two sparse implementations,

based on the Cholmod and WSMP sparse solvers, are always faster than the best

dense implementation, even with 100% of non-zeros in the tangent matrix. This

surprising fact can be explained by two factors: (a) Cholmod and WSMP rely on

dense BLAS routines to perform the factorization, and therefore they start to

operate as dense solvers as the matrix filling increases; (b) the percentage of non-

zeros is always lower in the Jacobian matrix than in the tangent matrix, hence

optimized sparse implementations achieve significant time savings in Jacobian

operations, in comparison with dense implementations.

17

Figure 6: Best implementation, as a function of problem size and percentage of non-zeros in the
tangent matrix.

Figure 7: Best implementation, as a function of problem size and percentage of non-zeros in the
tangent matrix (refactor routine of KLU is not used).

Results for other problem sizes are synthesized in Figure 6: the different

regions represent the points (problem size, matrix filling) where each

implementation delivers the best performance. For most MBS problems and

dynamic formulations, a sparse implementation based on the KLU solver will be

the frontrunner. However, topological formulations with a symmetric tangent

matrix will benefit from a sparse implementation based on the WSMP solver,

specially when they are applied to rigid models, which result in a higher matrix

filling.

18

Figure 6 has been obtained by using the KLU refactor routine for numerical

factorizations. As explained in Section 4.2, this may cause trouble in problems

where the entries of the tangent matrix change their relative values significantly

during the simulation. If the refactor routine is not used, Figure 7 is obtained. In

this case KLU is replaced by Cholmod, WSMP increase its influence area, and the

dense implementation based on LAPACK emerges for very small problems (less

than 10 variables), but with a very small advantage. Conversely, two exceptions

can be mentioned: (a) for dynamic formulations with symmetric indefinite tangent

matrices, WSMP would be the frontrunner for almost all the situations, since

Cholmod does not support them; (b) for dynamic formulations with unsymmetric

tangent matrices, KLU would be the again frontrunner for almost all the situations

(even if the refactor routine is avoided), since WSMP does not support them.

6 CONCLUSIONS
Regarding the implementation aspects of MBS dynamic simulations, the

following conclusions can be established:

 Efficient linear algebra implementations can speed up the efficiency in a

factor of 2-3, compared with traditional implementations. In other words,

problems of double or triple size can be solved with the same resources.

 The proposed optimizations based on symbolic preprocessing of the sparse

matrix computations can deliver huge speedups, since off-the-shelf sparse

matrix libraries do not take advantage of the constant sparse pattern of

operations during the dynamic simulation.

 Optimized sparse implementations are recommended since they perform

better than optimized dense implementations, even for small-sized

problems or relatively dense matrices. This disagrees with the widespread

belief in MBS dynamics.

 Concerning sparse linear equation solvers, it has been found that KLU, an

unfamiliar solver designed for circuit simulation, performs very well with

many of the linear equation systems resulting from MBS dynamics. In

addition, it was found that the reference BLAS implementation provides the

best compromise between performance and usability for sparse

implementations.

19

The results from numerical experiments are summarized in Table 3, which

provides a simple decision rule to select the best linear equation solver for MBS

dynamics, based on matrix type, size and percentage of non-zeros. Efficient

implementations of global MBS dynamic formulations can be easily achieved,

provided the above recommendations are followed. All the recommended

software libraries are freely available, and the proposed optimization techniques

are not bounded to any programming language.

Table 3: Decision rules for selecting the best sparse solver for MBS dynamics, based on matrix
type, size and percentage of non-zeros.

Type of tangent matrix
(No. of variables) x (% of non-zeros - 10)

< 900 > 900

Symmetric positive definite KLU (smooth problems)
Cholmod (rough problems) WSMP

Symmetric KLU WSMP
Unsymmetric KLU KLU

As a consequence of the abovementioned conclusions, the limit for problem

size where global formulations perform better than topological formulations,

established in the order of 40 variables [14], should be revised. This limit was

obtained using dense implementations, and it might get higher if the proposed

optimized sparse implementations were used, since their effects on the efficiency

are higher in global formulations than in topological formulations. In addition,

further work must be carried out in order to determine if the proposed

recommendations are still valid for other formulations, since all the numerical

experiments have been performed using a particular global formulation.

ACKNOWLEDGEMENTS
This research has been sponsored by the Spanish MEC (grant No. DPI2003-

05547-C02-01 and the F.P.U. Ph.D. fellowship No. AP2005-4448) and the

Galician DGID (Grant No. PGIDT04PXIC16601PN).

20

REFERENCES

 [1] Cuadrado J, Cardenal J, Morer P (1997) Modeling and Solution Methods

for Efficient Real-Time Simulation of Multibody Dynamics, Multibody
System Dynamics 1: 259-280

 [2] Bae DS, Lee JK, Cho HJ, Yae H (2000) An Explicit Integration Method
for Realtime Simulation of Multibody Vehicle Models, Computer Methods
in Applied Mechanics and Engineering 187: 337-350

 [3] Anderson KS, Critchley JH (2003) Improved 'Order-N' Performance
Algorithm for the Simulation of Constrained Multi-Rigid-Body Dynamic
Systems, Multibody System Dynamics 9: 185-212

 [4] Anderson K, Mukherjee R, Critchley J, Ziegler J, Lipton S (2007)
POEMS: Parallelizable Open-Source Efficient Multibody Software,
Engineering with Computers 23: 11-23

 [5] Gupta A (2002) Recent Advances in Direct Methods for Solving
Unsymmetric Sparse Systems of Linear Equations, ACM Transactions on
Mathematical Software 28: 301-324

 [6] Scott JA, Hu YF, Gould NIM (2006) An Evaluation of Sparse Direct
Symmetric Solvers: An Introduction and Preliminary Findings, Applied
Parallel Computing: State of the Art in Scientific Computing 3732: 818-827

 [7] Whaley RC, Petitet A, Dongarra JJ (2001) Automated Empirical
Optimizations of Software and the ATLAS Project, Parallel Computing 27:
3-35

 [8] Turek S, Becker C, Runge A (2001) The FEAST Indices. Realistic
Evaluation of Modern Software Components and Processor Technologies,
Computers & Mathematics with Applications vol.41, no.10-11: 1431-1464

 [9] Yu JSK, Yu CH (2002) Recent Advances in PC-Linux Systems for
Electronic Structure Computations by Optimized Compilers and Numerical
Libraries, Journal of Chemical Information and Computer Sciences 42: 673-
681

[10] Gonzalez M, Dopico D, Lugrís U, Cuadrado J (2006) A Benchmarking
System for MBS Simulation Software: Problem Standardization and
Performance Measurement, Multibody System Dynamics 16: 179-190

[11] García de Jalón J, Bayo E (1994) Kinematic and Dynamic Simulation of
Multibody Systems - The Real-Time Challenge, Springer-Verlag, New York

[12] Bayo E, Ledesma R (1996) Augmented Lagrangian and Mass-Orthogonal
Projection Methods for Constrained Multibody Dynamics, Nonlinear
Dynamics 9: 113-130

21

[13] Cuadrado J, Gutierrez R, Naya MA, Morer P (2001) A Comparison in
Terms of Accuracy and Efficiency Between a MBS Dynamic Formulation
With Stress Analysis and a Non-Linear FEA Code, International Journal for
Numerical Methods in Engineering 51: 1033-1052

[14] Cuadrado J, Dopico D, Gonzalez M, Naya M (2004) A Combined Penalty
and Recursive Real-Time Formulation for Multibody Dynamics, Journal of
Mechanical Design 126: 602-608

[15] NIST (2006) Basic Linear Algebra Subprograms.
http://www.netlib.org/blas/

[16] Goto K (2006) GotoBLAS. http://www.tacc.utexas.edu/resources/software/

[17] AMD (2007) AMD Core Math Library. http://developer.amd.com/acml.jsp

[18] NETLIB (2007) LAPACK. http://www.netlib.org/lapack/

[19] Dopico D, Lugris U, Gonzalez M, Cuadrado J (2006) Two
Implementations of IRK Integrators for Real-Time Multibody Dynamics,
International Journal for Numerical Methods in Engineering 65: 2091-2111

[20] Walter J, Kock M (2006) UBLAS. http://www.boost.org/libs/numeric/

[21] Dongarra JJ (2004) Freely Available Software For Linear Algebra On The
Web. http://www.netlib.org/utk/people/JackDongarra/la-sw.html

[22] Chen Y, Davis TA, Hager WW, Rajamanickam S (2006) Algorithm 8xx:
CHOLMOD, Supernodal Sparse Cholesky Factorization and
Update/Downdate.
http://www.cise.ufl.edu/~davis/techreports/cholmod/tr06-005.pdf

[23] Davis TA, Stanley K (2004) KLU: a Clark Kent Sparse LU Factorization
Algorithm for Circuit Matrices.
http://www.cise.ufl.edu/~davis/techreports/KLU/pp04.pdf

[24] Demmel JW, Eisenstat SC, Gilbert JR, Li XYS, Liu JWH (1999) A
Supernodal Approach to Sparse Partial Pivoting, Siam Journal on Matrix
Analysis and Applications 20: 720-755

[25] Davis TA (2004) Algorithm 832: UMFPACK V4.3 - An Unsymmetric-
Pattern Multifrontal Method, ACM Transactions on Mathematical Software
30: 196-199

[26] Gupta A, Joshi M, Kumar V (1998) WSSMP: A High-Performance Serial
and Parallel Symmetric Sparse Linear Solver, Applied Parallel Computing
1541: 182-194

[27] Cuadrado J, Dopico D (2004) A Combined Penalty and Semi-Recursive
Formulation for Closed-Loops in MBS, Eleventh World Congress in
Mechanism and Machine Science, Vols 1-5, Proceedings 637-641

http://www.netlib.org/blas/
http://www.tacc.utexas.edu/resources/software/
http://developer.amd.com/acml.jsp
http://www.netlib.org/lapack/
http://www.boost.org/libs/numeric/
http://www.netlib.org/utk/people/JackDongarra/la-sw.html
http://www.cise.ufl.edu/~davis/techreports/cholmod/tr06-005.pdf
http://www.cise.ufl.edu/~davis/techreports/KLU/pp04.pdf

